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ABSTRACT 
The epidemic of type 2 diabetes (T2DM) is spreading 
around the globe and challenging the unprecedented 
success of health sciences in increasing longevity. 
T2DM has been linked to accelerated brain aging and 
functional decline in older adults and dementia. 
Intranasal insulin (INI) therapy has emerged as a 
potential new treatment for T2DM-related cognitive 
decline. Insulin resistance and glycemic variability are 
potential mechanisms underlying T2DM-related brain 
damage. Wearable technologies now allow better 
monitoring of behaviors and glycemic levels over 
several days, and may be used in the future to deliver 
real time feedback and new therapies for T2DM 
complications.   
Keywords: type 2 diabetes, intranasal insulin, glycemic 
variability, wearable technology 

 
1. INTRODUCTION 
Healthcare sciences have achieved an unprecedented 
success in continuing increase in longevity, decrease of 
birth death rates and diminishing or eliminating the 
impact of many infectious diseases. Large health 
inequalities between countries around the globe shape 
differences in lifespan from < 50 to > 80 years of age. 
At the same time, non-communicable diseases, and in 
particular diabetes, hypertension and cardiovascular 
diseases have become the most common causes of 
death. Over the last twenty years, the obesity epidemic 
has been sweeping across the globe, and many countries 
face a dilemma of fighting both hunger and obesity at 
the same time. Type 2 diabetes mellitus (T2DM) is a 
complex metabolic disease that affects multiple organ 
systems and interactions among them (Figure 1). 
T2DM accelerates brain aging (Xu et al., 2004), alters 
neurovascular coupling (Mogi and Horiuchi, 2011,Last 
et al., 2007,Novak and Hajjar, 2010,Novak et al., 
2011,Tiehuis et al., 2008), and increases the risk for 
dementia and Alzheimer's disease(de Bresser et al., 
2010a,de Bresser et al., 2010b,van den Berg et al., 
2010). The long-term diabetes complications have a 
major impact on the high prevalence of cognitive 
impairment, depression, and disability in older adults.  
(Saczynski et al., 2008,Novak et al., 2011,Manor et al., 
2012). Memory loss further deteriorates self-care and 
glycemic control and accelerates disease progression, 

worsening a vicious cycle of functional decline. 
Currently, there is no cure for DM-related cognitive 
impairment.  

 

Figure 1: T2DM–a complex multi-organ disease 

In T2DM, glucose levels fluctuate over various 
timescales, from minutes to days, exposing the organs 
(including the brain) to adverse effects of prolonged 
hyperglycemia (elevated blood sugar levels) and 
hypoglycemia (low blood sugar levels) during the day 
and night (Figure2A). In contrast, in a healthy person 
blood sugar levels remain tightly regulated during daily 
activities and during the sleep (Figure2B). As a result, 
even a strict glycemic control did not improve cognitive 
function in participants of the large clinical trials 
(Cukierman-Yaffe et al., 2009,Launer et al., 2011).  

 

Figure 2: A. Glycemic variability in T2DM, B. Control 
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Insulin resistance, altered transport and insulin signaling 
in the brain may be a potential pathway for DM-related 
cognitive decline. Therefore, there is an urgent need to 
develop new therapies to target insulin delivery to the 
brain to treat cognitive impairment in older diabetic 
adults. This need for new therapies is also important as 
cognitive impairment poses a significant barrier for self-
care, increasing further the risk for diabetic 
complications, disability, and dementia in this age 
group.(Xu et al., 2004),(Reijmer et al., 2011),(Korf et 
al., 2006)   

 

2. INSULIN A KEY MODULATOR IN THE 
BRAIN  

Insulin has emerged as a key neurotrophic factor in the 
central nervous system, and as a promising therapeutic 
for treatment of amnestic cognitive impairment and 
Alzheimer’s disease (AD) (Figure 3). Insulin’s role in 
the brain is different from its actions in the periphery 
(Lioutas et al., 2015).  

 
Figure 3: Conceptual design of intranasal insulin action 
and potential benefits on brain metabolism and 
function. 
 
Central insulin plays a role as an important 
neuromodulator in key processes such as cognition 
(Shemesh et al., 2012, Freiherr et al., 2013), energy 
homeostasis, food intake, sympathetic activity, neuron-
astrocyte signaling, synapse formation, and neuronal 
survival (Plum et al., 2005,Plum et al., 2006). 
Furthermore, insulin has been shown to reinforce 
signaling in the brain–reward dopamine–mediated 
limbic system and modulate behavioral responses to 
natural food and other reward stimuli (Figlewicz, 
2003,Figlewicz and Benoit, 2009,Stice et al., 2012). 
Insulin receptors (IRs) are expressed in numerous brain 
regions, namely in the olfactory bulb, hypothalamus, 
cerebral cortex, cerebellum, and hippocampus.(Hopkins 
and Williams, 1997,Albrecht et al., 1981),(Banks, 2004) 
Even wider IR distribution overlaps with expression of 
downstream proteins and isoforms in insulin-related 

pathways (Horsch and Kahn, 1999) (Banks, 2004). 
Insulin also contributes to cortical blood flow 
regulation, as evidenced by the presence of IRs within 
the neurovascular unit, e.g.,  in neurons, astrocytes, and 
capillaries (Hopkins and Williams, 1997),(Albrecht et 
al., 1981),(Cersosimo and DeFronzo, 2006),( Girouard 
and Iadecola, 2006) and the wall of small vessels 
(Abbott et al., 1999). We anticipate that cerebral insulin 
may directly modulate neuron-astrocyte signaling 
through neurovascular coupling and autonomic control 
of vascular tone and thus enable better regulation of 
local and regional perfusion (Lok et al., 2007) and 
neuronal activity in response to various stimuli (Amir 
and Shechter, 1987),(Cranston et al., 1998),(Kim et al., 
2006),(Reger et al., 2006),(Muniyappa et al., 2007). 
Intranasal insulin (INI) enters the brain, where it rapidly 
propagates through perivascular channels and binds to 
the receptors in the limbic system and memory 
networks including the hippocampus, hypothalamus, 
and insular cortex (Thorne et al., 2004),(Hanson and 
Frey, 2008),(Hallschmid et al., 2008). INI increases 
blood flow and energy metabolism and improves 
functional connectivity in these regions. More efficient 
neuronal signaling within memory networks improves 
visuospatial memory, learning, and other cognitive 
functions associated with these areas. It may also 
improve mood, regulate feeding behavior, and increase 
amyloid-beta clearance (Craft et al., 2013),(Morris and 
Burns, 2012),(Craft et al., 2012) (Figure 3). Ten 
minutes after INI administration (dose 40 IU) insulin 
began to rise and peaked at 30 to 45 minutes as 
compared to placebo (insulin 1091±219.8 vs. placebo 
603.2 ±34.6 AUC (pmol/lxmin),p=0.02), with no 
change in serum levels (insulin 3410±276.8 vs. placebo  
3410±106.1 AUC (pmol/lxmin), p=0.22). After that 
insulin in CSF began to decline, but remained mildly 
elevated even 80 minutes after INI. (Born et al., 2002)  
INI administration safe without triggering 
hypoglycemia, but INI does not effectively control 
hyperglycemia because it results only in about 1-2% 
bioavailability in the serum as compared to the 
intravenous route (Moses et al., 1983).  
 
3. INTRANASALINSULIN IMPROVES COGNI- 

TION IN CLINICAL STUDIES 
The insulin resistance syndrome, characterized by 
chronic peripheral insulin elevations, reduced insulin 
activity, and reduced brain insulin levels, is associated 
with age-related memory impairment and AD (Craft, 
2005a,Craft, 2005b). These mild forms of insulin 
resistance may precede AD pathology for years 
(Freiherr et al., 2013), (Messier and Teutenberg, 2005). 
The risk of T2DM for dementia and AD in late life has 
been increasingly recognized (Xu et al., 2004),(Reijmer 
et al., 2011),(Korf et al., 2006) and impaired insulin 
signaling in the hippocampus and hypothalamus, as 
seen in both conditions, may provide a common link 
between DM and AD (Cedernaes et al., 2013). The 
evidence that INI could be a promising treatment for 
improving cognitive function is growing (Banks et al., 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2015 
978-88-97999-62-1; Bruzzone, Frascio, Longo, Merkuryev, Novak, Rozenblit Eds.

91



2012),(Freiherr et al., 2013),(Cholerton et al., 2013), 
(Cholerton et al., 2012),(Park et al., 2000),(Reger et al., 
2008a), (Reger et al., 2008b), (Schioth et al., 2012), 
(Watson et al., 2003). Clinical studies suggest that 
augmenting cerebral insulin improved performance in 
specific cognitive domains and memory in healthy 
young (Benedict et al., 2005),(Benedict et al., 
2007c),(Benedict et al., 2007a) and older adults (Reger 
et al., 2006),(Reger et al., 2008a), patients with mild 
cognitive impairment and even AD patients (Reger et 
al., 2006),(Reger et al., 2008a) with both acute and 
chronic administration. In healthy men, INI also 
improved mood and regulated food intake (Hallschmid 
et al., 2008),(Benedict et al., 2008). In healthy people, 
INI administration of rapid-acting insulin (40 IU q.i.d.) 
for 8 weeks improved long-term declarative memory 
more than regular insulin, and both insulins were better 
than placebo. No systemic side effects were observed, 
and serum glucose and insulin levels did not change 
(Benedict et al., 2007d),(Benedict et al., 2007b). 
Patients with amnestic mild cognitive impairment 
(MCI) and mild-moderate AD were treated with 40 IU 
(Novolin® Novonordisk) for 3 weeks. The INI-treated 
group retained more verbal information and showed 
greater improvement of attention and functional status 
than the placebo-treated group. The INI-treated group 
also had increased short form of β-amyloid peptide 40, 
without effects on the longer isoform (Reger et al., 
2008d). Acute INI administration improved verbal 
memory in memory-impaired ApoE4- adults, with best 
performance at 20 IU; but no improvement was seen at 
60 IU. In contrast, memory-impaired ApoE4+ adults 
showed a decline in verbal memory (Reger et al., 
2008c). The first clinical trial in 104 patients with 
amnestic MCI or mild-moderate AD over a 4-month 
period has shown that INI 20 IU (10 IU 
b.i.d.)(Novolin®) improved delayed memory, and both 
20 IU and 40 IU (20 IU b.i.d.) doses preserved 
caregiver-rated functional ability and general cognitive 
function. Cognitive performance was better with the 20 
IU (10 IU b.i.d.) dose in this population (Craft et al., 
2012). These findings are clinically relevant because of 
the high prevalence of dementia in DM patients 
(Rotterdam study), as well as the high prevalence of 
insulin resistance syndrome in AD patients.(Craft and 
Watson, 2004), (Craft, 2005b),(de la Monte, 
2012),(Freiherr et al., 2013). Functional MRI studies 
that showed increased activity in the brain–reward 
dopamine–mediated limbic system further support these 
findings (Figlewicz, 2003, Figlewicz and Benoit, 
2009,Stice et al., 2012). These data suggest that 
intranasal administration of insulin is a safe and feasible 
approach to improve central insulin levels. In addition, 
INI could be a promising method for the treatment of 
disorders with an etiology that may involve 
disturbances in brain insulin signaling, such as AD, 
obesity, and T2DM (Chapman et al., 2013). 
 

3.1. INI Effects on Memory in Type 2 Diabetics 
Our proof-of-concept (Novak et al., 2013,Zhang et al., 
2014), randomized, double-blind, placebo-controlled 
intervention evaluated the effects of a single 40-IU dose 
of insulin (Novolin® Novonordisk) on vasoreactivity 
and cognition in 15 type 2 DM  patients (60.1±9.9 years 
old, HbA1c 7.4 ±1.4%, DM duration 11.3±4.7years,7 
F), and 14 age- and sex-matched healthy controls 
(62.0±7.9 years old, 10 F). A ViaNase device was used 
to administer INI or sterile saline in random order with 
cross-over assignment on Day 2 or Day 3. Perfusion 
MRI using 3-D CASL at 3 Tesla and cognitive test were 
done < 2 hr after INI.  
Brief Visuospatial Learning and Memory Test Revised 
(BVMT): INI improved BVMT performance in both 
groups. Controls on INI performed better than diabetics 
on either INI or placebo on immediate recall Trials 2-3 
(T2, T3) [(least squares model adjusted for age R2

adj = 
0.1, p=0.03), T3 (R2

adj = 0.14, p=0.03), and Total 
Recall. These effects remained significant after 
adjusting for education (T2: R2

adj=0.1, p=0.02; T3: 
R2

adj= 0.1, p=0.03). INI improved performance on T2 
(p=0.04) and Total Recall (paired t-test, p=0.05). Verbal 
Fluency Task (timed word generation using letters 
F,A,S) INI improved verbal fluency. Controls on INI  
performed better than diabetics on the FAS (R2

adj = 
0.26, p=0.0045), switching (R2

adj = 0.2, p=0.006), and 
composite verbal fluency (R2

adj = 0.12, p=0.02).  
 

3.1.1. Cognitive Performance Correlates with 
Regional Vasodilation 

Regionally, perfusion changes on INI were observed in 
the middle cerebral artery (MCA) territory and insular 
cortex, integrative areas for learning, memory, and 
language. The DM group had lower baseline perfusion 
than controls (p=0.039). In the DM group, INI increased 
perfusion in the right insular cortex compared to 
placebo (p=0.0001) and to the control group 
(p=0.0003). BVMT and verbal fluency performances 
correlated to perfusion and vasodilatation within the 
MCA territory and the insular cortex, an area that 
regulates attention-related task performance (Novak et 
al., 2014). BVMT T3 and BVMT Delayed Recall 
(MCA: R2

adj
 = 0.28,  p=0.04; insula: R2

adj
 =0.22, 

p=0.04). In diabetics, better visuospatial memory after 
INI correlated with vasodilatation in the MCA territory 
for BVMT immediate recall (T2: R2

adj=0.43, p=0.01; 
T3: R2

adj =0.39, p=0.035), and Total Recall (R2
adj=0.44, 

p=0.0098). These relationships were not observed after 
placebo. BVMT T2, T3 and Total Recall also correlated 
with vasodilatation in the anterior cerebral artery 
territory (p=0.05-0.08). In controls on INI, FAS score 
(R2

adj=0.39, p=0.04) and the composite verbal fluency 
score (R2

adj=0.18, p=0.045) were associated with greater 
vasodilatation in the right insular cortex. In the DM 
group on INI, FAS scores were also associated with 
greater vasodilatation in the left (p=0.02) than in the 
right insular cortex (R2

adj=0.26p=0.04). 
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3.1.2. INI Improved Functional Connectivity of 
Hippocampus with Resting State Networks 

For network correlation analyses we used a voxel-based 
approach to examine connectivity of the hippocampal 
regions with regions within the resting state DMN 
(Zhang et al., 2014). The DM subjects on INI 
demonstrated increased connectivity of hippocampus 
regions with DMN regions (MPC: medial prefrontal 
cortex [3.7, peak t score]; IPC: inferior parietal cortex 
[3.9]; PCC: posterior cingulate cortex [3.2]) than those 
on placebo (Figure 4 A-B) (p<0.05, voxel corrected). 
 

 
Figure 4: A. Diabetes group on INI had better 
functional connectivity between hippocampus and 
default mode network. B. On placebo DM group had 
worse connectivity than controls. 

 
On placebo, DM group had lower connectivity as 
compared to controls (p=0.02) but connectivity on INI 
was similar. In DM subjects, functional connectivity 
between hippocampus and anterior cingulate cortex was 
associated with better Verbal Fluency Score. BVMT 
showed a positive trend toward association between 
hippocampus and right IPC. INI may modify functional 
connectivity among brain regions regulating memory 
and complex cognitive behaviors. 

 
4. TYPE 2 DM EPIDEMIC, PHENOTYPE AND 

HEALTHCARE SYSTEMS  
As the epidemic of T2DM spans around the globe 

and different age groups, it presents complex health 
issues and care delivery that challenge the traditional 
health care systems. The major challenge is the increase 
of obesity and T2DM in children (18% of children in 
the U.S. are obese) and younger adults increasing their 
risk for cardiovascular complications in young 
adulthood (Lurbe et al., 2008),(Wild et al., 2004). 
Obesity is a “social phenomenon” that spreads along the 
social networks, and obese peers increase probability 
for their friends to become obese, e.g. up to 100% for 
male friends, 40% in siblings, and 37% in 
souses(Christakis and Fowler, 2007). Interestingly, 
social contagion phenomenon has been also observed  
for other health-related behaviors (Christakis and 
Fowler, 2013), such as drinking alcohol (Christakis, 
2004). However, this social phenomenon may also 
support the spread of health-positive behaviors such as 
smoking cessation, and smokers are progressively found 

on the periphery of the networks. The probability of 
smoking decreased by 67% for the spouse, 36% for a 
friend and 25% for a sibling (Christakis and Fowler, 
2008). 

 
The major challenge is that the increase of obesity 

and T2DM in children and younger adults still affects 
even countries that previously had very low rates of 
obesity and cardiovascular complications. At the same 
time the media impact on behavior in younger 
generation is much stronger, and therefore there is a 
greater opportunity for influencing both positive ( 
activity) and negative behavior (e.g. obesity, drinking) 
via social networks and media and this phenomenon 
could be perhaps expanded to reinforcing the positive 
behaviors such as activity and healthy eating via web 
care (Christakis and Fowler, 2013),(Christakis, 2008)  

The younger generation is at greater risk of 
developing T2DMs complications, because the 
perception of its risks is lower than in older generation, 
and therefore younger people are less likely to receive 
more aggressive treatments that are needed for long-
term health preservation. At the same time the older 
people with T2DM are living longer, and surviving 
cardiovascular complications. As a result, the number of 
people with disability due to diabetes is on the rise, 
however the perception of severity of its complications 
is declining. A phenotype of slow gait speed, depression 
and cognitive impairment has thus emerged that may be 
linked to abnormal vasoregulation. Altered regulation of 
perfusion during daily challenges may accelerate brain 
atrophy and correlate with slower gait speed, worse 
cognition and function,(Novak et al., 2006),(Novak et 
al., 2009),(Last et al., 2007),(Hu et al., 2008) and poor 
balance in older age (Manor and Li, 2009),(Manor et 
al., 2012). DM affects verbal learning, executive 
function, and memory,(Morra et al., 2013),(Hajjar et al., 
2009) and thus poses a barrier to self-care in DM 
patients (Kuo et al., 2005),(Munshi et al., 2006). 
Furthermore, cardiovascular risk (Albert et al., 
1988),(Munshi et al., 2006),(Kuo et al., 2007),(Kuo et 
al., 2006) and genetic(Zade et al., 2013) and lifestyle 
factors (Levine et al., 1997,Rudolph et al., 2006) may 
contribute or lead to cognitive decline in older adults. 
Cardiovascular risk factors increase exponentially with 
age and are often overlooked as a source of cognitive 
changes attributed to “normal” aging (Leritz et al., 
2011),(Kuo et al., 2004). Therefore, there is a great need 
to reinforce the concept that long-term health-oriented 
behaviors are crucial for prevention of T2DM and its 
long-term complications.  

 
4.1. The Self-Management and Mobile Technology 
Look AHEAD long term clinical trial (Espeland et al., 
2009) has shown that behavioral interventions are 
effective for short-term improvement of health status, 
but sustainability of healthy behaviors and prevention of 
long-germ complications still remains a challenge 
(Espeland et al., 2009),(Unick et al., 2011). Therefore, 
there is a need to bring novel non-traditional approaches 
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to reinforce healthy behaviors in people of all ages and 
improve prevention and management of cardiovascular 
risk factors that lead to T2DM and its complications. 
 Recent advancements of wearable technologies and 
web-based sites offer the new opportunity for self- 
monitoring of behaviors (e.g. gait, activity, sleep etc.), 
and have been effective in recording daily/weekly 
activities. However, accurate monitoring of food intake, 
food composition, metabolic rate and balance still 
remains a challenge. New sensors can be weaved into 
fabrics (smart textile technology), clothing or even 
directly printed on human skin (Zheng et al., 2014), 
(Jadad et al., 2015),(Alam and Ben, 2014) thus allowing 
pervasive yet unobtrusive health monitoring and 
telemonitoring (Hung et al., 2004) for prolonged tiem 
periods. The feasibility of wearable technology 
applications is growing (Choi et al., 2013),(Barnard and 
Shea, 2004),(Buttussi and Chittaro, 2008), and some 
technologies are already achieving sustainable goals in 
combination with guided therapy e.g. for weight loss, 
diabetes control etc. that are comparable to the office 
visits and group therapy. In addition, these approaches 
would utilize only a fraction of the healthcare worker’s 
time, would be more cost effective, could reach larger 
population and would not require one-to-one contact.  
  The major challenge that remains in T2DM 
management is development of a closed loop system 
capable of real time monitoring of multiple 
physiological variables (e.g. activity, glucose, nutrients 
intake) and delivering treatments either behavioral 
notifications, feedback reinforcement or medications in 
a real time. Even better set-up would be preemptive 
modes that would predict glycemic fluctuations in real 
time and through a closed loop system maintain 
glycemic levels stable during daily activities, metabolic 
demands and challenges.  
  
4.2. Conclusions 
The utilization of wearable technologies, however, has 
not yet been adopted by the traditional systems, and 
there is great need for education of a younger 
generation that is not sparred from the risks of life-style 
related diseases and is facing a longer diseased life or 
even a shorter lifespan (Lurbe et al., 2008). At the same 
time, there is a need for better understanding of the 
impact of availability, sharing and potential misuse of 
health-related are information, mass data collection and 
a proper use  of smart technology (Barnard and Shea, 
2004). There is a growing need for further development 
of telemedicine and “guided self-diagnostics and 
monitoring using smart devices“ that is becoming more 
feasible based upon the advances and availability of 
mobile technology and sensors. 
Therefore, non-traditional approaches based on 
wearable technologies combined with artificial 
intelligence that could provide real time feedbacks 
about behavior modifications would allow the design 
and implementation of new strategies and and novel 
paradigms to further improve well-being of younger as 

well as older population of diabetic people and those at 
risk for diabetes.  
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