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ABSTRACT 
A new family of indicators for the assessment of the 
risk of not being properly attended after a traffic 
accident has been defined. Its name is Dynamic 
Population Risk (DPR) and it is based on the dynamic 
behaviour of the traffic system (weather, congestions, 
population) and not just on the static location of the 
ambulances at the hub. Its development has been 
verified and validated using a simulation-based 
framework. Possible uses for policy development are 
mentioned. 
 
1. INTRODUCTION 
There is an increasing need in health systems to develop 
and quantify indicators that may be used for policy 
development. Indicators of efficiency and efficacy 
should help in compensating the economic investment 
and the return via improved public health (Ministerio de 
Sanidad 2010). In other words, there has to be a balance 
in the staffing of resources assigned to an activity and 
the level of service that wants to be achieved. 
 
In this case, the system to be simulated is the assistance 
of victims of traffic accidents by ambulances or special 
mobile units where the quickness of the reaction is 
critical (Sánchez-Mangas et al., 2010), especially in 
rural areas (Muelleman a Mueller, 1996). The response 
time should obviously be as short as possible since it is 
well known that “the quicker the rescue, the higher the 
possibility of the patient recovering”. The Golden Hour 
principle is widely accepted as a requisite for public 
health, that is, the probability of recovering greatly 
decreases if a traffic victim is not properly assisted 
within one hour. 
 
This system of assisting traffic accidents is known as 
EMS, Emergency Medical System. The system works 
as follows. The ambulances are located at the base or 
hub. If an accident occurs, the ambulance is occupied 
(not available for another call) during a certain time 
period which covers the following tasks: 
 

1. Preparation of the assistance: before leaving 
the base, the staff needs to prepare matters. 
2. Travelling to location: the ambulance moves 
towards the location of the accident 
3. At the accident site: the staff actuates to assist 
and pick the injured up 

4. Travelling to hospital: the ambulance moves 
from the site towards a medical centre. 
5. At the hospital: the staff actuates to drop the 
injured off 
6. Travelling back towards the base to report and 
be ready for a new call. 

 
A complete survey of applications of simulation to 
EMS was published in 2013 (Aboueljinane et al., 2013). 
It divides the types of decisions into long-term 
(potential bases location, dimensioning of resources), 
mid-term (deployment problem, shift scheduling) and 
short term (resource dispatching, destination hospital 
selection, redeployment problems). A simulation 
optimization framework may become necessary to 
address the corresponding optimization problem (Zhen 
et al, 2014) in any of the above situations. 
 
For decision making, two types of indicators have been 
used in the past to quantify the level of service in EMS 
deployment. (Aboueljinane et al., 2013): time/distance 
(average response time, coverage within a standard time 
T, coverage within a time greater than T, round trip 
time, service time, vehicle utilization rate, # of calls 
served per vehicle/base, dispatching time, travel time to 
scene, waiting time, size of queue, loss ratio, overtime, 
total mileage) and survival cost (survival rate, cost 
effectiveness). 
 
The most common one is the response time (for 
example, Aboueljinane, Sahin, Jemai and Marty, 2014), 
which is usually calculated as the average time that the 
resources take to arrive to the scene of the accident. 
This indicator is related to the proportion of time the 
response time is within the Recommended Safety Time 
Threshold (Ramirez-Nafarrete, Baykal, Gel and Fowler 
2014). This second indicator sometimes is called 
“Maximal Expected Coverage”, the measure that is 
complementary to the risk (Gendreau, Laport and 
Semet, 2006).  
 
In terms of survival, or at least potential survival, we 
can mention the population risk, which is frequently 
stated as “the percentage of the population that lives 
outside a given time threshold from the hub of 
resources” (Ministerio de Sanidad 2010). It represents 
the percentage of population covered within the given 
subjective time threshold. 
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All the indicators are of course related and based on the 
response time (and hence the adequacy of using 
simulation as the modelling tool), but the computation 
of the response time has to rely on historic data and is 
dynamic in nature, whereas the quantification of the 
population at risk is based on static population and 
location data and the response time is just the subjective 
threshold. 
 
That is the reason why in many places, Spain in 
particular, mid-term and long-term planning of 
resources is based on static population risk. There is no 
need to have real data other than population to establish 
the number of resources that should be installed at each 
response hub. For example, in Spain (Ministerio de 
Sanidad 2010), following international principles, there 
is a rule-of-thumb that determines that there should be 
an emergency unit per 50000 habitants. 
 
The objective of this article is to keep on defining new 
indicators that could be used for policy development in 
EMS systems. This article proposes a set of survival 
indicators that combine the individual indicators that 
have already been mentioned. These new indicators will 
be classified as dynamic population risk indicators, in 
the sense that the value of the risk (or coverage) will not 
be constant over time to overcome the problems of the 
static risk indicator but it will still be based on the 
correct quantification of the response time. 
 
Using as the initial measure the static population risk, 
the new idea is to incorporate dynamic conditions to its 
calculation. The proposed indicator accounts for 
unexpected conditions that might increase the response 
time: weather and traffic conditions or road 
maintenance. It also takes into account the variation in 
population and the related accident rate, for example 
during the weekends or holiday periods. As a result of 
the time penalties associated to these sources of 
variation, the availability of resources changes and the 
potential survival rate may decrease significantly over 
certain periods of time. 
 
The proposed dynamic population risk indicator (DPR) 
will be then calculated as the time-weighted average of 
the static population risk (SPR). As long as there are 
units outside the hub, the DPR will be different to the 
SPR: if the units are available, they may be spread out 
in such a way that DPR is momentarily smaller than the 
SPR; if they are not available at all, the SPR will be 
lower than the DPR. 
 
Both the DPR and SPR will depend on the time 
threshold that wants to be subjectively set. For that 
reason, there is a value of the indicator for each 
threshold K. The specific indicators therefore should be 
referred as DPR (K) and SPR (K), leaving DPR and 
SPR for the specification of the set or family of 
indicators. 
 

The development of this new family of indicators, DPR 
and SPR, is the core of this article. We build a 
simulation model to verify its robustness and validate 
its use in a real problem. We first embed their 
calculation in a MsExcel framework, and finally we 
show their application in a traditional EMS setting in 
which the optimum number of ambulances is 
determined after taking into account dynamic 
conditions.. 
 
2. THE EMS SIMULATION MODEL 
 
The aim is therefore to derive and quantify robust 
indicators, using a simulation model that can represent 
the system under study. A researcher must then choose 
a tool that conveniently fulfils this objective. 
 
In this case, the model is going to be set in MsExcel 
because it is a perfect tool to implement easy routines 
that help define, verify and validate any decision 
making framework with the required level of detail. 
Then, if the model wants to be implemented for ad-hoc 
utilization, the model may be updated accordingly with 
the necessary complexity. 
 
The abstraction process of the EMS starts with the 
definition of the map that represents the region that is 
going to be analysed with its roads. The map is easily 
represented with a grid composed of cells (i,j) that cover 
the whole region. One of those cells holds the base. 
 
The population at each cell (i,j) is fij (absolute 
frequency), with the relative percentage of the 
population being defined as: 
 

 

 
The roads are represented as travel times , which 
are the travel times from the current position at the 
current time from where the ambulance is to the cell 
(i,j) in the spreadsheet grid. It is calculated by adding 
time jumps to adjacent cells with the jump being 
defined as a random variable, . Perfect or static 
conditions are set when there are no congestions at any 
road and the weather does not affect the driving 
behaviours. 
 
This variable is adjusted with a factor  that accounts 
for the time penalties that may be incurred due to 
imperfect traffic conditions.  is a non-negative value 
that adds to the static times under perfect conditions. It 
is worth mentioning that the way this matrix of time 
distances is defined and modelled is based on the 
underlying assumption that the resources are intelligent 
and always select the shortest route in terms of the 
response time. 
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The movement of the ambulances are the key of the 
model. The base receives a call and then a free 
ambulance drives towards the location of the accident, 
assists the injured people, moves then to the hospital 
and back to the base. It is very important to note that the 
ambulance that leaves the base is not available to give 
service to any other accident until reaching the base 
again. In other words, any ambulance is unavailable 
during a period of time. In the case of a given region 
staffed with just one ambulance, the whole population is 
at risk whenever that lonely ambulance is not at the 
base. Moreover, only ambulances at the base count 
since those are the only ones that can immediately react 
to incoming calls. This reasoning is critical for 
understanding the system and for the development of 
the model and calculation of the indicator. 
 
We have opted not to model the movement of the 
ambulance but instead calculate the availability of the 
ambulances at regular intervals of time. Indeed, for any 
instance, we determine if there is at least one ambulance 
at the base. At each instance that we simulate, we use a 
binomial distribution  to represent the availability of 
the ambulances. If the count of ambulances in the 
system is c, then  = B(c, p), where p is the probability 
of each ambulance being available, and therefore, the 
availability of at least one ambulance is: 
 
 Availability  = 1 – P( = 0). 
 
The location at any instance of the ambulance is 
modelled with a bi-dimensional random variable (x, 
y). 
 
The execution of the model is performed as follows: 
 

1. Definition of the maps 
a. Population 
b. Time distances 
c. Hub location 

2. At each instance: 
a. Location of ambulance within the map 
b. Availability (or not) of ambulance 
c. Recalculation of time distances 
d. Calculation of instantaneous 

population risk 
3. At the end of the simulation 

a. Calculation of SPR and DPR 
b. Drawing of functions 

 
The model is run to cover a total number of instances T 
(t=0, 1, … ,T). 
 
3. POPULATION RISK INDICATORS 
 
The calculation of the indicators and the drawing of 
their corresponding functions is therefore the key of 
article. 
 

Population risk is defined as the percentage of the 
population that lies outside a given subjective time 
threshold. We can differentiate between static or perfect 
conditions with full availability of ambulances and no 
time penalties, and dynamic conditions. In the first case, 
the SPR, static population risk indicator, is defined and, 
in the second case, the DPR, dynamic population risk 
indicator, is defined. 
 
The population risk depends on the time threshold that 
is subjectively and a priori established. For generality, 
we define K thresholds and calculate the population 
risk, each with a different value k. Therefore, we define 
two families of indicators, SPR (K) and DPR (K). 
 
Both families are based on the following definition of 
the coverage of population based on the kth threshold at 

time t, : 

 

where 

 

 
is the indicator of coverage of cell (i,j) at time t. If the 
travel time from the current position at the current time 

 is less than the threshold time that corresponds 
to the kth threshold, the instantaneous coverage is 
calculated to 1, and 0 otherwise. The coverage is further 
multiplied by the availability of the set of ambulances 
for the final calculation of the indicator at time t 
corresponding to the kth threshold. 
 
The static indicator of population risk is then: 
 

SPR(k)=1-0
k 

 
and it is just the sum of population outside the 
threshold, since =1. 
 
The dynamic population is therefore the average over 
the total number of samples obtained at regular intervals 
of time: 
 

DPR(k)=1-  

 
4. THE SOFTWARE 
 
In this section, the adequacy of the MsExcel software 
that has been developed is shown with a simple 
example. As input, the software asks for several data. 
Figure 1 shows the population percentage at each of the 
cells (i,j) of the map which in this case is a matrix of 
10x10. 
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0.5% 1.1% 1.0% 1.7% 1.6% 1.4% 1.6% 2.0% 0.7% 0.5%

0.1% 0.4% 0.7% 0.8% 1.2% 0.9% 1.7% 1.9% 0.4% 0.1%

1.1% 1.3% 0.3% 1.9% 2.1% 0.1% 0.1% 2.0% 0.4% 0.9%

0.3% 0.4% 1.3% 0.9% 1.7% 0.2% 0.0% 0.6% 0.0% 0.1%

0.2% 1.7% 0.2% 1.9% 2.0% 0.8% 0.6% 0.4% 0.8% 1.9%

2.1% 0.3% 0.8% 1.0% 1.4% 1.6% 0.6% 1.5% 1.8% 1.3%

1.9% 1.0% 0.8% 1.6% 0.6% 1.4% 0.8% 1.1% 0.1% 0.3%

2.1% 0.3% 1.0% 0.3% 0.4% 1.6% 2.0% 1.5% 1.1% 1.3%

0.8% 1.0% 1.0% 1.3% 1.3% 1.2% 1.4% 1.4% 0.8% 1.2%

0.5% 0.8% 1.3% 1.3% 1.5% 1.2% 0.5% 0.6% 0.3% 0.4%  
Figure 1: Software input: population 
 
The colour coding is such that the darkness increases 
with the population. Cell (5,5) is where the base is 
located, cell that is indicated by a dark border. 
 
Figure 2 includes the time distances from the base in 
static conditions. 
 

9.7 8.2 6.3 4.5 4.5 4.9 6.5 8.2 8.6 9.0

6.1 4.4 3.5 3.4 3.4 5.3 6.0 7.6 8.5 9.3

8.4 6.8 4.9 3.4 2.2 3.1 3.6 5.1 6.2 6.4

5.1 3.9 3.3 2.9 1.1 1.5 3.5 5.3 5.7 7.6

5.7 4.5 2.5 1.2 0.0 2.0 2.9 3.1 4.0 5.0

6.0 5.4 4.0 3.0 1.2 2.4 2.6 4.2 4.8 6.5

7.8 7.0 5.0 3.2 1.9 2.1 2.8 4.0 4.2 4.2

8.3 6.8 5.5 3.8 2.8 4.3 4.9 6.4 7.9 8.2

8.4 6.9 6.9 5.0 3.4 3.8 5.0 5.8 7.6 8.5

9.1 7.3 7.3 6.6 5.0 7.0 9.0 10.2 10.7 12.4  
Figure 2: Software input: time distances 
 
The rest of the necessary input values are: 
 

 The number of ambulances, c=1 
 Availability of each ambulance, p=0.9 
 Time penalty = 2 

 
As output, the software shows a calculation of both the 
SPR(K) and the DPR(K) for easy comparison. 
Graphically, the calculations are shown as a function of 
different time thresholds K, which could be also 
specified a priori. In this case, K = 0, 2, 4, …, 18, 20. 
 
Figure 3 shows that the static risk is 0, SPR(12) = 0, if 
the time threshold is 12 minutes or more. In other 
words, all the population is within 12 minutes of the 
hub. However, 4% is at risk if the threshold is set to 10 
minutes, SPR(10) = 4%. 
 

 
Figure 3: Software output: Static vs Dynamic 
Population Risk 
 
If penalties are included in the calculation of the new 
dynamic indicator, then 23% of the population is on 
average outside the 20 minute mark and 29% outside 12 
minutes, DPR (20)=23% and DPR (12) = 29%. 
 
The time distances from the dynamic location of the 
units are also shown over the region that is being 
analysed using a heat map. Figure 4 depicts the 
situation under static conditions, or time distances from 
the hub. The map is arranged in cell format for easiness 
of representation. Almost all of the population is within 
10 minutes, expect for 4 cells at the right corners. 
 

8 8 8 8 6 8 10 12 12 12

8 6 6 4 4 6 8 8 10 10

8 8 6 4 4 4 6 6 8 8

8 6 6 4 2 4 4 4 6 6

4 2 2 2 2 2 4 6 6 8

6 4 4 2 2 4 6 6 8 10

8 6 6 4 4 4 4 6 6 8

10 8 8 6 6 6 6 8 8 10

10 8 8 6 6 6 6 8 10 10

10 10 8 8 8 8 8 10 10 12  
Figure 4: Software output: Time distances from hub 
under static conditions 
 
Figure 5 shows dynamic conditions, indicating the 
average time distance from the location of the closest 
unit. In the average dynamic map, there is only one cell 
in the grid which is covered on average within 6 
minutes. The corners are on average at a distance of 14 
minutes. 
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14 12 12 10 10 10 12 12 12 14

12 12 10 10 10 10 10 12 12 14

12 10 8 8 8 10 10 10 12 14

10 10 8 8 6 8 10 10 10 12

10 10 8 8 8 8 10 10 10 10

10 10 8 8 8 8 8 8 10 10

10 10 8 8 8 10 8 10 10 12

12 10 10 10 10 10 10 10 12 14

12 12 10 10 10 10 10 12 12 12

14 12 12 10 10 12 12 12 12 14  
Figure 5: Software output: Time distances from random 
location of ambulances 
 
5. EMS SIMULATION OPTIMIZATION 

FRAMEWORK 
 
If using this software for a real application in which 
decisions might be taken by varying the values of the 
input parameters, a simulation optimization framework 
may become necessary to address the corresponding 
optimization problem (Zhen et al, 2014). Therefore, an 
additional output of our work is a simulation-
optimization framework to test the new family of 
indicators within real applications. 
 
5.1. Definition 
 
The decision problems faced in industry, commerce, 
public administration, and the society in general keep 
growing in size and complexity. For the study of these 
decision problems, it is necessary to develop efficient 
methodologies and tools, so it is possible to try and 
evaluate many different alternatives and to take the 
correct decision in a reasonable amount of time. One of 
the main example problems of this complex type that a 
manager faces is that of deployment of the EMS (the 
real system in our case, Fig. 6). 
 

 
 
Fig. 6. Description of the EMS optimization framework. 
 
The first source of complexity is the number of decision 
variables (or control parameters or input variables, x), 
or to be more precise, the number of different 
alternatives that a manager faces in the process. The 

total number (n) is the multiplication of the feasible 
values for each of the variables (nc *na*np): 
 

 Count of ambulances (c): from a minimum to a 
maximum value for a total of nc. 

 Accident rate (a): at least, base and peak for a 
total of na. 

 Penalties (p): at least with no penalties and 
with a penalty, for a total of np. 

 
The number of different criteria (or output variables or 
objectives, y) also adds to the complexity of the 
analysis, mainly because usually they independently 
work in opposite directions. At least a measure of cost 
and another of level of service are usually included in 
any study. Then, if the level of resources is increased to 
improve the level of service, the cost criterion will pay 
the price, and vice versa. In this case we will 
concentrate just of the new family of survival 
indicators, SPR(K) and DPR(K). 
 
The third source of increased complexity is the volume 
of available data (z). Not only that, the data is available 
at a much quicker pace that the manager can handle. 
The improvement in online information systems has 
called for shorter decision making periods. 
 
Fortunately, some of the complexity of these studies has 
been diminished by the improvement not only of the 
solution techniques but also of the information 
technology. These improvements call these days for the 
experimentation with models instead of with the real 
system, models which are embedded in the information 
systems of the company. Among these models, 
simulation has grown as one of the most reliable 
abstraction tools due to its very good compromise 
between the level of detail in the representation of the 
real system and the execution time of the model, which 
calls for an appropriate experimentation and decision 
making. 
 
On that regard, computer simulation has received a lot 
of attention in the last decades to model complex 
systems under uncertainty, in many areas but 
specifically in traffic (Ingolfsson et al., 2003). Its 
success does not rely mainly upon improvements in 
theoretical aspects but in hardware and software, 
especially in terms of efficiency, allowing for the study 
of even more complex, uncertain systems within the 
allotted analysis time. The use of simulation opens the 
possibilities of further research into decision processes 
which are specific to this tool. 
 
To study a given system via simulation, the first step is 
to formulate the problem and to develop the model that 
represents the system. The model will simultaneously 
include the mathematical and logical relations between 
the elements of the system as well as random variables 
for the necessary data (for example, travel times or 
location of bases). The data must be easily read into the 
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model. The next step is to build credibility. The model 
is executed repetitively to confirm that it has sound 
foundations. For each run, a different set of values is 
taken from each random variable to verify that the 
model works correctly. At the same time, a different 
combination of values for the decision variables is used 
so that the objectives are not only calculated but 
compared numerically. 
 
Different alternatives are tried, the objectives quantified 
and the best alternative is chosen for implementation. 
This step is usually carried out using a user-friendly 
interface that automatically tries many different 
alternatives, performing also the comparison and the 
selection step for the manager. During implementation, 
this interface is also used to see the results for the 
selected alternative. 
 
Therefore, in this final step of the analysis process, the 
desire is to obtain information about the values of the 
input or decision variables that improve the values 
obtained for the objective function. In the EMS 
example, the objective may be to calculate the optimum 
number of EMS units according to reasonable values of 
the new family of indicators. 
 
5.2. Experimenter 
 
The developed software also includes an experimenter 
that will help with the trial of different possibilities 
automatically (by pressing the button “EXECUTE”) 
(Figure 7) by trying each and every combination of 
feasible values for the different variables. We run a test 
case with the following settings: 
 
 
 

 Count of ambulances, c={1,2,3,4,5} 
 Availability, ={0, 0.1, 0.2, …, 0.9, 1} 
 Time penalty,  ={0, 0.5, 1, …, 3.5, 4} 

 
The total count of scenarios is calculated as the product 
of the feasible levels (Fig. 4: 5*11*9=495 scenarios). 
100 runs are executed of each scenario, for a total of 
49500 runs. 
 
A pivot table as well as a pivot figure summarize the 
result for both SPR(10), SPR(20), DPR(10) and 
DPR(20) for each variable independently. 
 
6. AN APPLICATION: THE PROBLEM OF 

DEPLOYMENT 
 
The problem addressed in this article as a test-bench is 
that of deployment, or to correctly staff the EMS with 
ambulances or emergency units. More specifically, the 
number of ambulances has to be enough to guarantee 
that those involved in an accident receive attention 
quickly, but not so many so as to incur in excessive 
costs.  
 
Deployment has been addressed in the literature in 
recent years due to the importance of designing 
correctly the rescue service and of staffing properly the 
resources. For example, a simulation tool is used to 
measure the “time to rescue” in the Val-de-Marne 
department in France (Aboueljinane et. al, 2014). The 
time is translated into coverage, defined as the 
percentage of calls that are attended within a 20 minutes 
threshold. This service indicator in decision making is 
then used to propose the level of resources as well as 
the location of the base. 
 

 
Figure 7: Experimenter screen  
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The experimenter is run using the setting included in 
section 5.2., varying the number of ambulances between 
1 and 5. Figure 8 depicts the results as a function of the 
number of ambulances. The x-axis represents the 
ambulances and the y-axis the risk. The whole 
population is within 20 minutes (SPR (20)=0) and 96% 
within 10 minutes (SPR (10)=0.04). 
 

 
Figure 8: Experimenter output for the count of 
ambulances 
 
The dynamic values are obviously much worse, with 
population risk as high as 20% even with 5 ambulances 
and a 20-minute threshold. With only 1 ambulance, the 
risk is above 50%. 
 
The analysis shows that most probably the appropriate 
number of rescue units should be 3. The risk functions 
start to flatten down at 25%. 
 
We have also performed a sensitivity analysis on each 
factor. The availability of at least one ambulance greatly 
influences the risk (Figure 9). The EMS requires that 
the accident rate is such that the availability is at least 
0.6 so that the risk is controlled below 20%. 
 

 

Figure 9: Experimenter output for the Availability of 
ambulances 
 
Finally, it looks like size of the time penalty does not 
have an effect on the risk (Figure 10). The graphs are 
flat throughout the whole range of penalty values. 
 

 
Figure 10: Experimenter output for time penalties 
 
7. DISCUSSION 
 
We have designed a simulation-optimization framework 
to represent the EMS and validate our proposal of a new 
family of indicator to measure the potential risk of the 
population. 
 
A simplistic model in MsExcel has allowed for the 
proper definition and testing of the indicators. Most of 
time, the model should be a means to an end, so the 
level of detail is critical while developing a credible, 
reliable and usable tool for decision making. In this 
setting, it was not necessary to model the movement of 
the ambulances in detail in order to develop robust 
indicators of survival in dynamic traffic conditions. 
 
It is our aim to further develop and apply the framework 
to real situations. On that regard, we are developing a 
model in C++ to fully represent the movement of the 
ambulances so the analysis of real EMSs over a given 
region can be carried out. It will include travelling times 
both under normal conditions or under changing 
weather (fog (Mueller and Trick, 2012) or snow 
(Kunkel and McLay, 2013)) and traffic conditions. 
 
Then, the framework could have more uses within 
decision simulation support systems (DSSS) related 
toemergency situations. 
 
Online dynamic assignment of ambulances to accidents 
and the redeployment of ambulances (Maleki and 
Majlesinasab, 2014) or the analysis of the so-called 
diversion problem (allocation of ambulances to 
hospitals) (Lin et al., 2015) are types of situations that 
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could be addresses via modifications of the current 
framework. 
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