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ABSTRACT 
This paper aims at presenting the preliminary results of 
a research targeted at developing a Decision Support 
System (DSS) for the Field Service Delivery System 
(FSDS) design. The paper is organized as follow: 
firstly, we illustrate what a FSDS is; secondly, we 
identify the variables to consider in order to design a 
FSDS and the relationships between them; thirdly, we 
describe how a DSS supporting the FSDS design 
should be developed; and finally, we show the result of 
of a pilot experiment in which a DSS has been 
developed and applied to a real case study. 
 
Keywords: field service delivery system (FSDS), 
decision support system (DSS), discrete event 
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1. INTRODUCTION 
This paper aims at describing a tool that can support 
the management of a Field Service Delivery System 
(FSDS), that is, the company’s function devoted to 
deliver services – such as the product’s installation and 
maintenance – directly at customer’s site. 

The rationale of the paper lies in the fact that, 
despite the increasing interest raised by field service in 
many industries and the large number of applications 
supporting the field service operations management, 
there is a lack in models/devices supporting the  design 
of the FSDS (Visintin 2007). 

A great deal of information is usually available in 
the Enterprise Information Systems, but generally there 
are not tools allowing service managers to fully and 
properly utilize these information, in order to 
understand the effects that different managerial policies 
can have on the overall system performance (Agnihotri 
and Karmarkar 1992). 

Moreover, the FSDS design activity is a very 
complex task. It requires, in fact, to forecast when and 
where  the service requests will arise, to figure out 
what skills and parts will be required in order to fulfill 
the service requests, and to decide what criteria should 
be followed to dispatch the technicians. 

In addition to that, service managers are asked to 
achieve increasingly high performances, both in terms 
of customer satisfaction and costs. 

Because of the complexity and the uncertainty 
characterizing the FSDS design there is a strong need 
of simulation-based tools supporting service managers. 

It is in fact tremendously expensive and time 
consuming, to modify the FSDS configuration ex-post. 

The aim of this paper is thus to discuss how a 
Decision Support System (DSS) for designing the  
FSDS could be developed and to illustrate a first 
example of a DSS. 

The paper is therefore organized as follows: 
firstly, we define and describe a generic field service 
delivery process; secondly, we identify all the variables 
that service managers should take into account to 
design the FSDS; thirdly, we assess if and where the 
information relevant to these variables can be found  in 
the most common Enterprise Information Systems; 
fourthly, we describe how the discrete event simulation 
can be successfully used to create such a DSS; and 
finally, we show the result of a pilot experiment in 
which a DSS has been developed and applied to a real 
case study. 

 
 
2. THE FIELD SERVICE DELIVERY SYSTEM 
A FSDS is made of a set of technicians, each mastering 
a given set of skills and covering a given geographic 
area, that are remotely dispatched at the customers’ 
sites to fix the customer’s problems upon request 
(Blumberg 1991; Visintin 2007). 
 A typical field service process can be subdivided 
in three main activities: 
 

1. help desk; 
2. dispatching; 
3. service delivery. 

 
 Figure 1 describes a typical field service delivery 
process. 

The Help desk is the company interface with the 
customer, so it is devoted to receive the incoming 
service request, to identify the customer and to offer 
(when it is possible) a remote assistance, that is, to 
avoid the service delivery on-field. 

If the call avoidance does not succeed, then comes 
the need of selecting and dispatching a field engineer to 
the customer (Agnihotri and Mishra 2004). 

Finally, the selected technician gathers all the 
needed technical data and actually visits the customer. 

In designing and managing this process, service 
managers need to take into account several variables 
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(Agnihotri and Chakravarty 2005), that we present in 
the next paragraph. 

 

 
Figure 1: Field service delivery process description 

 
3. FSDS DESIGN PROCESS VARIABLES 
The design of a FSDS is a decision-making  process 
characterized by several independent, dependent and 
control variables (Agnihotri, Narasimhan and Pirkul, 
1990). 

The control variables are those that managers can 
manipulate in order to obtain, in a given context, a 
desired outcome. They concern: 

 
• the system Capacity, that is the overall 

number of technicians; 

• the technicians’ Dispatching policy, that is, 
how a service request is assigned to a field 
engineer; 

• the technicians’ Scheduling policy, that is, 
how the amount of service requests is planned 
to be served by the field engineers throughout 
the working day; 

• the Districting policy, that is, the criteria to 
follow in order to assign each technician a 
territory; 

• the Cross-training policy, that is, the criteria 
to follow in order to assign each technician a 
given set of skills (Agnihotri, Mishra and 
Simmons 2003; Upton 1994); 

• the Spare parts management policy, that is, 
the way spare parts are stored, reordered and 
delivered to the customers. 

 
The independent variables, are those out of the 

service manager’s control, while the dependent 
variables, are functions of the independent and the 
control variables. 
 In Table 1 the aforementioned variables are 
described in detail, while Figure 2 shows the delivery 
system design process. 

As we see, the independent variables represent the 
input for such a process, because they identify the 
context in which managers have to work and that they 
cannot control. The values of the independent variables 
are totally known before taking any system designing 
decision. 

The control variables, instead, represent – to some 
extent – the output of the decision making itself. They 
are, in fact, the aspects that managers have to decide 
about, in order to design a FSDS. We can therefore say 
that the values of the control variables are the results of 
the decision making process. 

Finally, the dependent variables are those 
measuring the outcome and thus the effect of the 
decision taken by the service manager. We can identify 
them with the actual system’s operational and financial 
performances (Agnihotri 1989). 

 

 
Figure 2: Delivery system design process 
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Table 1: Independent, control and dependent variables in the delivery system design process 

Independent variables: Control variables: Dependent  variables 

1. Geographical distribution of the 
demand for skills. It depends on: 

a. the number of products to serve 
b. the Mean Time Between 

Failure of each type of product 
(and in case the different failure 
modes) 

c. the skills required to fix each 
type of product (and in case the 
skill required for each failure 
mode) 

d. the products’ location 

2. The current geographical 
distribution of the supply of 
skills. It depends on: 

a. the number of field technicians 
available  

b. the locations (home address) of 
the field technicians available 

c. the skills mastered by each of 
field technician 

3. Geographical distribution of the 
demand for spare parts. It 
depends on: 

a. number of tasks requiring spare 
parts 

b. spare parts/store location 
c. availability of spare parts 

4. The target operational and 
financial performance that the 
delivery system is supposed to 
meet 

a. Capacity: 
number of field technicians to 
employ 

b. Cross-training: 
skills to impart to each field 
technician 

c. Districting: 
territories to assign to each field 
technician 

d. Dispatching: 
algorithm to use to dispatch field 
technicians 

e. Scheduling: 
algorithm to use to schedule field 
technicians 

f. Spare parts management policy: 
location and quantity of spare 
parts to keep in inventory 

4. Operational performance: 
a.  downtime 
b. response time 
c. travel time 
d. answering time 
e. first contact resolution rate 
f. SLA compliance 
g. resource utilization 
h. etc… 

5. Financial performance : 
a. revenues 
b. costs 
c. cash flows 
d. etc… 

 

 
4. INFORMATION NEED 
As can be noticed  the independent variables are a set 
of data that should be easily retrieved from the 
Enterprises’ Information System (EIS). 

As a matter of the fact: 
 
1. all the data regarding the installed-base (i-

base), the contracts, the service requests, the 
technicians and the spare parts are usually 
available in the companies’ Enterprise 
Resource Planning system (ERP system); 

2. the i-base is usually geo-referred with 
Geographical Information Systems (GIS) and 
the same instruments allow to define the areas 
the field technicians are assigned to; 

 
 
 
 
 
 
 

 
3.  the product performance in terms of 

reliability and availability can be easily 
obtained through statistical tools, starting from 
the data available in the ERP system, 
evaluating in particular the functioning time 
intervals of the machines as the difference 
between two consequents service requests 
regarding the same item. 

 
These three sources should provide all the needed 

data. The information flows that allow the DSS 
(represented by a simulation tool) to simulate the real 
situation are shown in Figure 3. 
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Figure 3: Information flows 

 
5. THE MODEL 
A DSS to support the FSDS design should therefore be 
able to retrieve the required data from the companies’ 
information systems and to perform simulations to test 
the effectiveness of different managerial policies. 

Such a tool has thus to allow to: 
 
• evaluate the variables that are actually 

relevant in the FSDS designing; 
• measure – ex-ante – the effects that the typical 

decisions taken by service managers could 
have over the delivery system performance. 

 
Due to the complexity characterizing the field 

service environment, the methodology adopted for 
modeling the field service system should be the 

discrete event simulation (Chung 2003; De Felice 
2007; Law and Kelton 2000). 

The use of discrete-event simulation, instead of 
other techniques such as the queuing theory, is fully 
justified by the number of variables to consider and the 
randomness of the phenomena to model (Banks 1998; 
Kelton and Sadowski 2003; Perros 2007). 

A representation of the conceptual model that we 
have developed is shown in Figure 4. 

In the model the service requests are entities 
characterized by several attributes: 

 
• product type (and thus the needed technical 

data); 
• problem type (and thus the needed skills of the 

technician); 
• installed base localization (and thus the 

needed location of the technician); 
• service level agreement (and thus the 

performance constraints); 
• need for spare parts. 

 
While the process is in progress the data about the 

problems occurred are computed by the statistical tool 
and  the values of the operating reliability are updated. 

Each incoming entity has to be assigned to a 
technician and could require some spare parts. 

Both technicians and spare parts are resources 
with limited capacity, characterized by attributes such 
as the geographical location and the service requests 
they can be used for. 

 
 

 
Figure 4: Conceptual model 
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These resources’ attributes depends on the chosen 
managerial policies. Different policies lead to different 
values of: 

 
• overall number of field technicians; 
• dimension of the area the technicians have to 

cover; 
• skills distribution over the technicians; 
• spare parts location and quantity. 

 
The model logic, based on the managerial 

policies, assign the entities to appropriate resources, 
creating an entities’ flow. 

Fundamental element of the simulation model is 
the dispatching algorithm (implemented in the model 
logic), that is, the working rule of the model. 

This algorithm depends on the values of the 
control variables and regulates the entities’ flow, 
considering resources’ attributes and availability. 

It’s therefore clear that different managerial 
policies lead to different algorithms and so to different 
results of the service delivery process. 

The outcome of the process can be finally 
calculated in terms of: 

 
• resources utilization, 
• lead time, 
• downtime, 
• percentage of fixed requests, 
• constraints compliance, 
• etc… 

 
The DSS we describe has to be suitable for every 

kind of company that has to cope with field service 
delivery problems. 

Certainly, each specific application needs some 
efforts to effectively be able of representing the 
situation. These efforts aim at analyzing the business 
processes, evaluating the data availability, defining the 
rules and the algorithms that are suitable for the case 
(Pidd, 1992; Ross, 1990). 

In general, to create a functional DSS, we have to: 
 
1. develop and verify reliable, flexible and 

parametric models, able to reproduce “in 
vitro” different field service delivery systems; 

2. validate the models making use of the real 
data; 

3. use the validated models to carry-out scenario 
analysis and experiments; 

4. develop and test algorithms for the 
scheduling, dispatching and districting 
optimization by means of the simulation 
models themselves. 

 
6. CASE STUDY 
As a pilot experiment we tried to model the FSDS of a 
big multinational company that manufactures and 
services office imaging products. 

Through the simulation tool (developed making 
use of the Rockwell Arena © suite) we have assessed 

the statistical significance of the effects of the control 
variables over the overall system’s performance. 

In order to build and apply the model to the case 
study, we performed: 

 
• business processes analysis, 
• conceptual model of the system, 
• data collection and manipulation, 
• actual creation of the simulation model, 
• experimental design. 
 
The field service delivery process we identified 

totally follows the model we showed above. We have 
been able of retrieving all the needed data from the 
company information system. 

In particular, the data we considered are the 
following: 

 
• service request arrival date and time, 
• geographical location of the products (i-base 

localization), 
• characteristics of the products requiring 

support (product type), 
• type of the problems that can occur  to each 

type of products (problem type), 
• failure modes and possible solutions, 
• needed skills (in dependence of the problem 

type), 
• needed spare parts (in dependence of the 

problem type), 
• skills profiles, availability and work areas of 

the field technicians, 
• instantaneous position of the technicians, 
• spare parts availability and location, 
• average travel time and work time required to 

fix the problem, 
• target operational and financial performance 

contractually defined (e.g. Service Level 
Agreement – SLA), 

• service contract validity, 
• failure rates characterizing the i-base 

(operating reliability). 
 
The simplified tool we developed is not able of 

retrieving automatically the required  information from 
the EIS. We therefore manually extracted the data from 
the ERP system and the GIS trough worksheets, we 
performed reliability analysis with a statistical tool and 
we used the obtained data as an input for the simulation 
model we created with Rockwell Arena. 

After having created the simulation model, we 
found its stability parameters (Guttman, Wilks and 
Hunter 1971; Montgomery 2002) and then we 
performed a Design Of Experiment (DOE) (Box and 
Hunters 1978; Mood, Graybill and Boes 1974) 
selecting three of the control variables described above: 
dispatching, cross-training and districting. 

What we did with this variables is perfectly 
extendible to the complete system, it’s just a matter of 
data amount, time and computational power. 
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A 2k DOE analysis showed the influence that 
changes in the control variables (and in their 
interaction) give to the overall system’s response. 

We defined 2 different levels for each control 
variable and  we ran the model in each of the 8 
different  possible combinations showed in Table 3.  

 
Table 2: Control variables considered in the case study 

 
 
Table 2 shows the levels we defined for the 

control variables. 
For the dispatching, the levels are: 
 
• Shortest Time in Queue (STQ) policy, that is, 

the entity is assigned to the resource with the 
minimum expected waiting time; 

• Shortest Number in Queue (SNQ) policy, that 
is, the entity is assigned to the resource with 
the minimum queue length. 

 
For the cross-training, the levels are: 
 
• high flexibility policy, that is, all the field 

technicians are able of fixing 3 different 
problem types; 

• low flexibility policy, that is, all the field 
technicians are able of fixing 2 different 
problem types. 

 
For the districting, the levels are: 
 
• narrow districting policy, that is, a territorial 

partition in 2 zones; 
• broad districting policy, that is, a territorial 

partition in 4 zones.  
 

Table 3: The 8 variables combinations of the 2k DOE  

 
 

In Figure 5 and 6 the comparison between the 
different possibilities is shown, considering the mean 
downtime of the products to serve as a performance 
indicator. 

A treatment is the variation that is felt while 
passing from the “-” level to the “+” level in each of 
the three variables (1 – dispatching, 2 – cross-training 
and 3 – districting), or contemporaneously in more of 
them (12, 13, 23, 123) (Rotondi 2005). 

The proportional variation is the effect that 
treatments causes on the overall system response. 

 

 
Figure 5: Performance variation due to the treatments 

 

 
Figure 6: Evaluation of the impact of the considered 
factors on the performance 

 
 The analysis of variance we performed on the 

simulation model’s results, demonstrates that the 
control variables are statistically significant with a 
confidence interval of 95%. This says that all the 
selected factors and their interactions give a significant 
impact on the performances of the FSDS, so it is 
correct to analyze them. 

In this case the most important element to set 
seems to be an appropriate dispatching policy (1), 
followed by a correct districting (3) and then by a 
proper training and skills spreading policy (2). 

We also notice (13) that the performance 
improvement given by a change in the dispatching 
policy is much more marked if it is applied together 
with a broad districting policy (more dispatching 
alternatives imply higher performance differentials). 
 

Control variable “+” level “‐” level

Dispatching STQ SNQ

Cross‐training High flexibility Low flexibility

Districting 4 zones 2 zones

Case Dispatching
Cross‐
training Districting

A + + +

B ‐ + +

C + ‐ +

D ‐ ‐ +

E + + ‐

F ‐ + ‐

G + ‐ ‐

H ‐ ‐ ‐

Treatment
Proportional
variation

1 ‐ 9.9 %

2 + 3.8 %

3 ‐ 8.2 %

12 + 5.0 %

13 + 13.6 %

23 ‐ 5.6 %

123 ‐ 7.6 %

Average
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