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ABSTRACT 
Modeling and simulation in international health care 
resource planning and future strategy testing has growing 
impact and importance. Within the CEPHOS-Link FP7 
project a dynamic agent-based model is integrated for 
Austria, Slovenia and the Veneto region of Italy for 
answering questions defined in PICO structure for 
psychiatric disease hospitalization and re-hospitalization 
under special constraints using big national claims 
databases combined by using a well-defined data pooling 
process. The basis for the dynamic simulation process is 
a generic population concept (GEPOC) developed within 
the DEXHELPP consortia project in Austria and 
parameterized and calibrated using EUROSTAT and 
national statistics databases. Regional concepts are 
simulated based on NUTS-3 distance of service 
information integrated by driving time calculations. All 
results are gathered on a personal level and depicted and 
described on age gender groups added by cost- 
information. 

 
Keywords: health care simulation, agent-based model, 
spatial dynamics, international claims data 

 
1. INTRODUCTION 
High re-hospitalization rates are often regarded as an 
indicator of malfunctioning of hospitals and health care 
systems. This applies especially to mental health care 
where the term “revolving door psychiatry” has been 
coined for this situation. However, when evaluating 
mental health care systems, international comparisons of 
psychiatric re-hospitalization rates derived from 
routinely collected health care data are hampered by 
different ways of establishing them in different countries 
with different health care systems and different data 
collection routines, and cannot be used at face value.  
 
1.1. General objective 
The overall objective of the CEPHOS-LINK project was 
to compare with a common study protocol psychiatric re-
hospitalization rates in six European countries (Austria, 

Finland, Italy/Veneto, Norway, Romania, and Slovenia) 
for adult patients, and to identify predictors be regression 
analyses in a retrospective cohort study design, first 
locally for each country dataset and then centrally with a 
pooled dataset. A crucial innovative aspect and challenge 
of this project was that observational data from large 
national electronic health care registries in six different 
countries with different care systems and different data 
collection routines were used. The major advantage of 
this approach is that very large unselected patient 
populations can be applied to all countries thereby 
reducing the “methodological noise” inherent in 
systematic reviews of separate studies. 
 
The CEPHOS –LINK patient dataset for the pooled 
analysis consists of finally 225.600 patients fulfilling the 
inclusion criteria. Besides the development of a data 
pooling protocol. 
 
1.2. The modelling objective 
Besides classical statistical analysis (logistic regression 
and Cox- regression models) questions regarding long 
time behavior and planning of resources arise. As 
identified by systematic literature research dynamic 
modelling methods are up to now underrepresented in the 
solution of re-hospitalization research (Urach, Zauner, 
Wahlbeck, Haaramo and Popper 2016) These demand is 
iteratively formulated within three research questions 
defined based on concepts used in health technology 
assessment (HTA) and evidence based medicine (EBM) 
called PICO, especially influenced by Aslam and 
Emmanuel (Aslam, Emmanuel 2010). Within this 
concept the population, innovation comparator and 
outcomes are defined. In short these are: 

• Task A: How will first hospitalizations and re-
hospitalizations change in the future due to 
demographic change? 
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• Task B: How does theoretical improvement of 
the care structure in certain NUTS-3 regions 
impact re-hospitalization rates? 

• Task C: What is the possible impact of rising 
diabetes prevalence on psychiatric re-
hospitalizations? 

Task B is based on findings of the Italian research partner 
within CEPHOS-Link (Donisi, Tadeschi, Wahlbeck, 
Haaramo and Amaddeo 2016). Task C is based on results 
from descriptive claims data analysis and literature 
research (Sprah, Dernovsek, Wahlbeck and Haaramo, 
2017). In all tasks the entire populations are adult patients 
(+18 years old), tasks A-C describe the innovation. The 
comparator is the actual situation out of the claims data 
(Breitenecker et al. 2011) and the outcomes of interest 
are the number of hospitalizations/re-hospitalizations per 
year, gender, diagnosis group and age group. As well as 
the total costs – to get comparable results the purchasing 
power parity (ppp) cost data sets are implemented.  
 
1.3. Statistical analyses 
Each country identified adult patients (18+ years old), 
discharged for the first time over a period of 12 months 
from a psychiatric inpatient bed with a primary 
functional psychiatric diagnosis (ICD-10 F2-F6). These 
patients were then followed up over one year. One major 
restriction was that there was no censoring for death 
during follow-up included in the analyses. 
Local single level logistic and Cox regression were 
performed in order to identify predictors for psychiatric 
re-hospitalization, as well as for re-hospitalization to any 
hospital. To guarantee comparable results and techniques 
the patient cohort was defined iteratively with a stepwise 
quality assessment lead by IMEHPS Research. 
The predictor variables used in the logistic regressions 
where the gender, the age of the patients as a 
dichotomous variable based on the age distribution in the 
six partner countries, the classification of the disease (F2 
or F30 or F31 vs. the other F3 diagnoses up to F6)  and 
the length of stay of the index hospitalization. In a further 
step physical comorbidities identified by the additional 
diagnoses at the index hospitalizations are taken into as 
additional predictor. 
Multilevel logistic regression analyses were performed 
with additional contextual/geographical variables on the 
NUTS3 level of a patient’s place of residence (degree of 
urbanity, Gross Domestic Product). 
For countries having a broader data set on linked data on 
single person level also outpatient contacts of the patients 
after discharge – Austria, Slovenia and the Veneto region 
of Italy - from the index hospitalizations, analyses for the 
three potential extramural care events:  
 

• Ambulatory care (a patient visits a psychiatric 
doctor/a psychiatric service and gets 
treatment/advice/ therapy for a short time 
period - usually less than one hour – and leaves 
again) 

• Day care (patients visit a psychiatric day care 
unit for several hours and participate in a 
structured therapeutic program) 

• Mobile service (a psychiatrist/psychiatric care 
team visits a patient at home/or similar 
environment) 

are realized using the time line information of the 
extramural events and firstly analyzing for any event. In 
the last step the logistic regressions are split up for the 
three types of contacts and influence of outpatient 
contacts and re-hospitalization under the given predictive 
parameters has been discussed. 
  
2. GENERAL POPULATION MODEL 
 

As the patient always poses the center of interest, valid 
prognostic modelling for decision support in the health 
care system is only possible if the underlying population 
is predicted validly as well. Doubtlessly long-term 
epidemiological or health-technology-assessment 
models can never be valid if the underlying population 
growth or decay is not considered. This becomes clear 
thinking about an average chance of about one percent 
that an Austrian inhabitant leaves the country or dies 
during one year. Hence, on the average, every 100th 
person is “replaced” by an immigrant or newborn child 
every year leading to a highly fluctuating population. 
 
Moreover a valid population model is not only a 
necessary part of any model in health-care science; it is 
also a reusable basis model for different applications.  
 

 
Figure 1: Left: Cost-Effectiveness model for disease X 
based on a population model. Right: Epidemics model 
for infectious disease X based on a population model. 
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2.1. GEPOC - Population Model 
Although the Generic-Population-Concept (GEPOC) 
originally does not pose for a model, but for a generic 
modelling concept summarized in a broad handbook, the 
main result of the GEPOC project was achieved by a 
versatile agent-based model to simulate population of 
Austria until 2050 (starting in 2006). Hence we will 
moreover identify this model by the name of the project. 

The agent-based modelling techniques is generally 
applicable for dynamic modelling and simulation of the 
underlying tasks A, B and C as the focus lies on 
populations with spatial constraints like restrictions 
regarding care and the social status, as well as 
heterogeneous patient characteristics. In the literature 
agent-based modelling in the hospital care setting is more 
often used for local in-house simulation especially in 
hospital wards (Taboada, Cabrera, Epelde, Iglesias, 
Luque 2013) but there are also new papers in the field of 
combined effects modelling (Silverman, Hanrahan, 
Bharathy, Gordon, Johnson, 2015; Kalton, Falconer, 
Docherty, Alevras,  Brann, Johnson, 2016). Generelly 
often economic effects on heterogeneous patient care is 
under discussion. For such problems, agent-based 
techniques seems to be the method to choose. 

As Austria's population consists of individuals, they are 
represented by agents (or individual-agents) in the 
model. As it might not be possible to simulate millions 
of agents at once, finally one model agent stands for a 
hole aggregate of people (e.g. 10 or 100 henceforth 
denoted as 𝑲𝑲) which all behave alike.  
As model borders do not take into account to simulate 
immigrants before they immigrated, a second type of 
agent needs to be introduced: the government-agent. This 
type of agent is responsible for the creation of newly 
immigrated individual-agents (Bicher et al. 2015, Bicher 
and Popper 2016). 
 
2.2. Parameterization 
While the available data is given on the aggregate level 
it is main task of the parameterization process to 
calculate parameter-values for the individual level – i.e. 
probabilities that hold for one representative person = 
agent for one model time-step.  
While total numbers for a specific point in time (like total 
number of Austrian inhabitants at 2003.01.01) can be 
processed quite easily, classically by simple divisions – 
e.g. 
 

𝑃𝑃(agent′sex = female)

=
|number of female persons in Austria|

|number of total persons in Austria|
, 

 
it is a little bit more difficult to process “differential-
numbers”, i.e. numbers that are valid for a specific time-
span (like total number of immigrants, emigrants,… 
during a year), to probabilities that are valid for one 
specific time-step as the length of the time-step is 
arbitrary.  

Representative for all other “differential” parameters we 
show the parameter calculation process on the example 
of the death-probability. Given the number 
 

𝑋𝑋: = “average yearly deaths of 100000 Austrians 
during year= 𝑦𝑦 for age=𝑎𝑎 and sex=𝑠𝑠” 

 
The corresponding parameter value 𝑃𝑃𝑃𝑃(𝑡𝑡, 𝛿𝛿, 𝑎𝑎, 𝑠𝑠) (days 
as unit for 𝛿𝛿) can be approximated by 
 

𝑃𝑃𝑃𝑃(𝑡𝑡, 𝛿𝛿, 𝑎𝑎, 𝑠𝑠) = 1 − �1 −
𝑋𝑋

10000
�

𝛿𝛿
365

, 
 
which is valid for all 𝑡𝑡 ∈ [𝑦𝑦,𝑦𝑦 + 1). This formula can be 
attributed to the geometric distribution. 
 
The model was implemented in Python 3 and (usually) 
executed with CPython 3.3. Attempts to execute the 
model with the faster Python like Pypy 3.3 unfortunately 
failed due to incompatibilities with the python numeric 
package NumPy. 
The source-code is structured into four different classes: 
The simulation-class is responsible for the initialization 
and the dynamics of the model. It creates and addresses 
instances of the agent-class and additionally takes on the 
role of the government-agent. It furthermore creates and 
controls an instance of the protocol-class and the 
sampler-class. Each instance of the agent-class poses for 
one individual-agent and hence represents 𝐾𝐾 persons in 
reality. The protocol-class is responsible to save all 
necessary data of the simulation run. The sampler-class 
is responsible for the parameterization of the data-driven 
background of the model. We do not want to go into 
detail about the specific classes. 
 
2.3. Model Validation 
Validation of a model denotes the process wherein the 
model respectively the model results are finally 
compared to reality. This is necessary in order to finally 
state the claim: The model is valid and can be used to 
predict reliable prognosis, or the model is invalid and 
needs to be re-conceptualized. In reality the result of this 
process is usually neither black or white, but much more 
a set of nuances on a grey-scale stating which parts of the 
model produce rather valid results and which parts need 
to be treated carefully as errors might be involved. It is a 
general fact that, as we cannot look into the future, no 
predictive model can be said to be perfectly valid. 
 
As the data required to parameterize the model was also 
gained from Statistics Austria, this process directly 
compares the modelling method with the statistical 
regression-method. The connection of the claimed 
Statistics Austria data to both models is visualized in 
Figure 2. 
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Figure 2: Summary of the connection between Statistics 
Austria and the two GEPOC models, the agent-based 
model and the system-dynamics model. Black arrows 
indicate the usage of data for parameterization. Red 
arrows indicate usage and comparison of data during the 
validation process. 
 
The validation process was very successful. We 
compared the agent-based model (mainly) with 𝛿𝛿 =
365 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝛿𝛿 = 30 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 with data collected from 
Statistics Austria planning to show that the model 
delivers valid results for different step-sizes. Some 
chosen results of this process can be seen in Figures 3-4 
 

 
Figure 3: Temporal development of the total population. 
Results of simulation with different model time-steps 
compared with Statistics Austria data/prognosis. 

 
Figure 4: Age pyramid resulting from the model vs. age-
pyramid resulting from Statistics Austria data/prognosis. 
Only for the 365 day execution slight differences can be 
seen for 0-5 year old women. 
 

3. DETAILED MODEL DEFINITION 
In order to fulfil the three tasks described in section 1.2 
GEPOC has to be extended by a couple of new 
functionalities/modules: 

• Each agent (statistical representative for a real 
person) has a possibility to have a hospital stay. 
Herein it receives a diagnosis which influences 
how long the patient stays in the hospital and 
whether the agent might return to a hospital 
after some time, i.e. has a readmission. 

• Each NUTS3 region has a specific mean-
driving time to a hospital which influences the 
re-hospitalization probability for all 
inhabitants. 

• Each person may additionally suffer from 
Diabetes Mellitus which itself increases the 
readmission probability. 

 
Moreover GEPOC used as a part of CEPHOS-Link is 
always executed with the total population of about 8 -
9Mio. Agents (i.e. 𝐾𝐾 = 1) to avoid rounding errors and, 
more importantly, confusions which might lead to a lack 
of credibility. Moreover yearly steps are used as all input 
data is given at a yearly basis. Note that yearly steps does 
not imply that every step is 365 days long (leap-years). 
 
3.1.1. Task A: Hospitalization and re-hospitalization 
In addition to the defined agent behavior in the GEPOC 
section each agent (standing for one representative real 
person) has a probability to have a called index-stay 
during each time-step. By this term we refer to the first 
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hospital-stay of a person (agent) in a year which is not a 
readmission.  I.e. any agent that did not already have a 
readmission in the observed year has a certain probability  

𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑠𝑠), 
wherein 𝑎𝑎, 𝑠𝑠 stand for age and sex of the agent, to visit a 
fictional hospital at some point during the observed year. 
Note that this probability, in the contrast to almost all 
standard GEPOC parameters, does not depend on time. 
In case the person is (randomly) selected to do so, first of 
all the agent receives one of two diagnosis: psychotic or 
nonpsychotic: 

 
 
We will refer to this diagnosis as 𝑑𝑑 henceforth. 
Dependent on this diagnosis the length of the stay is 
sampled. This is either done using a gamma-variate 
random variable or sampling a number of days by a 
discrete distribution. In any case this duration must 
exceed one day (one night) by definition: 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎, 𝑠𝑠,𝑑𝑑)~ Γ(𝛼𝛼,𝛽𝛽) 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 
 
Moreover each agent might have a chance to be 
readmitted at a later point in time. Although this might 
basically sound acausal, the question whether or not an 
agent is readmitted is answered immediately at the point 
of the index stay due to data reasons. Therefore we have 
a probability 

𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑠𝑠,𝑑𝑑) 
 

deciding about if an agent is readmitted. In case an agent 
is chosen to do so two time-spans are sampled, once more 
either by gamma-variate random numbers or by discrete 
distributions: 
 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑎𝑎, 𝑠𝑠,𝑑𝑑) ~ 𝛤𝛤(𝛼𝛼,𝛽𝛽) 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ~ 𝛤𝛤(𝛼𝛼,𝛽𝛽) 𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 
 
All of these time-spans must not be shorter than one day 
(night). The time until readmission must not exceed 365 
days. 
 
3.1.2. Task B: Mean Driving Time Influences 

Readmission Probability 
In order to have the re-hospitalization probability depend 
on the mean driving time to a hospital in a specific 
NUTS3 region, the NUTS3 extended GEPOC version 
(described before) is used. Moreover let 𝑟𝑟 define the 
region an agent inhabit and 𝐹𝐹(𝑟𝑟) a specific factor that 
indicates how much higher the probability for a 
readmission for a specific NUTS3 region 𝑟𝑟 is. In most 
cases two NUTS3 regions were identified, that have a 
significantly higher readmission rate than the rest. Hence 
𝐹𝐹(𝑟𝑟) > 1 for two regions and 1 for all others. We 
receive: 

𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑠𝑠, 𝑑𝑑, 𝑟𝑟) = 𝐹𝐹(𝑟𝑟) ⋅ 𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑠𝑠, 𝑑𝑑) ⋅ 𝐾𝐾, 
for a constant compensation factor 𝐾𝐾 (slightly smaller 
than 1) which had to be calibrated, so that the new 

simulation results do not differ from the old ones in total 
(total Austria). 
All other parts of the model remained untouched. 
 
3.1.3. Task C: Diabetes Mellitus 
Given only the total prevalence of diabetes in Austria, 
Veneto and Slovenia the model, but not the incidence 
numbers the model had to be parameterized differently 
than the hospitalizations – it is not possible to correctly 
calculate a probability for a diabetes case by knowing 
only the absolute numbers per year. Therefore the 
Government Agent (described in the GEPOC Section) 
takes care about the number of diabetes diseases in the 
model. It observes the number of diabetes cases (per sex 
and age cohort) at the beginning of each time-step and 
randomly “distributes” new diabetes cases randomly 
among the population to fit the diabetes-prevalence 
numbers of the actual year. This yet very macabre way 
of modelling a disease is the only way to use prevalence 
data to directly parameterize disease models. Otherwise 
a very demanding calibration process had to be done. 
Say an agent’s diabetes status 𝐷𝐷 is either 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 or 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
and 𝐹𝐹2(𝐷𝐷) (= 1 for 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, > 1 for 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) denotes the 
influence of diabetes on being readmitted to a hospital 
the probability for a readmission is given by the 
following probability: 

 
Once again, a compensating factor 𝐾𝐾2 < 1 had to be 
calibrated. 
 
 
4. PARAMETRIZATION 
4.1. Hospitalization Specific Parameters 
Without going into detail about data acquisition at this 
specific stage (it is briefly explained in <somewhere 
else>) we will only explain which and how data was used 
to parameterize the model. 
First of all probabilities 

𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑠𝑠),𝑃𝑃𝑃𝑃 (𝑎𝑎, 𝑠𝑠) 
could be determined using known methods (dividing 
number of known index-stays or readmissions by total 
population or total number of index-stays respectively). 
We chose numbers for 2006 (Austria) and 2013 
(Slovenia, Veneto) as reference for these calculations. 
Age classes 65+ had to be dealt as a whole. This was a 
matter of the sample size as for certain age classes >65 
not even one index-stay was recorded in 2006/2013 
which would have perturbed the model parameterization 
by (definitely wrong) 𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑠𝑠) = 0. 
In order to sample a length of a stay or the time between 
two hospital-stays was initially tried to be fitted by a 
gamma distribution dependent on age and sex (and 
diagnosis). Hence two age, sex (and diagnosis) 
parameters 𝛼𝛼 and 𝛽𝛽 were determined using a standard 
maximum-likelihood method. In case the gamma-
distribution turned out to be a bad match for the given 
data, a discrete distribution was fitted – i.e. the numbers 
𝑃𝑃(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑥𝑥 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 |𝑠𝑠, 𝑎𝑎, (𝑑𝑑)), 𝑥𝑥 ∈ {1, … , 365} 
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were determined by a histogram. Which method was 
used for which parameter can be seen in Table 1. 
 
Table 1: Which distribution was used to sample which 
time-span for all three considered regions 

 Austria Slovenia Veneto 
Length of 
index-stay 

gamma-
distributio
n 

gamma-
distributio
n 

gamma-
distributio
n 

Time until 
readmission 

discrete discrete discrete 

Length or 
readmission
-stay 

gamma-
distributio
n 

discrete discrete 

 
In the following Figures 5 and 6 exemplarily show the 
results of the gamma distribution fit, estimated with a 
Maximum Likelihood estimator. 
 

 
Figure 4: Length of stays according density function 
(red) overlayed with a gamma density function (black) of 
the Veneto region patients  
 

 
Figure 6: Length of stays according density function 
(red) overlayed with a gamma density function (black) of 
the Slovenian patients 
4.2. Diabetes Specific Parameters 
Diabetes Mellitus (DM) prevalence data was available 
for two specific points in time: 

• Total number of DM cases for 2010 and 
Austria, Slovenia and Italy/Veneto with 
following subcategories: No. of Female Cases, 

No. of Male Cases, No. of cases [20-39], No. 
of cases [40-59], No. of cases [60,79] 

• Total number of DM cases (estimation) for 
2030 and Austria, Slovenia and Italy with 
following subcategories: No. of Female Cases, 
No. of Male Cases, No. of cases [20-39], No. of 
cases [40-59], No. of cases [60,79] 

 
In order to use the data for parameterization of the model, 
the following pre-processing was performed. As the 
model requires a finer resolution than the given data 
some assumptions had to be made as well. 

• Assumption: Age and sex are (approximately) 
independent parameters 

o Calculated total number of diabetes 
cases per age cohort and sex based on 
marginal distributions 

• Assumption: Total case numbers behave 
approximately linearly with time 

o Total numbers for cases linearly 
inter/extrapolated based on data for 
2010 and 2030. 

• Assumption: Diabetes cases are homogenously 
spread among Italy (i.e. Veneto cases can be 
scaled using the Veneto/Italy fraction) 

o Divided Population-numbers for 
Veneto by Italy (per year and sex 
gained from EUROPOP2013). Used 
this fraction to get case numbers for 
Veneto 

• Diabetes cases per person (or per 10000) is a 
number that behaves linearly with age. 

o Gain diabetes cases per person for age 
cohorts [0,20) and [80+] by linear 
extrapolation from the other three 
available age classes [20,40), 
[40,60),[60,80). Finally gained total 
number of diabetes cases by re-
multiplying these numbers with the 
population. 
 

5. RESULTS 
The results are clustered into developed methodological 
level and the problem solving results gathered using the 
model and scenario calculations. 

5.1. Methodological findings and practical use 
The GEPOC model mainly developed for use in Austria 
within the DEXHELPP consortium is tested to be 
flexible enough to integrate longer time spans and being 
parameterized for foreign countries. 

During the calibration process a new method for agent 
based model parameter estimation has been developed 
(see extra papers in press from main author Martin 
Bicher) dealing with the problem of long cycle times for 
single simulation runs and therefore the necessity of fast 
converging algorithms. 
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The combination of expert knowledge of different 
disciplines – especially data scientists, medical doctors 
with background knowledge on real world treatment, 
statisticians and modelling experts – has been tested and 
methods toolkits (available under cephos-link.org) for 
international claims data usage in the psychiatric disease 
setting have been performed. 

5.2. Simulation results  
The results of the simulation scenarios in a aggregated 
form for 10-years age groups and mapped with the ppp 
cost data are analysed and depicted exemplarily in Figure 
7 for the three countries/regions in parallel and for 
different age groups of Austria in Figure 8.  

 
Figure 7: Relative change of the overall costs for re-
hospitalizations for the age group of the 50 to 59 years 
old patients in the three regions in comparison. In each 
country the costs are inflation affected with the inflation 
of each country based on the year 2016. 

 

 
Figure 8 The graph represents the change over the whole 
simulation time for the Austrian data setting of the 
overall re-hospitalization costs for the four 10 years age 
groups between 50 and 90 years based on the Austrian 
inflation assumption.  

 

6. DISCUSSION 
All three scenarios show that psychiatric hospitalizations 
are rising, especially in Austria and Veneto. The most 
drastic changes can be assumed to come in the timeframe 
of the next 10 years for non-psychotic diagnosis. 
Testing changes on treatment structures like distance to 
services and calculating corresponding what-if scenarios 
also provides more insight on effects of these 
interventions. Changing diabetes prevalence also has an 
impact on psychiatric patients’ re-hospitalisation and 
shows that comorbidities should not be neglected when 
analysing future development of re-hospitalisation rates.  
 
To gain more detailed results, the developed model 
provides a profound basis for integration of further 
modules. It is well suited for the implementation of 
patient pathways through the system, following their 
multiple re-hospitalisations as well as ambulatory 
treatment. For planning and testing new treatment 
strategies and/or structural changes, the simulation 
model can be extended, in order to assess the impact of 
such interventions and therefore, to optimize their 
implementation for different restrictions, like ethical or 
budget limits. Different expert opinions and can be tested 
in scenarios and the effect identified in testing regions 
can be expanded to the whole computer based test 
environment. 
Altogether, we conclude that the model works well for 
the defined questions, but to improve prognosis quality 
further data and especially assumptions on causal 
relations are desirable. The implementation of the agent-
based approach in the modular design for the CEPHOS-
LINK model is flexible enough to suffice these further 
requirements and with improved data quality as well as 
more actual data provide can provide more insight on the 
development of both index- and re-hospitalisation rates. 
The parameterization of the model shows that the 
countries share similar properties from a qualitative point 
of view which is in itself an interesting result. It shows 
that although there are quantitative differences the 
countries probably share the same causal relations in the 
background which lead to hospitalisation and re-
hospitalisation rates. 
An interesting part for future model based evaluations is 
therefore integration of even more interdisciplinary 
knowledge also from social sciences, experts on plans of 
changing treatment infrastructure and different 
guidelines. Utilizing such a simulation model correctly 
then may prevent unexpected treatment bottlenecks and 
help decision makers to optimize allocation of their 
resources for better treatment of psychiatric patients. 
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