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ABSTRACT 
In the industry of flat rolled sheet product, strip crown 
and shape has been one of the most important factors 
for quality assurance, productivity improvement, cost 
effectiveness, and customer satisfaction. The transient 
work roll profile influences load distribution and 
imprints an undesirable profile on rolled strip. We 
designate by a winding process any system applying the 
cycles of unwinding, transport, treatment and winding 
to various flat products. This system knows several 
constraints such as the thermal and mechanical effects 
that generate dysfunctions due to the influence of the 
process conditions. For this installations type, the 
various automatisms functions, often very advanced, are 
realized in modular systems with distributed 
architecture. In the present paper, a backstepping 
control technique is proposed. The control variables are 
velocities and tractions forces along the web winding 
system. The proposed control law and Lyapunov 
function guarantee asymptotic stability from all initial 
values. 

 
Keywords: Web Winding System (WWS), Nonlinear 
Control, Lyapunov Functions, Backstepping method. 

 
1. INTRODUCTION 
In the early days of control theory investigation, most of 
concepts such as stability, optimality and uncertainty 
were descriptive rather than constructive. In the recent 
two decades, a number of new methods have been 
developed for designing controllers to control nonlinear 
dynamic systems. These are mainly recursive methods, 
such as backstepping, forwarding, and various 
combinations of them. A common concept of the above 
named basic recursive methods is the design of a 
globally stable control system, having a cascade 
structure, for a class of nonlinear dynamic systems. In 
particular, the backstepping method is based on 
Lyapunov function theory (La Salle and Lefschetz 
1961), but its origin can be found in some theories of 
linear control, such as the feedback linearisation method 
or the LQR method.  

The beginning of the development of the 
backstepping method applied to nonlinear control 
systems design dates back to the end of the 1980s. A list 
and a discussion of publications issued at that time can 
be found in the overview by Sontag and Sussmann, 
(1989), as well as by Kokotovic and Arcak (2001). The 
backstepping method is based directly on the 

mathematical model of the examined system, 
introducing new variables into it in a form depending on 
the state variables, controlling parameters, and 
stabilising functions. The controlled system may be in 
the state equations with a triangular form. The design of 
the controller pass by several step, in the first step we 
consider a Lyapounov function for the first error state, 
then, the virtual control is calculated in the order to 
guarantee the negativity of the Lyapounov function 
proposed. For this virtual control, we associate a second 
error sate, between the second state and the virtual 
control calculated in first step, then we consider the 
augmented joint Lyapounov function whose the first 
function and the second error are appear. The second 
virtual control is calculate with the same reasoning. The 
exact control will calculate in the last step by using the 
virtual control laws calculated in the past steps. We can 
interpret this method by the addition of the integrators 
after each step (Krstic, Kanellakopulos and Kokotovic 
1995).  

This paper presents a new concept of web winding 
system in which control velocities and tensions are 
derived for nonlinear controllers designed with the 
Backstepping method. The dynamics of a Web Winding 
System (WWS) is described by its strongly nonlinear 
behavior. In all cases of rolling up or unfolding of a web 
material, the flatness difficulty arises. Considering the 
complexity of the system due to nonlinearity and the 
strong coupling between the web velocity and the web 
tension, it is more convenient to linearize this WWS. 
However, this model remains very depend on the set 
point considered and especially on the variation rate of 
nonlinearities. This situation pushed the researchers to 
be directed more and more towards the techniques of 
the nonlinear control based on the Backstepping’s 
technique. The paper is organized as follows: The web 
winding model is described in Section 2, with a brief 
description of the WWS. A detailed description of 
winding control design methodology is in Section 4. In 
Section 5 the control system performances are evaluated 
in simulation of the web winding model. The last 
section concludes the paper. 
 
2. PLANT MODEL 

 
2.1. WWS description 
The web system is very important in a rolling mill, 
because its parameters determine the strip quality. 
Among its parameters, we quote: 
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• The entry and exit of the traction forces. 
• The entry and exit velocities ensured by the 

winders motors, and the work rolls velocity 
(Fig.1). 

• The pressure force or the variations between 
the work rolls and their parallelism. 
 

The variation of the exit strip flatness evolves 
because of the thermal dilation of the cylinders (Rabbah 
and Bensassi, 2006; Rabbah and bensassi 2007a), but 
also due to the elasticity forces (Schmitz and Herman 
1995). To avoid this phenomenon, the traction forces 
are applied to limit the elasticity of the rolled material. 

The thickness control is ensured by programmable 
automats, which are called AGC (Automatic Gauge 
Control system), (Ueno and Sorao 2004). Their goal is 
to maintain the strip thickness uniform in spite of the 
acting factors to change it. Considering the complexity 
of the Cold Rolling System (CRM), the modeling and 
the control of the WWS should be studied to minimize 
the flatness defaults. With this intention, we start with 
the development of a mathematical model describing 
the dynamic behavior of the system. 

 

 
Figure 1: Interactions between the components of the 
cold rolling system. 

 
2.2. Global model 
Let us consider the nonlinear model of the wws 
(Rabbah and Bensassi 2007b; Rabbah and bensassi 
2008) defined by the state representation (1) which can 
be put in the general form of the nonlinear affine control 
system: 
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These parameters characterize the system: it is 
multivariable, strongly coupled, nonlinear and time-
varying. 

The model (1) is composed of three subsystems: 
The first one is of the state vector [V1, T1]T, controlled 
by the tension U1, the second has as a state vector [V2], 
is controlled by U2 and the third subsystem has as a state 
vector [T2, V3]T, is controlled by the tension U3. 

Table 1 contains the operating condition used in 
this analysis. 

 
Table 1: parameters of the operating conditions 

 
3. THE BACKSTEPPING CONTROLLERS 
The control problem considered consists in forcing the 
web velocities and the downstream/upstream web 
tensions to follow the reference signals given, noted 

Web length between winder and 
unwinder 

1.15 m 

Young’s modulus 0.16 109 
kg/m² 

Web section 0.19 mm² 
Sliding coefficient 0.8 

Strip or web thickness 1.6 mm 
Strip or web width (largeur) 600 mm 

Diameter or work rolls 0.45 m
Nominal torque of unwinding/winding 

motors 
700 kN.m 

Nominal velocity of unwinding/ 
winding motors 

120 Rpm 

Rolling speed 1400 mpm 
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respectively 2 1 3,   and ref ref refV T T . This suggests the 
following errors: 

 
1 1 1

refe T T= −                                                              (2) 
 

2 2 2
refe V V= −                                                             (3) 

 
3 3 3

refe T T= −                                                             (4) 
 
The regulator synthesis will be done in two steps. 

In the first step, we will put the virtual controls and the 
stabilising functions associated. In the second step, we 
determine the control laws able to ensure convergence 
towards zero of the difference between the virtual 
orders and the stabilising functions associated. 
 
Step1: The dynamic of the tracking errors 1 2 3,   and e e e  
are given by: 
 

( ) 2
1 1 2 1 1
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The tracking error 2e  tends asymptotically 

towards zero if; in this case, the virtual control is 
selected as follows: 
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Thus, the dynamic error 2e can be rewritten as follows: 
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The quantities ( )2 1
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L

−  and ( )3 2
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−  are 

posed like virtual control inputs for the system (5) and 
(7). It follows that the tracking errors 1e  and 3e  tend 
asymptotically towards zero if these virtual controls are 
selected such as: 
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( )3 2 3
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L
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where 1 2 3,   and c c c  are the positive real constants 
unspecified.  
Indeed, by doing this we obtain: 

1 1 1 2 2 2 3 3 3,  and e c e e c e e c e= − = − = −  
 

The 1 2 3,   and α α α  quantities are called stabilising 
functions. Then, the first Lyapunov candidate function 
is defined as: 
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The derivative of the first Lyapunov function takes the 
form: 
 

2 2 2
1 1 1 2 2 3 3v c e c e c e= − − −                                               (12) 

 
who shows the influence of the controlling parameters 

1 2 3,   and c c c  on the convergence of the 1 2 3,   and e e e  
errors. 

For the equations (9) and (10), the found result 

supposes that ( )2 1
ES V V
L

−  and ( )3 2
ES V V
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−  are 

effective controls. As such is not the case, we cannot 
impose the equalities (9) and (10). We will only try to 
tend these controls towards their ideal trajectories which 
are precisely the stabilising functions 1 3 and α α . For 
this purpose, we introduce the errors: 
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The dynamic of the 1 3and e e  errors are expressed 

in function of 1 3and z z  as follows: 
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3 3 3 3e c e z= − +                                                            (16) 
 
The second step in the regulator synthesis consists 

in forcing all the 1 2 3 1 3( ,  ,  ,  ,  )e e e z z  errors to converge 
towards zero with a suitable choice of the effective 
controls 1 2 3,  and U U U . 
 
Step 2: The dynamic of the 1e  error is given by: 
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Taking into account (13) and (9), we obtain: 
 

( )
2 2
2 2 2

1 1 1 1 1 1 1 1 3 2 2
2 2 2 2 2

2 1 2 1 2

2 2 2
2 2 2 1 1

1 3 2 2 1 1 1
2 2 2 2 2 1 1 1 1

1

1 1
.

1 1    

1 1    
. .

   

ref

em em

em em em em

gr gr r
z c ce z T T T T V U

L J J k

ES ESV T V V V
L L L L

gr gr r gr rES T T V U T V U
L J J k J k

rES
L

τ τ

τ τ τ τ

β

⎛ ⎞
= − + + + ⋅ − + − +⎜ ⎟

⎝ ⎠
⎛ ⎞+ ⋅ − ⋅ − +⎜ ⎟
⎝ ⎠
⎛ ⎞

− − + − + − + −⎜ ⎟
⎝ ⎠

= − 2 1 1 2
2 1 2

2 2 1 1 2 2. . .em em em

r T r
U U U

k k L kτ τ τ
⎛ ⎞⎛ ⎞

− − ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (18) 

 
where 1β  includes the measurable terms on the right of 
the first equality, that is to say: 
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In the same way, the dynamics of the 3e  error is: 
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While using (16) and (10), the preceding equation 
becomes: 
 

( )
2 2
2 2 2

3 3 3 3 3 3 3 1 3 2 2
2 2 2 2 2

2 2 3 2 3

2 2 2
3 3 2 2 2

3 3 3 1 3 2 2
3 3 3 3 2 2 2 2 2

3

1 1
.

1 1    

1 1    
. .

   

ref

em em

em em em em

gr gr r
z c ce z T T T T V U

L J J k

ES ESV V T V V
L L L L

gr r gr gr rES T V U T T V U
L J k J J k

ES
L

τ τ

τ τ τ τ

β

⎛ ⎞
= − + + + ⋅ − + − +⎜ ⎟

⎝ ⎠
⎛ ⎞+ ⋅ − ⋅ − +⎜ ⎟
⎝ ⎠
⎛ ⎞

− − − + + − + −⎜ ⎟
⎝ ⎠

= − − 3 32
2 3

2 2 3 3. .em em

T rr ESU U
L k L kτ τ

⎛ ⎞⎛ ⎞− ⋅ + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

    (21) 

 
where 3β  includes the measurable terms on the right of 
the first equality, that is to say: 
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To study the stability of the system (8b), (15), (16), 
(18) and (21), of state vector 1 2 3 1 3( ,  ,  ,  ,  )e e e z z , we 
consider the Lyapunov candidate function increased: 
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where 1d  et  3d  are the positive real constants 
unspecified.  

The preceding equation suggests choosing the 1U , 

2U  and 3U controls such as: 
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we can deduce the three laws control, there forms are: 
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The derivative 2v  becomes: 
 

2 2 2 2 2
2 1 1 2 2 3 3 1 1 3 3v c e c e c e d z d z= − − − − −                         (28) 
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It is a negative definite function of the vector 
1 2 3 1 3( ,  ,  ,  ,  )e e e z z . It follows that the system of the 

state vector 1 2 3 1 3( ,  ,  ,  ,  )e e e z z  has a equilibrium point 
globally asymptotically stable on the position 

1 2 3 1 3( ,  ,  ,  ,  ) (0,  0,  0,  0,  0)e e e z z = . That means in 
particular that the tracking errors (for the winding 
velocity and the upstream/downstream tensions) tend 
towards zero whatever the initial conditions. 

 
4. SIMULATION AND RESULTS DESCUSSION 
The performances of the regulator worked out in the 
preceding paragraph will be illustrated now by 
simulation. We will use the www model quoted in 
section 2. We took as references 2 1 3,   and ref ref refV T T , 
which respectively have as a value 29m/s, 100N and 
120N.  

The values chosen for the regulator parameters of 
of Backstepping during simulations are: 
 1 2 3 1 3( ,  ,  ,  ,  ) (60,  32,  78,  110,  224)c c c d d = .  

The simulations results are presented by figures 2, 
3 and 4. We note that the continuation objectives are 
achieved, as well for velocity as for the upstream and 
downstream tensions. These results show that the 
continuation errors corresponding to the each parameter 
are cancelled after 30 seconds for the tensions and 15 
seconds for the web velocity. 
 

 
Figure 2: Upstream tension control by Backstepping.  

 

 
Figure 3: Web velocity control by Backstepping. 

 
Figure 4: Downstream tension control by Backstepping.  

 
5. CONCLUSION 
In this paper, we approached the control problem of the 
web velocity and the web tensions of a web winding 
system, using a regulator worked out by the 
Backstepping technique. The synthesis rested on the 
standard model, which holds account owing to the fact 
that all the state variables were supposed to be 
available. We formally established that the closed loops 
made up of this regulator and the model from which it is 
resulting, are overall asymptotically stable. Moreover, 
the regulator by Backstepping asymptotically ensures a 
perfect trajectories tracking of the web velocity and 
tensions references. This result was confirmed by 
simulation way. 
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