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ABSTRACT 
Experimental optimisation with hardware-in-the-loop is 
a common procedure in engineering, particularly in 
cases where accurate modelling is not possible. A 
common methodology to support experimental search is 
to use one of the many gradient descent methods. 
However, even sophisticated and proven methodologies 
such as Simulated Annealing (SA) can be significantly 
challenged in the presence of significant noise. This 
paper introduces a decision support methodology based 
upon Response Surfaces (RS), which supplements 
experimental management based on variable 
neighbourhood search, and is shown to be highly 
effective in directing experiments in the presence of 
significant signal to noise (S-N) ratio and complex 
combinatorial functions. The methodology is developed 
on a 3-dimensional surface with multiple local-minima 
and large basin of attraction, and high S-N ratio. 
Finally, the method is applied to a real-life automotive 
experimental application. 
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1. INTRODUCTION 
Experimental search with hardware or process in-the-
loop is a common procedure in, for example, the 
engineering and pharmaceutical industries. These 
procedures are often applied to combinatorial problems 
during (in the engineering case for example) the 
development of new hardware systems or control 
(Stewart, Fleming and MacKenzie 2003, Stewart, Stone 
and Fleming 2004). The systems under test, can be 
described as a set of dependent variables which vary 
according to some functions of independent variables. 
In this case, there doesn't exist a complete specification 
of the function relating the variables. This implies that 
there is no accurate a-priori knowledge of the 
fundamental cause and effect present in the system. 
Thus, for an example linear function, the values in the 
co-efficients matrix would be unknown. 
 Commonly it is required to identify the sets of 
independent variables which maximise or minimise the 
dependent variables (Myers and Montgomery 1995). To 
obtain the necessary information to have a confident 
estimate of the parameters, it is possible to vary the 
independent parameters over successive trials 

(Designed Experiments) and measure the corresponding 
dependent variables. In order to fully examine this 
relationship, a large number of trials is often required to 
identify the location of the desired response. However, 
real-world problems are difficult to solve by this 
methodology for a number of reasons (Michalewicz and 
Fogel 2000): 

 
• The number of possible solutions in the 

experimental space is so large as to preclude an 
exhaustive search for the best (or acceptable) 
and answer (Michalewicz and Fogel 2000). 

• The evaluation function that describes the 
solutions is extremely noisy and/or complex.  

• The cost of conducting an experiment at large 
numbers of points in the search space may be 
prohibitive in terms of time taken and/or 
resources used. 

 
These constraints motivate the use of gradient descent 
methods in order to provide the decision support to 
direct the search and minimise the number of 
experiments conducted. Other meta-heuristics such as 
Genetic Algorithms (Narayana Naik, Gopalakrishnan 
and Ganguli, 2008) are applicable to this class of 
problem, but are relatively difficult to implement and 
tune due to the number of parameters associated with 
this technique as compared to gradient descent methods. 
These methods are based upon the statistics of the 
neighbourhood around a given point, thus relying on 
local information at each step. However, basic gradient 
descent methods only provide locally optimum 
solutions whose values depend on selection of the 
starting point (Mladenovic and Hansen, 1997). There 
have been many meta-heuristic methods developed to 
increase the efficiency of the experimental search, such 
as simulated annealing (Burke and Kendal 1999), tabu 
search (Glover and Hanfi 2002), genetic algorithms 
(Stewart, Stone and Fleming 2004) and variable 
neighbourhood search (Toksari and Guner 2007). 

As the nature of the experimental surface is an 
unknown, it is important to utilise methodologies which 
require the minimum number of parameters to be 'tuned' 
in order to conduct effective search. With this caveat in 
mind, simple gradient descent, simulated annealing 
(SA) and variable neighbourhood search (VNS) will be 
considered in this paper, since in most of their varieties, 
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implementation is simple, and basic tuning rules are 
readily available. 

It has been noted in the literature that the 
performance of meta-heuristics such as simulated 
annealing are to some extent compromised when 
directing search over significantly noisy surfaces 
(Michalewicz Fogel 2000). This paper describes the 
implementation of a weighted stochastic decision 
support operator based on RS which guides 
experimental process to predicted areas of interest in the 
search space. Basic Gradient Descent, SA and VNS are 
supplemented by this methodology, and performance is 
compared to the basic form of the meta-heuristics. The 
supplemented meta-heuristics are shown to have 
significantly improved performance when searching 
noisy environments. 

 
1.1. Scope of this paper 
What this paper is about: 
 

• Experimentation on real engineering problems 
• Inherently noisy data 
• Decision support to reduce experimentation 
• Applying a decision support operator to 

common search methodologies 
 
What this paper is not about: 
 

• Performance comparison of heuristics and 
meta-heuristics 

• Meta-heuristic tuning methodologies 
• ’Toy’ problems and surfaces 

 
This paper concerns itself with the problem of finding a 
result in an unseen, noisy search space, where every 
individual evaluation of a point in the search space is 
expensive in terms of time and/or resources. 
 
2. SEARCH METHODOLOGIES 
A comprehensive description of gradient descent based 
methods can be found in (Michalewicz and Fogel, 
2000). In this section of the paper, the implementations 
of the algorithms are described. The class of problems 
addressed in this paper are in general of a minimisation 
type (Baldick 2006). That is, it is desired to minimise a 
function ( )xf  over choices of x  which lie in the 
feasible set S such that; 

 
( )xff sx∈= min*     (1) 

 
thus; Sx ∈∃ * , such that: ( )** xff = and 

( ) ( )xfxfSx ≤⇒∈ * . Set S  is the constraint set, 
*f  is the minimum of the problem, while *x is the 

minimiser. We will refer to minimisation problems in 
this paper, however a conversion to maximisation is a 
trivial task. 

 

2.1. Gradient Descent 
A sequence of intermediate values are successively 
generated by the algorithm. We begin with an initial 
random guess and successively improve it. In general, 
none of the iterates exactly solve the problem, therefore 
we include a termination criteria which when satisfied 
will cause the algorithm to terminate with a suitable 
approximation to the exact solution. This is particularly 
applicable to real-world, noisy surfaces. Iterative hill 
descent can be described with the general form of 
recursion; 
 

...2,1,0,1 =Δ+=+ vxxx vvvv α   (2) 
 
where; 
 

• 0x  is the initial guess 
• v  is the iteration counter 
• vx is the value of the iterate at the vth  

iteration 
• +ℜ∈vα  is the step size 

• nvx ℜ∈Δ  is the step direction 
• vv xΔα is the update to add to the current 

iterate vx to obtain new iterate 1+vx  
 
In the case of minimisation, the step direction is chosen 
as to reduce the objective *f . If we let ℜ∈x̂ , then 
the vector ℜ∈Δx  is called a descent direction for f  

at x̂  if ++ℜ∃α  such that; 
 

( )xfxxf ˆ)ˆ(0 <Δ+⇒≤< ααα ,  (3) 
 
and xΔ  is a descent direction for f  at x̂  if the 

objective is smaller than ( )xf ˆ at points along the line 
segment xx Δ+αˆ  for 0>α  and αα ≤ . There are 
some caveats associated with gradient descent methods: 
 

• The methods usually terminate at solutions 
which are only locally optimal 

• No information is apparent as to how the 
discovered local optima deviates from the 
global minima or other local minima 

• The optimum obtained depends on the original 
configuration 

• In general it is not possible to calculate an 
upper bound for computation time 

 
Gradient Descent thus exploits the best opportunities for 
improvements, but neglects to explore a large search 
space. In contrast, random search where points are 
sampled from S  with equal probability explores 
thoroughly, but forgoes local exploitation. Thus most 
gradient descent methods execute a random ‘jump' at 
local minima, to balance exploration with exploitation 
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2.2. Variable Neighbourhood Search 
The VNS algorithm implemented in this paper 
systematically exploits the idea of neighbourhood 
change in the descent to minima (Burke and Kendall 
2005), and attempts to balance local exploitation with 
global exploration. It is simply an implementation of the 
basic gradient descent method described in the previous 
section, however, in this case the step length vα  is 
variable rather than fixed. A number of variations have 
been reported, with both lengthening step length 
(Mladenovic and Hansen 1997) and reducing step 
length (Toksari and Guner 2006). In this case, reducing 
step length is implemented, by a static schedule 
(Kirkpatrick 1983), using a step decementation function 
given by; 

...2,1,0,1 =⋅=+ kcC kk α    (4) 
 
The initial step length is usually chosen to be significant 
with respect to the search variable ranges, where α  is 
chosen to be a positive constant > 1. The final value is 
fixed, generally related to the smallest feasible 
measurement or control increment of the variables. As 
with gradient descent, a random 'jump' is implemented 
to escape local minima. 
 
2.3. Simulated Annealing 
The implementation of Simulated Annealing used in 
this paper is based again on gradient descent, accepting 
improvements in cost in traversing the search space, 
however depending on a control parameter c  it will 
accept deteriorations to a limited extent to escape local 
minima. Initially, at large values of c , large 
deteriorations will be accepted, as c decreases, smaller 
deteriorations are accepted, and finally, as the value of 
c  approaches 0, no deteriorations are accepted. The 
probability of accepting deteriorations is achieved by 
comparing the value of ( ) ( )( )( )cjfif /exp − with a 
random number generated from a uniform distribution 
on the interval [ ]1,0 . In this case, the rate of decrease of 
the parameter c  is achieved by implementing the VNS 
decrementation function. 
 
3. WEIGHTED STOCHASTIC DECISION 

SUPPORT OPERATOR (WSDS) 
Local search methods such as gradient descent execute 
a random jump at local optima or other pre-defined 
termination metric based upon the implementation. SA-
type methodologies typically execute a random jump at 
the termination of the cooling schedule if the global 
minimum or some upper bound of acceptable 
performance hasn't been reached. Obviously with 
unknown experimental functions, the exact value of the 
global maximum will not be known, however it is 
common for the designer/experimenter to have an 
“acceptable” performance metric in mind when starting 
the experimental procedure which will act as a 
termination criteria. 

 Tabu Search has been shown to be a particularly 
effective meta-heuristic by directing the experimental 
search ‘jumps’ away from areas which have been found 
to be unproductive. However, this doesn't take 
advantage of the previously gathered data with respect 
to the possibility of ‘predicting’ promising areas of 
search. The RS methodology has been shown to be an 
effective tool in approximating complex and noisy 
functions for real time control (Stewart and Fleming 
2002, 2004), and thus would appear to be a useful tool 
to direct experimentation based upon past results. 
 The response surface methodology is a technique 
which was initially developed to optimise process 
control and experimentation by the application of 
designed experiments in order to characterise the 
relationship between the system variables and outputs 
(Myers and Montgomery 1995). The relationship 
between the response variable of interest y , and the 

predictor variables ( )kξξξ ,...,, 21  comprise a 
description of the system of the form 
 

( ) εξξξ += kgy ,...,, 21    (5) 
 
where ε  represents the model error, and includes 
measurement error, and other variability such as 
background noise. The error will be assumed to have a 
normal distribution with zero mean and variance 2σ . 
In general, the experimenter approximates the system 
function g  with an empirical model of the form 
 

( ) εξξξ += kfy ,...,, 21    (6) 
 
where f  is a polynomial of arbitrary order (generally 
first or second order in the process control industry). 
This is the empirical or response surface model. The 
variables are known as natural variables since they are 
expressed in physical units of measurement. The natural 
variables are transformed into coded variables 

kxxx ,..., 21  which are dimensionless, zero mean, and 
the same standard deviation. The response function now 
becomes 
 

( )kxxxf ,..., 21=η     (7) 
 
The successful application of RS relies on the 
identification of a suitable approximation for f . This 
will often be a first order model of the form 
 

kk xxx ββββη ++++= ...22110   (8) 
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or a second order model of the form 
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        (9) 
 
It may also be necessary to employ an approximating 
function greater than an order of two, based on the 
standard Taylor series expansion. The set of parameters 
can be estimated by regression analysis based upon the 
experimental data. The method of least squares is 
typically used to estimate the regression coefficients. 
With kn <  on the response variable available, giving 

nyyy ,..., 21 , each observed response will have an 

observation on each regression variable, with ijx  

denoting the ith  observation of variable jx . Assuming 

that the error term ε  has 0)( =Ε ε  and 
2)( σε =Var  and the iε  are uncorrelated random 

variables. The model can now be expressed in terms of 
the observations 
 

iikkiii xxxy εββββ +++++= ...22110  

ni ,...2,1=                                (10) 
 
The β  coefficients in equation (10) are chosen such 

that the sum of the squares of the errors iε  are 
minimised via the least squares function 
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The model can be more usefully expressed in matrix 
form as 
 

εβ +Χ=y                 (12) 
 
where 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Χ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nknn

k

k

n xxx

xxx
xxx

y

y
y

y

...1
.....
.....
.....

...1

...1

,

.

.

.

21

12221

11211

2

1

 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nn ε

ε
ε

ε

β

β
β

β

.

.

.
,

.

.

.
2

1

1

0

               (13) 

 
It is now necessary to find a vector of least squares 
estimators b  which minimises the expression 
 

( ) ( )ββεεε Χ−′Χ−=′== ∑
=

yyL
n

i
i

1

2            (14) 

 
and yields the least squares estimator of β  which is 
 

( ) yb Χ′ΧΧ′= −1                (15) 
 
and finally, the fitted regression model is 
 

yyeby ˆ,ˆ −=Χ=                (16) 
 
where e  is the vector of residual errors of the model. 
The Response Surface Method can thus be implemented 
upon either simulated or actual experimental results to 
derive a polynomial expression describing the 
relationship between the causal inputs and resulting 
outputs of the dynamic systems under consideration. 
 As data from the experimental results are gathered 
under the direction of the meta-heuristics, it is possible 
to generate a surface approximation for the system 
under consideration. 
 
3.1. WSDS Method 
The WSDS method in its basic form is encapsulated in 
the following pseudo-code. 
 

1. UNTIL 
2. run meta-heuristic to global minimum (or 

acceptable value) 
3. END 
4. ELSE 
5. add new path data to old path data 
6. fit Normalised Response Surface to old path 

data 
7. generate WSDS surface 
8. perform weighted jump 
9. END 

 
At present, the method uses a fixed 2nd order response 
surface, however in future work, it is anticipated that 
this will be developed into an adaptive system. For the 
development of this methodology, a realistic noisy 
surface with multiple local minima, plateaus and one 
global minimum was considered for algorithm 
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development. The standard Matlab ‘Peaks’ surface 
(figure 1) is corrupted with significant measurement and 
process noise, for example (figure 2). 
 
 

 
Figure 1: Noise-free Algorithm Development Fitness 

Landscape - Peaks 0 
 

 
Figure 2: Noisy Algorithm Development Fitness 
Landscape - Peaks 3 
 
The development surfaces are designated Peaks 0 - 
Peaks 3 with increasing levels of noise imposed on the 
clean Peaks 0 surface according to; 
 

• Peaks 1 - mean 0.1189, variance 0.0836 
• Peaks 2 - mean 0.2842, variance 0.3705 
• Peaks 3 - mean 1.7277, variance 0.7648 
 

Using the VNS method as an example, a typical 
unsuccessful search is shown in figure(3); although 
unsuccessful, the path does reveal some information 
about the system, and hence prior to the next “jump” of 
the meta-heuristic, the most recent path information is 
added to the path database to generate an up-to date 
WSDS surface. A fifth order example resulting from the 
search shown in figure(3), is shown in figure(4). 
The contours represent the predicted probability of 
future successful searches based upon past data. 

 
Figure 3: Example VNS Decision Support Path 

 

 
Figure 4: Example Second Order WSDS 

 
The method has successfully identified the lower region 
of the experimental space as being the most productive 
in terms of identifying the required acceptable 
minimum. The parameters for the three search methods 
are given in table 1. 
 

Table 1: Search Parameters 

 
 
 
4. EXPERIMENTAL RESULTS AND 

CONCLUSION 
Three methodologies (simple gradient descent, variable 
neighbourhood search, simulated annealing) were 
applied to a surface of experimental data taken from an 
automotive application. A technical description of the 
experimental data is beyond the scope of this paper, 
however it relates peak cylinder pressures in a single 
cylinder IC engine with two control parameters which 
relate to mean and controlled piston trajectories on an 
experimental hybrid vehicle drivetrain (figure 5). The 
objective was to find the control parameters which are 
associated with a predicted peak cylinder pressure. 
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Figure 5: Experimental Engine Response Surface 

 
A comparison of the number of experiments required to 
find the global maximum by the three search methods is 
given in table 2, comparing the performance of the 
methods both with and without the decision support 
operator. As the methodologies are stochastic by nature, 
the figures are the averaged results from 50 runs for 
each application. 
 
Table 2: Support Vs No Support Performance Metrics 

 
 
The decision support method gives an approximate 
order of magnitude improvement in performance when 
compared to the base methodologies. Further work will 
include a study of the effectiveness of higher order 
surfaces, and the inclusion of this study into adaptive 
schemes which will further increase the performance of 
this support method. 
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