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ABSTRACT 

Simulation, modelling and verification are powerful 

methods in computer aided therapy, rehabilitation 

monitoring, identification and control. They are major 

prerequisites to face great challenges in medical 

technology. To realize tasks and services like an on-line 

data monitoring or a nerve signal based prosthesis 

control, smart, intelligent and mobile systems are 

required. Here we present data acquisition and learning 

systems providing methods and techniques to acquire 

electromyogram (EMG)- and electroneurogram (ENG)-

based data for the evaluation and identification of 

biosignals. We focus on the development, integration 

and verification of platform technologies which support 

this entire data processing. Simulation and verification 

approaches are integrated to evaluate causal 

relationships between physiological and bioinformatics 

processes. Based on this we are stepping up efforts to 

develop substitute methods and computer-aided 

simulation models with the objective of reducing 

experiments on animals. This work continues the 

former work about system identification and biosignal 

acquisition and verification systems presented in 

(Bohlmann, Klinger, and Szczerbicka 2010; Klinger and 

Klauke 2013; Klinger 2014). 

This paper focuses on the next generation of an 

embedded data acquisition and identification system 

and its flexible platform architecture. We present results 

of the enhanced closed-loop verification approach and 

of the signal quality using the Cuff-electrode-based 

ENG-data acquisition system. 

 

Keywords: ENG-based prosthesis control, rehabilitation 

monitoring, system identification, system verification, 

simulation framework, simulation and modelling in 

computer aided therapy, robot-manipulators 

 

1. INTRODUCTION 

The use of electrical biosignals, like electro-

encephalogram (EEG), electromyogram (EMG) and 

electroneurogram (ENG), gains a lot of importance for 

the assessment of functions in the human body. These 

signals are used as major indicators which provide 

medical professionals, patients or professional athletes 

during diagnostic and monitoring processes. In 

particular EMG and ENG are used to get information 

about the peripheral nerve system including information 

transfer due to sensual data and motion control by 

peripheral nerves. Based on these signals a multitude of 

applications is existing; they range from the 

achievement of a therapeutic goal up to prosthesis 

control, for example, to operate an artificial hand or an 

artificial forearm. There are several requirements 

existing to realize such these functionalities: 

 Data acquisition and stimulation 

The EEG, EMG or ENG data has to be acquired 

and sampled according their signal characteristics, 

given in Table I. In particular applications 

stimulation is necessary, for example for the 

measurement of the nerve conduction velocity. 

 Data processing 

The acquired data (action potentials) are disturbed 

by intrinsic noise. In addition they are overlaid by a 

substantial extrinsic noise, originated for example 

by EMG from surrounding muscles. Therefore we 

have to filter the recorded data with integrated 

analogue filter and additional digital filter. There 

are several specific high-pass, low-pass, band-pass 

and notch filter available. A further data processing 

is necessary, on the one hand to improve the data 

condition due to asynchronous and aperiodic 

samples, and on the other hand to generate events 

from the action potentials like the activity level of a 

muscle group or the detection of an exposure 

scenario. 

 
Table 1: Biosignal Characteristics 

 

 
 

 Identification 

The identification feature is required for prosthesis 

control or any type of high level signal evaluation. 

The identification is based on machine learning and 

recognizes movement commands and feedback 
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signals. The identification method and the 

corresponding verification scenario has been 

introduced in (Klinger and Klauke 2013; Klinger 

2014) based on results in (Bohlmann, Klinger, and 

Szczerbicka 2010; Bohlmann, Klauke, Klinger, and 

Szczerbicka 2011). 

 Data archiving 

After data acquisition and data processing the 

results has to be saved locally if there is no direct 

data transmission for an evaluation possible or 

desirable due to an offline analysis. Furthermore 

for identification a certain data amount is necessary 

to apply the identification algorithms during the 

operating phase (Klinger and Klauke 2013). 

 Data interfacing 

The data has to be transmitted for evaluation or 

monitoring purposes to a host system. 

 User Interfacing 

To select and execute certain functionalities and for 

online information an user interface must be 

available. 

 Configuration 

Due to the different application scenarios and 

system functions a configuration is necessary. 

 

With regard to many different application scenarios and 

the corresponding requirements, the embedded system 

architecture is based on a modular hardware and 

software platform. We will present the system 

architecture and its characteristics including data 

acquisition, identification and data exchange in 

section 2. In section 3 we will discuss two specific 

applications to illustrate the platform character of the 

system. The results given in section 4 focus on the 

enhanced overall verification method, using modelling 

and simulation techniques and the verification of the 

data acquisition for ENG-based data. 

 

2. SYSTEM ARCHITECTURE 

In Figure 1 the overall concept is shown in a block 

diagram. Two central components are to be recognized 

in this level: The data acquisition and signal 

conditioning in the analog frontend as well as the data 

evaluation and identification (Signal Processing, 

Learning). In the data acquisition block the action 

potentials of the nerves are captured by a so called Cuff-

electrode (Klinger 2014; Klinger and Klauke 2013). 

Following this, the analog signals are being amplified 

and digitalized. Afterwards there occurs a two-stage 

evaluation and identification step of the data 

(Bohlmann, Klauke, Klinger, and Szczerbicka 2011; 

Bohlmann, Klinger, and Szczerbicka 2009; Bohlmann, 

Klinger, and Szczerbicka 2010).  

 
Figure 1: System Architecture 

This subdivision in two phases is necessary to allow a 

learning phase and an operation phase. In the learning 

phase the base identification which allows a correlation 

between nerve signal and movement is carried out. The 

operation phase is using the identification results of the 

learning phase to realize a customization and 

adjustment due to parameter drift or electrode 

movement and to control the exoprosthesis. Therefore 

the base identification from the learning phase is used 

by a mobile processing device, which supports 

continuous learning. 

Based on the overall system concept the system is 

designed as a platform providing a modular hardware 

and software architecture. The different modules, like 

analog frontend, analog digital converter (ADC), 

processing elements, application specific integrated 

circuits (ASICs), interface solutions or memory devices 

are important for specific use cases, like the operating 

mode, an online data evaluation, a long-term data 

archiving, etc.. The complexity of the hardware 

platform requires lots of software features, e.g. for the 

data management, the system configuration, the system 

programming, the development and for the graphical 

user interface. In addition, several use cases are existing 

with regard to different areas of operation, like medical 

test, the clinical application, the use by patients, long 

term or short term signal evaluation. To be able to fit all 

these requirements and constraints, the platform 

paradigm is valid for the hardware domain as well as for 

the software domain. Here a software platform is 

conceived which is based on the RichClient-Platform of 

Eclipse and uses the capabilities of the open system 

gateway initiative (OSGI). 

In this paper, however, we would like to focus on the 

flexibility of the platform based architecture. To 

improve the first design we have taken several aspects 

into consideration. At first the system has been shrinked 

to realize a body-mounted system. Figure 2 shows the 

1st and 2nd generation of the smart modular biosignal 

acquisition, identification and control system 

(SMoBAICS). Our first prototype has been used for the 

examination of the platform architecture and of the 

module design. Besides, the modules, in particular the 

analog frontend module, were subdivided in several 

submodules to be able to learn from the measuring 

campaigns efficiently. Here we have used a backplane 

architecture for the whole system to realize a fast and 

easy module replacement of the ADC, the amplifier, 

etc.. In addition, most of the components are 

configurable by software to guarantee high flexibility. 

With the help of this first prototype platform important 

knowledge about the signal characteristic features was 

obtained. The second platform approach reduces the 

system dimensions; now the area per module is 

33x60 mm2. The height per module ranges from 

amounts from 5.4 mm to 6.4 mm. Using a system 

configuration consisting of 5 modules, the overall 

volume is less than 80 cm3, compared to the old system 

platform with  1750 cm3. The next step will be the 

system in package platform (SIP) to realize an implant- 
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Figure 2: System evolution 

 

table medical device. The additional design 

specifications for the new system are: 

 Mobility 

The measurement period of the EMG- or ENG-

based biosignals and an optional stimulation has to 

be several hours to integrate the monitoring process 

into the user’s life and satisfy long-term 

measurements. 

 Considerable Improvement in Communication 

Options 

The system has to realize a communication channel 

to medical staff informing about critical situations 

or therapy-relevant events. This communication 

channel has to be established using a smart phone 

which is connected via Bluetooth or Wi-Fi to the 

system. 

 Local Intelligence 

To trigger the measurements and to realize an event 

based communication with the user or external 

staff, local processing power is necessary. In 

addition, the local identification, used in the 

operation and mobile mode, needs local 

intelligence for event and pattern matching. 

In the following text we present the design of the new 

CPU-module extending the system capabilities. This 

CPU-module provides a better local data management 

and more computing power for the online identification 

algorithms during mobile operation and the ongoing 

system evolution. In addition, the connectivity of the 

 
Figure 3: Module stack of the embedded data acquisition and 

identification module 

 

 
Figure 4: CPU-Module: Processor Board 

 

system can be improved using for example the full 

Bluetooth/Wi-Fi stack based on Linux operating 

systems. The overall module stack of the system is 

shown in Figure 3. This module stack contains the 

whole functionality of the block diagram in Figure 1 

including power supply by a rechargeable battery. The 

new CPU-module has been developed according the 

platform design guidelines. Using a high performance 

microprocessor (Sitara AM3358), the system 

capabilities, in particular the communication can be 

improved considerably. This board takes the data from 

the Acquisition Board, processes the data and either 

sends the data via communication channel. The CPU-

module is split into two modules due to design 

considerations. The first module contains the ARM 

Cortex A8 processor along with the RAM, ROM as 

well as the power management chip. In Figure 4 the 

block diagram of the board is shown. The system is 

based on the AM3358 processor which is capable of 

running at 1GHz speed, along with support from a 

DDR3 RAM and a flash memory system. The AM3358 

is best to be paired with the TPS65217 Power 

Management IC which provides all the supply  voltages 

that are needed for operating the processor as well as 

the peripherals. The support for the USB, SPI and the 
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Figure 5: CPU-Module: Attachment Board 

 

Ethernet ports are fed to the stack connectors as the 

ports are located on the Attachment Board along with 

the Memory Card slot. In addition, the board level 

controller (MSP430) is integrated, acting as the board 

identification and overall control system. Using the I2C 

protocol the various boards are able to identify and 

configure themselves accordingly. On the Processor 

Board, the MSP430 microcontroller also serves as a 

secondary control device with regard to low power 

operation. On the Attachment Board all peripherals are 

combined that are connected to the Processor Board, 

like USB ports, Ethernet port and also a micro SD card 

slot which can be used to store the data that is processed 

by the Processor Board. The overview of the 

Attachment Board is seen in Figure 5. The Attachment 

Board interfaces to the processor board through the 

stack connectors. It provides all external connectivity 

and the base plate for the rechargeable battery.  

 

3. APPLICATION FIELDS 

There are numerous applications in the field of 

biosignal measurement and signal processing. We will 

focus on two specific examples, demonstrating the 

flexibility of the platform concept. 

 

3.1. Rehabilitation and Long-term Treatment 

Monitoring 

There appears a whole array of diseases where it is 

necessary to monitor specific parameters for a long term 

treatment, for recovery from illness or for rehabilitation. 

Several reasons for such a decrease in nerve conduction 

are well known but not understood, like demyelinating 

or axonal injury. Neurophysiological measurements and 

tests are available to improve the knowledge and to 

improve the curing prospects. But in most cases these 

measurements are used rarely, once a week some even 

less often. It is necessary to provide a continuous  

 
Figure 6: System for NCV (AFE: AnalogFrontend; µC: 

Microcontroller; BT: Bluetooth) 

 

 
Figure 7: SMoBAICS Appplication 

 

monitoring to get a better understanding of the 

interference of other parameters, like temperature, time 

of day, state of exhaustion, etc.. To fit all these 

requirements, a mobile system is necessary which 

provides the key functions described in section 1. One 

common examination is the measurement of nerve 

conduction velocity (NCV) in which impairments can 

be identified. While determining the nerve conduction, 

the nerve to be examined will be electrically stimulated 

at least at two places in its course. In Figure 6 the 

adequate system configuration is shown. It combines 

from surface electrode up to Bluetooth interface all 

modules to acquire and save data and to connect to a 

widely used smart device.  

 

3.2. Prosthesis Control 

Today prosthesis is even more than only easy spare 

parts for the human body. From the simple wooden 

butts of the past ingenious high-tech constructions have 

become. However, the modern medicine can substitute 

even more than only arms and legs. The main problem 

is the human machine interface of prosthesis and its 

movement control. The objective is to use biosignals for 

the information transfer between human being and 

prosthesis. Several possibilities are existing to realize 

such an interface. Our approach is the direct use of the 

action potentials of peripheral neural bundles via an 

ENG (Gold, Henze, and Koch 2007; Neymotin, Lytton, 

Olypher, and Fenton 2011). Based on these signals, a 

prosthesis, for example, an artificial hand or an artificial 

forearm, can be controlled specifically. In addition, by 

using a direct nerve interface it is possible to realize a 

bidirectional interface, not only for the actuatory data 

but for the reactuatory and sensory signals. The 

acquisition and interpretation of nerve signals is one key 

challenge to realize an intelligent control of prostheses 

or handicapped limbs. The interpretation is one central 

aspect due to the high information density within a 

nerve. In Figure 7 overall flow of motion control 

including the feedback loop is shown. Part of the 

system is camera and micro-electro-mechanical system 

(MEMS) support to improve the movement 

identification by methods of inverse and forward 

kinematics. The system configuration to fit this scenario 

contains: 

 Cuff-electrode 

Using a special type of electrode, a Cuff-Electrode, 

the electrical potentials are recorded. The Cuff-

electrode has been chosen for minimally invasive 
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surgical and therapeutic applications (Klinger and 

Klauke 2013). 

 Analog frontend for ENG 

To record the very small signals, which are only of 

the order of a few microvolts, we have designed a 

special front-end hardware (Klinger and Klauke 

2013). 

 Microprocessor  

o System and data management 

 The AM3358 processor provides data 

management and configuration from the analog 

sampling module and data preprocessing for 

identification and archiving. 

o Identification 

 The information taken from the Cuff-electrode 

contains a superposition from all action 

potentials of all single axons within the 

selected nerve bundle. Therefore an 

identification process is necessary to extract 

the trajectory information and to build up a 

model of the nerve bundle due to its axon 

configuration. The AM3358 provides enough 

computing power for the evaluation of the 

online identification. 

o Connectivity 

 The Am3358 provides the full driver and 

communication stacks to enable seamless 

integration into the communication 

environment. 

 Wi-Fi or Bluetooth interface to host 

Necessary hardware and antenna for 

establishing the wireless or Ethernet interface.  

 

Figure 8 shows the scenario related system 

configuration. The Cuff-electrode is connected via 

cable. 

 
Figure 8: System for Prosthesis Control (AFE: AnalogFrontend; 

µP: Microprocessor; BT: Bluetooth) 

 

 

4. RESULTS 

In this paper two different aspects are in the focus due 

to the results. In subsection 4.1 we will present the 

enhanced verification method providing an all-level 

verification for the identification method. In 

subsection 4.2 we will focus on signal quality and 

interference ratio of the ENG-based analog frontend. 

The signal quality and accuracy is one of the key factors 

for the data based identification. 

 

4.1. Enhanced Verification Method 

The verification of the identification method is based on 

physiological data (Kandel, Schwartz, and Jessell 

2000), and simulation knowledge (Law and Kelton 

2000; Zeigler, Praehofer, and Kim 2000; Carnevale and 

Hines 2006). The new closed-loop verification provides 

an efficient and transparent verification process for the 

identification method. Causes and effects of certain 

sequence of motions can be investigated in detail. The 

used verification method allows different loops to check 

different characteristics using different levels of the 

identification method. In Figure 9 three different loops 

are shown taken the generated or motion-based 

generation of certain stimulation vectors and simulated 

action potentials into consideration. 

 Verification of cluster assignment and 

physiological parameters (1) 

The first option verifies the disposition of the 

clusters or anatomic fascicles of the nerve bundles. 

Using certain stimulation vectors this verification 

approach is used to optimize the parameters of the 

identification method. Using real data, recorded 

with an analogue front-end system, it can be used 

to evaluate inter- or intra-individual differences of 

human beings to optimize the identification method 

with regard to adaptability. This verification step is 

based on the NEURON simulator modelling the 

intra- and extracellular nerve bundle (Carnevale 

and Hines 2006). 

 Verification of action potential sequences (2) 

This verification approach can be used either to 

improve the identification method towards better 

action potential disintegration or to enhance the 

knowledge base regarding the peripheral nerve-

muscle interface. The generation of certain 

stimulation vectors itself can be used to adapt the 

abstraction level and complexity of the 

identification task. This verification step is based 

on the NEURON simulator, Java Framework and 

Matlab (Carnevale and Hines 2006; Corke 2011). 

The stimulation vectors (StimVectors) are 

generated based on simulated movements data. 

 

 
Figure 9: Verification architecture of SMoBAICS 

 

 Trajectory verification (3) 

The trajectory verification is the most sophisticated 

verification approach. Starting with the sequence of 

motion the verification consists of the comparison 

of the initial sequence of motion (start trajectory) 

and the identified sequence of motion (result 

trajectory). The comparison between both 

trajectories allows a qualitative and quantitative 

evaluation of the whole identification loop. This 
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trajectory verification includes the integration of 

camera- or MEMS-data within the identification 

method for the learning and the operating phase if 

there are no encoder data from prosthesis are 

available. It is well known that the human arm or 

total or partial prostheses are redundant 

manipulators therefore we have to use more than 

information from actions potentials to identify the 

position of the end-effector. During the operating 

phase we have to use MEMS, but it lacks in bias 

stability compared to the camera system. So we 

have to take this into account integrating the 

inertial navigation into the identification method 

(Woodman 2007). To evaluate a closed-loop 

verification system further, a robot-manipulator 

like a human arm (Denavit-Hartenberg parameters) 

including an MEMS device provides real 

movement data including real MEMS parameters. 

Closed loop verification consists of the causal 

chain: 

1. Generating movement data using a robot-

manipulator (Corke 2011) 

2. StimVector generation based on the 

movement data and anatomical data (the 

calculated parameters are Denavit-

Hartenberg parameters of the robot model 

according e.g. an anatomical data of an 

human arm.). 

3. Simulation by NEURON simulator and 

extracting the data of the simulated Cuff-

electrode. 

4.  Identification  

5. Identification-based trajectory processing 

6. Comparison of robot-manipulator 

movement and identified trajectory. 

 This verification step is based on the NEURON 

simulator, Java Framework and Matlab, too. It uses 

in addition inverse/forward kinematic algorithms 

(Craig 2004; Khalil and Dombre 2002). 

 

4.2.  Results from the Acquisition System  

Focusing on the second application scenario (see 

subsection 3.2), the entire system uses data-based 

methods where the data are acquired by the Cuff-

electrode; therefore data quality is one key parameter. 

In this subsection we present measurement data taken 

by the analog frontend (ENG) and a Cuff-electrode 

(Klinger and Klauke 2013) to evaluate the signal 

quality. The results were determined in an animal 

experiment with rats, carried out at the Medical School 

Hannover (MHH). All information in the following 

diagrams is scaled as follows: 

 Abscissa: Time 

Relative timeline, corresponding to the number 

of cycles of the analog-digital converter, 

sample rate: 4 kHz. 

 Ordinate: Amplitude 

All values are given in µV . 

 

In Figure 10 one single impulse measured by the Cuff-

electrode is shown. This impulse, a classical All-or-

None-impulse, shows from the amplitude heave as well 

as from the temporal expiry the course to be expected 

for a capacitive electrode. Helpfully with this 

measurement are the appraisals which can be won with 

regard to the nerve isolating qualities by Epineuria as 

well as Perineuria and Endoneuria. 

 

 
Figure 10: Measurement of a classical All-or- None-impulse with 

the capacitive Cuff-electrode 

 

 
Figure 11: Measurement of the nerve activities due to stimulations 

with varying frequency 

 

In Figure 11 the nerve activities on stimulation with 

different frequency are shown. On the left there is a 

faster stimulation (20 Hz) with an uniform electrical 

stimulation. On the right there is a slower stimulation (3 

Hz) where the electrical stimulation is increased by 

scaling the stimulation current. The measured signals 

agree with the relative stimulation voltage and 

stimulation frequency. In the amplitude certain changes 

are recognizable; these changes appear on the basis of 

superposition of action impulses generated by a number 

of axons. The spatial resolution within the fascicle is up 

to now not possible because the used Cuff provides only 

2 sensors which are used to check different amplifier 

configurations and reference potential configurations. 

On the reason for the increase in activity can be 

speculated here, meaning the certain fascicle activity of 

the whole nerve fiber. According the expectations, the 

total number of axons which are active is increased. The 

superposition of axon activities inside one nerve fiber 

related to a complex sequence of muscle contractions is 

due to a simple correlation. Thus, for example, the 
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overall muscle contraction is controlled according the 

force required for a movement. Two different 

mechanisms are well known: To get more overall 

moving force 

 the frequency of axon impulses controlling 

some muscle fibers has to be increased, and 

 the number of active axons has to be increased 

to control more and more muscle fibers. 

This effect can be also observed in Figure 12. There a 

sequence of action potentials is shown on account of a 

more complicated stimulation, triggered through a real 

leg movement during the animal experiment. Here a 

number of axons within the taken nerve bundle are 

firing action potentials according the triggered muscle 

activity. The different amplitudes are composed by the 

superposition of the sequences of action potentials 

formed by All-or-None single impulses. The 

superposition of several All-or-None action potentials 

can be measured outside the nerve bundle by the Cuff 

electrode.  

 

 
Figure 12: Measurement of the superposition of action potentials 

from the taken nerve bundle by the Cuff-electrode 

 

 
Figure 13: Resolution and noise amplitude 

 

 

These results are important to receive data from the 

possible amplitude area and to get information about the 

whole signal path and its proper configuration 

parameters. For the improvement of the signal-to-noise 

ratio the analog front-end module has been optimized, 

especially for the measurement of ENG data. In Figure 

13 there is the noise on an input signal shown. The 

noise amplitude is less than 20 nV. Compared to the 

action potentials measured by the Cuff-electrode the 

signal to noise ration fulfils the requirements. On 

account of the very good low-noise specification and 

large amplitude range, the sensor signal can be used at a 

very high-resolution. Its properties for extracellular 

recording measurements could be confirmed. The three 

outliers in the measured signal are uncritical; the 

software bug has been tracked for fixing. 

 

5. SUMMARY AND FURTHER WORK 

The presented approach for a platform-based embedded 

biosignal acquisition and identification system offers a 

wide range of medical applications. The modular 

system character provides adaptability to different 

diagnostic, rehabilitation monitoring and control 

scenarios with regard to computing power, connectivity 

and analog frontend characteristics. To emphasize this 

key feature beyond the presented application scenarios 

in section 3, in Figure 14 a possible next system 

generation for the prosthesis control application based 

on an integrated system-in-package (SIP)-solution is 

shown. The communication between SIP-based implant 

and the body-mounted system is connected for example 

via medical-implant- communication-service (MICS). 

 

 
Figure 14: Verification architecture of SMoBAICS 

 

The simulation-based closed-loop verification, 

presented in subsection IV-A, provides an efficient and 

transparent verification. Using the NEURON simulator 

and forward/inverse kinematic it allows a large test 

depth including anatomical and physiological 

parameters, like nerve bundle configuration and 

electrical parameters of peripheral nerves. The 

identification method helps to understand and to 

evaluate the correlation between movement and 

peripheral nerve information, including the actoric and 

the related sensoric feedback information flow. The 
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results related to the ENG-based data acquisition 

system, introduced in subsection 4.2, show the technical 

feasibility and establishes the basis for the data-based 

identification. All results help to reduce the number of 

animal experiments using simulation and closed-loop 

verification methods. 

The embedded EMG- and ENG-based biosignal data 

acquisition and identification system using a flexible 

hardware and software-platform offers considerable 

potential. Additional tests and clinical applications will 

follow to improve the system characteristics and the 

identification further. 
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