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ABSTRACT 
Classification-based segmentation is an approach to 
establish generic analysis of medical image data. 
Significant feature sets covering different characteristics 
of regions to segment allow for robust discrimination of 
topologically defined classes. In this work a method for 
automated domain-specific feature selection to achieve 
a higher level of predictability is presented, 
incorporating multivariate feature analysis. For 
calculation of the probability density function, different 
approaches, like histogram analysis, enumeration of the 
entire feature space or umbrella Monte Carlo 
Integration are investigated. Furthermore, meta features 
calculated on entire classification results rather than on 
particular regions are introduced. Predictability of both, 
single local and meta features, is evaluated for different 
medical datasets as well for simulated intensity 
volumes, allowing testing and evaluating specific 
classification problems. The automated feature selection 
proofs to be accurate for classification-based 
segmentation utilizing well-known machine learning 
approaches. 
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1. INTRODUCTION 
Precise segmentation of target anatomical structures 
from tomographic image datasets is an essential 
prerequisite for quantitative analysis and computer-
assisted diagnostics. If all voxels of an anatomical 
structure are labelled, measurements on the extent and 
volume become feasible, for instance facilitating the 
monitoring of the disease progression. Furthermore, 
from available segmentations 3D surface models can be 
derived that can be utilized for surgery planning 
(Zwettler, Backfrieder, Swoboda, and Pfeifer 2009) or 
surgical training (Fürst and Schrempf 2012). Thereby 
the user interaction and subsequent analysis can be 
performed on the computer model or utilizing a virtual 
reality environment, enriched by haptic patient models 

that are derived from the anatomical segmentations and 
produced via emerging 3D printing devices. Precise 
segmentations are not only required for computer-based 
analysis, but also for registering multi-model image 
data of the same patient to combine high resolution 
morphological imaging (CT, MRI) and image data from 
the functional imaging domain (PET, SPECT). Only 
with available segmentation masks, the measured 
metabolic activity can be limited to organ borders to be 
quantitatively evaluated with respect to anatomical 
classifications (Beyer, Schwenzer, Bisdas, Claussen, 
and Pichler 2010). 

In the last decades there has been intensive 
research work in the field of medical image processing 
to achieve preferably fully-automated segmentation 
approaches in specific diagnostic domains. Utilizing 
deformable models (McInerney and Terzopoulos 1996) 
and incorporating a priori knowledge on the target 
anatomical structure, morphologies with low variability 
in shape can be robustly segmented. Nevertheless, 
generic application of deformable models for arbitrary 
segmentation domains is not feasible as proper 
adjustment of the parameters and the a priori model is 
required. In contrast, Statistical Shape Models (Cootes, 
Taylor, Cooper, and Graham 1992) can be trained rather 
autonomously, if a large set of reference segmentations 
covering all relevant possible anatomical variations is 
available. Active appearance models (Cootes, Edwards, 
and Taylor 1998) introduce additional statistical 
properties of the targets structure expected intensity 
profile besides geometric features and Level sets (Osher 
and Sethian 1988) can handle changes in topology and 
anatomical variability but complex parameterization 
needs adjustment to the particular segmentation task. 
Furthermore, all of these sophisticated models are 
limited to segmentation of particular anatomical shapes, 
as border areas and overlapping segments cannot be 
handled, when segmenting multiple classes from input 
volume, covering all of the voxels at most. 

Segmentation of the entire dataset from arbitrary 
imaging domains, i.e. assigning a class label to all 
available voxels, is up to now not feasible by utilizing 
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fully-automated model-based approaches. However, 
such entire segmentations can be achieved in a semi-
automated way by utilizing conventional segmentation 
approaches like region growing (Gonzalez and Wintz 
1987) or live wire contour detection (Schenk and Prause 
2001) with appropriate filtering and morphological 
post-processing in a rapid prototyping image processing 
pipeline. A standardized process model for 
segmentation of arbitrary anatomical structures from 
variable tomographic image data has been presented in 
(Zwettler and Backfrieder 2013). While this approach is 
by far too user-intensive for practical application, the 
reference segmentations achievable in a semi-automated 
way are perfectly suited for training a priori models of 
specific segmentation domains. 

A fully automated segmentation of all anatomical 
structures present from the particular input image 
modalities is achieved utilizing classification-based 
approaches, where at first fragmenting the input volume 
into regions of similar intensities, demarcated by 
gradients along the borders. For this pre-processing, e.g. 
watershed transform (Vincent and Soille 1991) applied 
to gradient magnitude can be utilized. To introduce 
additional robustness for this pre-segmentation, 
confidence-connected intensities, neighbourhood 
characteristics for iterative region merging and 
morphological post-processing are additionally 
incorporated (Zwettler and Backfrieder 2012).  Given 
that pre-segmentation of the input image leads to 
fragmentation into mosaic-like regions with voxels 
predominantly belonging to one particular class, the 
actual segmentation can be achieved via multivariate 
feature classification. Therefore different characteristics 
of the particular anatomical structures, like intensity 
statistics, shape, location or co-occurrence metrics 
(Felipe, Traina and Traina 2003), are applicable. Most 
of these features are normally distributed, thus allowing 
classification with Gaussian mixture models, 
probability density function, Bayes networks or k-
Means clustering. Furthermore, powerful classifiers 
from machine learning domain like neural networks 
(Vapnik 2000) or support vectors (Boser, Guyon and 
Vapnik 1992) are applicable. Besides, also heuristic 
approaches like genetic programming (Koza 1992) or 
genetic algorithms (Goldberg 1989) can be utilized for 
feature-based image classification.  

In this work, n=30 local features are evaluated 
with respect to their predictability, i.e. achievable 
classification precision for specific objectives, in 
different medical imaging domains. Thereby, statistical, 
geometric, texture and transformation features are 
utilized. For many of the proposed classifiers, the 
number of feature dimensions has to be limited due to 
numeric computability, over-training and noise 
sensitivity. Thus, in this work an approach is developed 
to automatically select the most appropriate feature set 
for a specific medical segmentation domain, according 
to single feature predictability considering feature 
correlation. Thereby, also the classification targets like 
high voxel match, high region classification confidence 

or individual class weights can be incorporated. To 
introduce additional robustness and to allow 
classification in a broader range of application, 
additional m=13 meta features are introduced that are 
calculated on the class region statistics. These meta 
features are perfectly suited to be utilized for heuristic 
classification. For automated features selection, 
different cumulated predictability metrics, like 
multivariate PDF or histogram analysis are evaluated. 

 For testing and validation of the proposed features 
and proposed domain-specific feature selection, 
different medical datasets and simulated intensity 
volumes (Zwettler and Backfrieder 2014) are utilized.  

 
2. MATERIAL 
For testing and validation, MRI data from BrainWeb 
database (Cocosco, Kollokian, Kwan and Evans, 1997), 
anonymized patient studies from various imaging 
modalities and simulated intensity datasets are utilized 
as detailed in the following section.  

 
2.1. Data from BrainWeb 
In total n=20 MRI datasets, reflecting spoiled FLASH 
sequences at flip angle α=30 and an echo time (TE) of 
9.2ms and a repetition time (TR) of 22ms with 
associated reference segmentations are utilized. The test 
sequence datasets denoted as BRAINWEB_REF in the 
following, have 0.5mm voxel spacing at volume 
dimensions of 256×256×181 and unsigned 8bit scalar 
range. Reference segmentations fragment the dataset 
according to a topology of k=12 classes reflecting 
anatomical structures to discriminate, namely 
background (0), cerebrospinal fluid (1), grey matter (2), 
white matter (3), fat (4), muscles (5), skin (6), skull (7), 
vessels (8), around fat (9), dura mater (10) and bone 
marrow (11).  

Inter dataset class ratio variability of 
BRAINWEB_REF sequence is charted in Fig. 1, while 
axial slices #50 and #100 of BrainWeb dataset ds1 are 
presented in Fig. 2. 

 

 
Figure 1: Inter dataset variability of the n=20 datasets 
from BREANWEB_REF. Voxel ratio of the particular 
classes Ci significantly varies.  

 
For BrainWeb datasets moreover manual reference 

segmentations are prepared as sequence 
BRAINWEB_MAN, discriminating between k=6 classes, 
namely white matter (0), grey matter (1), ventricle (2), 
background (3), tissue (4) and remaining voxels (5). 
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Surface renderings for reference segmentations of ds1 
are presented in Fig. 3.   

 

  
(a) (b) 

  
(c) (d) 

Figure 2: First BREANWEB_REF dataset with input 
intensities and reference class labels. 

 

   
(a) (b) (c) 

Figure 3: Surface Renderings on BRAINWEB_MAN ds1 
for grey matter (a), white matter (b) and ventricle (c). 

 
2.2. Anonymized Patient Studies 
Preparation of reference segmentation for true patient 
datasets necessitates the use of standardized image 
processing chains (Zwettler and Backfrieder 2013).  

The sequence HEART thereby covers n=15 
datasets acquired with Siemens Somatom Sensation 
Cardiac 64-row MSCT, showing 512×512 slice 
dimensionality and µ=288.5(92-461) slices with an 
average spacing of .359 in x/y direction and .56 in z-
direction. The defined topology discriminates between 
k=9 classes, namely lung (0), aorta (1), left ventricle 
(2), stents (3), right ventricle (4), liver (5), bones (6), 
tissue (7) and remaining voxels (8).   

Furthermore, abdominal CT datasets are utilized to 
build up sequence ABDOMEN, fragmenting input 
voxels into k=13 classes, namely background (0), 
intestinal tract (1), lungs (2), muscles (3), aorta (4), 
kidneys (5), stomach (6), vessels (7), liver (8), heart (9), 
bones (10), tissue (11), and remaining voxels (12). 

An overview of sequence HEART is given in Fig. 4 
for ds1 with axial slice #20 in (a) and labelled reference 
segmentations in (b) with surface renderings of the heart 
ventricles and aorta in (c). For ds1 of ABDOMEN 
sequence, axial slice #50 is shown in (d) and reference 
segmentations in (e) with surface renderings of lungs, 
aorta and liver in (f).    

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4: Overview of HEART and ABDOMEN data. 
 

2.3. Simulated Intensity Volumes 
A newly developed intensity volume simulator 
(Zwettler and Backfrieder 2014) allows for generation 
of testing sequences with different shape morphology of 
the particular classes Ci. Besides, intra region intensity 
characteristics, inter dataset variability, surface 
characteristics, region size, voxel ratio and several more 
attributes can be parameterized for simulation.  

Simulated test sequences with n=15 datasets are 
generated at mask dimensionality of 128×128×128 and 
allow for simulation of tubular, BLOB-like, plane-like 
and scatter morphologies. Sequence SIM_1 thereby 
features discrimination of k=5 classes, see Fig. 5.  

 

   
Figure 5: axial slice #50 of SIM_1 ds1 (a) and 
associated reference segmentations (b) with surface 
rendering, showing tubular, plane and BLOB shape. 
 

The testing sequences SIM_2-SIM_8 only 
comprise two classes C2 and C3 with BLOB morphology 
showing identical characteristics that are differentiated 
from background class C1. For the particular testing 
sequences, only specific characteristics are varied to 
allow for classification of classes C2 and C3 with respect 
to specific local and meta features, see Table 1. 

 
3. METHODOLOGY 
Whenever analysing statistically varied values of 
feature Fj calculated from a set of regions Di ={R1, R2, 
…, Rn} assigned to a class Ci, the random feature values 
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generally can be modelled as normal distribution with 
Fji~N(µji, σ2

ji). Based on the single feature distributions, 
predictability at different positions in the multi-
dimensional feature space and similarity evaluation with 
particular classes becomes feasible.  

 
Table 1: Simulation Characteristics for SIM_2-SIM_8 

ID difference of C2 and C3 
2 no difference  utilized as ground truth 
3 varied position within dataset 
4 small differences in intensity profile 
5 difference in connectedness, 1 vs. 60 islands 
6 difference in mean region size 
7 difference in class voxel ratio  
8 intra region scalar correlation varied  

 
3.1. Local and Meta Features 
The n=30 local features Fj considered in this work are 
calculated on particular regions Ri leading to static 
results, while the m=13 introduced meta features F̂ are 
calculated on the classified region set Di of a particular 
class Ci, allowing to incorporate single region 
classification results.  

The total 43 considered features are grouped into 
four categories, namely texture features (Table 3), 
statistical features (Table 2), geometric features (Table 
4) and transformation features (Table 5), covering 
different aspects on how to robustly discriminate the 
particular classes Ci. 

With the texture features, as presented in Table 3, 
key intensity profile characteristics like mean region 
intensity, energy or entropy are incorporated. 

The statistical features in Table 2 are mainly meta 
features, which evaluate statistics on region size 
calculated over all regions assigned to a particular class. 
Besides, class size and voxel ratio are calculated. 

The 18 geometric features enlisted in Table 4 refer 
to positional aspects of the particular regions, like mean 
position in x-, y-, and z-direction as well as mean city 
block distance from the image centre. Besides, surface-
to-volume ratio and sphericity are calculated to address 
compactness. 

Finally, for calculation of the 5 transformation 
features from Table 5, co-occurrence matrix is derived 
from input image to calculate variance, entropy, energy 
and homogeneity. With these features, intensity profile 
characteristics can be well described. 

 
Table 2: statistical features (9) 

 
 

 

Table 3: texture features (11) 

 
 

Table 4: geometric features (18) 

 
 

Table 5: transformation features (5) 

 
 
3.2. Single Feature Predictability 
Features Fj showing a high level of predictability are 
considered to be best suited to discriminate the 
considered classes Ci. As the normal distributions of the 
particular classes are expected to at least partially 
overlap, classification generally cannot be performed 
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without bearing some level of uncertainty, see Fig. 6 for 
illustration of one-dimensional feature set with 
distributions for classes C1 – C3 partially overlapping.  
 

 
Figure 6: Bayes error in feature classification. The 
overlapping area marked in black of the class feature 
distributions F1, F2 and F3 derived from classes C1, C2 
and C3 for feature Fj is classified at low confidence with 
predj=.771 as F1 and F2 are largely overlapping. 
 

The local probability density function (pdf) of the 
particular class feature value distributions is thereby 
defined for a particular class Xo  as  

 
(1) 

where the pdf is weighted according to region 
occurrence ratio, voxel class ratio or utilizing specific 
weight for the particular classes in the sense of 
Bayesian inference as delineated in Equ. 2. This way, 
the particular key classification objective is defined and 
differences in region or voxel occurrence probability of 
the particular classes can be modelled. 

 (2) 

Predictability (pred) is evaluated at each discrete 
position of the feature space with  

 

(3) 

so that overall predictability of a particular feature with 
respect to all considered classes Xi can be formulated as 

 

(4) 

3.3. Multivariate Class Similarity 
For common classification tasks the sole utilization of 
single features generally is considered to be insufficient. 
Instead, several features are utilized to derive the best 
matching class label of a region Ri from the particular 
feature vector. With every additionally incorporated 
feature, the dimensionality of the feature space is 
increased by one, thereby increasing the overall 
achievable predictability, see Fig. 7 for two-dimensional 

feature space with distributions for classes C1 – C3 less 
overlapping compared to each single feature dimension.  

 

 
Figure 7: With additional feature dimension Fk showing 
predk=.743 to be combined with Fj from Fig. 6, overall 
predictability is increased to predjk=.9707.  

 
For calculation of cumulated predictability from 

single feature dimensions, correlation has to be 
considered. With higher feature correlation τij, of the 
involved features Fj and Fk, the increase in overall 
predictability due to the extended feature space drops. 

Calculation of multi-dimensional probability 
density function pdfgmm is achieved with 

 

          

(5) 

for input vector  with covariance 
matrix  calculated  for pairwise covariances as  

 
(6) 

3.4. Automated Domain-Specific Feature Selection 
With the formulations defined in section 3.3, 
predictability of a certain feature set can be calculated 
for particular segmentation domains by statistically 
evaluating a set of reference regions Di ={R1, R2, …, 
Rn} preserved for each class Ci  to be discriminate. 
Nevertheless, with increasing dimensionality of the 
feature space, the proper calculation strategy for 
integration over the feature space from local evaluation 
of the pdfgmm has to be analysed in depth. Therefore, the 
following calculation strategies are applicable, namely: 
• Partial integration by evaluating pdfgmm at discrete 

and equally distributed positions per feature 
dimension is only applicable for a very small 
feature vector size, as the total number of required 
evaluation positions exponentially grows with 
respect to increased feature space dimensionality. A 
reduction of sampling positions per dimension 
would allow for handling higher-dimensional 
feature spaces but entail a drop in result quality as 
the sampling frequency becomes deficient. 

• Monte Carlo integration (MCI) (Metropolis 1987) 
allows for sampling of the feature space at a 
predefined number of random positions. This way, 
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also higher dimensions can be handled. 
Nevertheless, insufficient sampling frequency as 
mentioned for the partial integration approach, 
remains unaddressed. With decreasing sampling 
density, the risk for leaving significant parts of the 
feature space unconsidered during MCI increases. 
Imprecision introduced by MCI is especially high 
when single class distribution show small 
variability and thus might not be hit by any of the 
sampling positions at all or if the feature space is 
generally sparsely populated. 

• The umbrella variation of Monte Carlo integration 
addresses the problem of feature space sparseness 
by sampling only at positions derived from the 
particular class feature value deviations, 
incorporating Bayes inference with respect to 
region or voxel class probabilities. 

• Similar results can be achieved, when evaluating 
the pdfgmm exclusively at positions of the multi-
dimensional feature space that are derived from the 
incorporated set of reference regions. Nevertheless, 
applicability of this approach highly depends on a 
sufficient number of reference segmentation 
datasets. Furthermore, inaccuracies are introduced 
from feature distributions that do not perfectly 
approach Gaussian shape, as the pdfgmm sampling is 
performed according to true region feature data.   

• Finally, a histogram approach can be utilized, 
evaluating a multi-dimensional histogram for all 
classes Ci. This way, the true feature value 
distribution of the particular classes is 
approximated best. Thus, higher accuracy for the 
evaluated predictability values is to be expected for 
those features, e.g. for geometric properties, that do 
not perfectly approach Gaussian shape. To 
overcome the problem of features space sparseness, 
filtering is applied with respect to the particular bin 
count per dimension, which is downscaled with 
higher dimensionality, see Table 6.  

 
Table 6: Histogram calculation parameters with respect 
to dimensionality D 

 smoothing filter histogram bins 
D kernel size k bin size s total sD 
1 10 200 200 
2 8 100 10,000 
3 5 50 125,000 
4 3 20 160,000 
5 2 10 100,000 
6 1 8 262,144 
7 0 6 279,936 
8 0 5 390,625 
9 0 4 262,144 

10 0 3 59,049 
 

Despite the different enlisted calculation strategies 
applicative to multi-feature predictability estimation, the 
algorithm for automated domain-specific feature 
selection remains the same. For automated selection of 
a feature set Flocal and a feature set Fmeta for a particular 

classification domain, defined by class-labelled regions 
Ri derived from the preserved set of reference 
segmentations, at first the feature with highest pdf is 
selected. In the following, the feature vector is 
iteratively extended until the target number of 
dimensions is approached, by selecting the feature Fj 
that maximizes the pdfgmm achievable by the particular 
feature vector length, at each iteration.  

Although in theory the overall achievable 
predictability pdfgmm is expected to monotonically 
increase with every additional feature dimension Fj, 
depending on the calculation strategy also decreasing 
overall predictability values might be noticed. This 
effect results from the smaller histogram bin size at 
higher dimensionality, which subsequently leads to a 
collapse of neighbouring bins and thus a pretended 
reduction in predictability. The same holds for MCI 
approaches, where the sampling frequency drops at 
increased dimensionality. Thus, any possible drop in 
overall predictability pdfgmm thereby only results from 
the numerical calculation strategy, not due to effectively 
reduced classification capability. Nevertheless, for the 
actual classification problem, the chosen iterative 
feature selection approach allows for best feature 
selection with an ever increased predictability from 
each single feature added to the feature space. 

 
4. IMPLEMENTATION 
The algorithms developed for this work in the field of 
feature analysis and feature selection are implemented 
in C++. For I/O operations and random number 
generation, boost library (Boost 2014) is utilized as 
external library. Although, the core boost concepts are 
meanwhile added to C++11 standard, the utilization of 
boost programming paradigms started with the 
development of the MIPP framework (Swoboda et al. 
2008) back in 2007 was perpetuated for reasons of 
consistency. Besides, no further external code was 
utilized. 

 
4.1. Image Volume Data Layout 
The data layout for image volumes is a crucial aspect 
with respect to genericity and performance. For this 
work, 2D images and 3D volumes are represented as 
real 2D and 3D matrices of scalar values respectively.  

Commonly, image processing frameworks like 
ITK (Kitware 2014) feature a one-dimensional data 
layout for images of arbitrary dimensionality, ensuring a 
maximum level of genericity. Nevertheless, with 
required index conversions from 1D to n-D at each 
pixel access, this design would not feature the excessive 
use of mask operations as required for gradient 
calculation, common filtering and morphological 
opening/closing operations.  

Thus, 2D and 3D matrices of scalar values are 
preferably utilized, allowing direct access to the 
particular pixel/voxel positions via index tuples. The 
chosen approach does not show significant 
disadvantages with respect to memory management 
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(paging, memory allocation,...), and thus perfectly 
meets the procedural algorithmic requirements. 

 
4.2. Histogram Data Layout 
For histogram analysis in the context of multivariate 
feature analysis, also volume data of higher (at least 4D 
and 5D) has to be considered. Consequently, for this 
particular domain a higher level of genericity is 
required. Thus, only for histograms and the required 
associated operations, like filtering, a 1D layout for the 
voxel data with index conversions for access is applied. 

 
5. RESULTS 
In the following, first single feature predictability is 
analysed prior to addressing multidimensional feature 
spaces and automated domain-specific feature selection. 

 
5.1. Results on Single Feature Predictability 
At first, single feature predictability is evaluated for the 
n=30 local and m=13 meta features evaluated on k=12 
classes of BRAINWEB_REF dataset series, with 
predictability results for the considered local features Fj 
charted in Fig. 8 and the meta features F̂  presented in 
Fig. 9. The predictability is thereby calculated with 
partial integration (Pstat), from reference region feature 
vectors (Preg), utilizing MCI (Pmc), based on reference 
region histogram (Phist) and based on umbrella MCI 
(Pmcu), with pdf weighting chosen to maximize the 
number of correct classified regions in contrast to a 
maximized number of correctly classified voxel. 
Despite the chosen predictability calculation strategy, 
the particular local features show a similar trend. 
 

 
Figure 8: Predictability of local features Fk calculated 
for n=20 BRAINWEB_REF datasets. 
 

 
Figure 9: Predictability of meta features F̂  calculated 
for n=20 BRAINWEB_REF datasets. 

 
Besides single feature predictability, also feature 

correlation is relevant for later to follow multivariate 
feature analysis. Correlation matrix calculated for the 

first k=15 local features is presented in Fig. 10. As 
expected, the region intensity features (F1-F7) show a 
high level of correlation. The same holds for texture 
metrics directly calculated on image intensity profile 
(F8-F11). Nevertheless, with the different feature groups 
considered, enough feature independence is available 
for multi-dimensional feature analysis at high level of 
achievable predictability. 

 

 
Figure 10: Correlation matrix calculated for the first 
k=15 local features Fk evaluated on BRAINWEB_REF. 
 

The simulated dataset series SIM_2-SIM_8 are 
perfectly suited to evaluate the local and meta features 
showing highest predictability for the specific 
classification scenarios. Results on the k=30 local 
features are presented in Fig. 11 and for the meta 
features in Fig. 12., with single feature predictability 
reported relative to results on SIM_2 as ground truth. 
Thus, a peak indicates, that for the particular scenario, 
the particular feature Fj is at least superior utilizable for 
classification. 
 

 
Figure 11: Single local feature predictability calculated 
for SIM_3-SIM_8 relative to SIM_2 as neutral 
classification scenario. 

 
Analysis on the simulated datasets SIM_3-SIM_8 leads 
to the following findings: 
• For SIM_3 with only class position being varied, 

geometric features (F23-F25) are best. 
• For SIM_4 with varied mean intensity level, 

intensity features (F1-F7) contribute most for 
overall predictability. 
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• Meta feature F̂ 35 best addresses the difference in 
connectedness according to number of islands for 
SIM_5.   

• For SIM_6 the mean region size (F12) and for 
SIM_7 voxel-ratio meta feature F̂ 20 are best suited, 
whereas the intra region intensity characteristics 
simulated with SIM_8 necessitate utilization of co-
occurrence features (F39-F43).  
 

 
Figure 12: Single meta feature predictability calculated 
for SIM_3-SIM_8 relative to SIM_2 as neutral 
classification scenario. 
 

Generally, predictability of the particular features 
shows a general tendency despite the particular 
segmentation domain and an overall high level, which 
correlates indirectly with the number of defined classes 
k in the particular classification domains, see Fig. 13. 
 

 
Figure 13: Single meta feature predictability calculated 
for BRAINWEB_REF, BRAINWEB_MAN, HEART, 
ABDOMEN and SIM_1. 

 
5.2. Results on Multivariate Class Similarity and 

Domain-Specific Feature Selection 
Although the particular local features show a common 
trend for the different segmentation and classification 
domains as previously discussed in Fig. 13, automated 
feature selection leads to different results for the utilized 
testing sequences as shown in Table 7. While for all of 
the considered datasets, feature F6 is chosen at first 
rank, the features selected at rank FII to FV highly 
depend on the particular classification domain. Feature 
F6 thereby best handles outliers compared to the other 
similar intensity features. Automated feature selection 
based on Phist as shown in Table 7 generally leads to an 
increased overall predictability with every additional 
feature, while due to calculation reasons, the results at 
higher dimensionality also quantitatively drop due to 

collapsing bins, see Fig. 14. In contrast, utilizing Pmcu, 
the cumulated results show monotonic increase also at 
higher dimensions, see Fig. 15.  

 
Table 7: Domain-specific feature selection based on 
histogram predictability Phist. 

 
 

 
Figure 14: Overall Pmcu for increased number of 
selected local features. 

 

 
Figure 15: Overall Phist for increased number of selected 
local features. 
 

For the simulated datasets SIM_2-SIM_8, the 
results on automated local feature selection, as shown in 
Table 8, as well as automated feature selection of the 
best meta features, as presented in Table 9, accord with 
the previous findings on domain-specific single feature 
predictability as argued before. 

Regarding the histogram-based overall 
predictability calculation strategy Phist, density of the 
feature space with respect to the chosen dimension-
dependent bin count as well as the applied filter 
parameterization has to be evaluated. Results are 
presented for BRAINWEB_MAN dataset in Fig. 16 by 
visualizing the 3D histogram for different feature sets. 
With features (F5, F12, F39), due to outliers in the region 
size dimension, density of the feature space is low and 
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would necessitate for histogram equalization (a). 
Geometric positional features (F23, F24, F25) allow 
refection of the class morphology itself (b). The feature 
set (F1, F8, F25) that is considered best according to 
automated feature selection, shows a dense feature 
space and well-defined decision boundaries between the 
neighbouring class distributions (c).  
 
Table 8: Selected local features for simulated datasets. 

 
 
Table 9: Selected meta features for simulated datasets. 

 
 

   
(a) (b) (c) 

Figure 16: Visualization of 3D histogram with different 
utilized feature sets, showing decision boundaries for 
white matter (red), grey matter (green), background 
(magenta), tissue (yellow) and remaining voxel (cyan) 
from BRAINWEB_MAN datasets.  
 

While feature selection can be parameterized to 
maximize region or voxel classification respectively, 
also predictability of the particular classes can be 
evaluated in detail, as shown in Fig. 17 for k=13 classes 
of ABDOMEN sequence. With features additionally 
incorporated for classification lead to higher overall 
predictability, also the predictability of the particular 
classes Ci increases by trend. Generally, for 
tomographic patient datasets, particular structures can 
only be classified at low confidence due to overlapping 
in the feature distributions. Thus, the incorporation of 
meta features is highly required to further improve 
distinctness for classification. Feature selection can also 
be adjusted to balance single class results or apply 
specific weights, besides tying to maximize region or 
voxel classification confidence. 

 

 
Figure 17: Single class predictability for ABDOMEN 
sequence according to increased number of features. 

 
5.3. Results on Final Classification 
Finally, classification of the pre-segmented datasets 
according to the automatically selected features has to 
be evaluated utilizing conventional classifiers from the 
machine learning domain. Segmentation results from 
neural network classification utilizing HeuristicLab 
(Wagner 2014) on BRAINWEB_MAN sequence are 
presented in Fig. 18. Besides some artefacts wrongly 
connected with grey and white matter volume and some 
marginal missing parts of the ventricle, the achievable 
classification results are of high quality. 

For the three classes grey matter, white matter and 
ventricle a region classification precision of .952 is 
achieved, incorporating k=10 local features. With 
respect to the voxel error introduced by hybrid 
watershed pre-segmentation of .969, overall voxel 
classification precision is to be quantified with .914.    
 

  
(a) (b) 

 
 

(c) (d) 

Figure 18: Classification results on BRAINWEB_MAN 
achieved with neural networks. Axial slice of labelled 
classes in (a) and surface renderings of white matter (b), 
corpus callosum (ventricle) (c) and the grey matter (d).  
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6. DISCUSSION AND CONCLUSIONS 
A strategy for domain-specific selection of local 
features with respect to maximized region of voxel 
classification precision has been presented, also 
adjustable to different objectives by user-defined 
weights.  

Introduced meta features provide potential for 
additional predictability in the medical segmentation 
and classification domain and are perfectly suited to be 
incorporated for genetic algorithms. Future 
developments will focus on application of these meta 
features to better steer the partially stochastic 
classification results of single individuals towards the 
optimal solution in evolutionary algorithms.  

Besides, additional classifiers like genetic 
programming, support vectors or random forests will be 
evaluated with respect to achievable classification 
precision.   

With respect to histogram-based approaches, 
sparseness of the feature space at higher dimensions 
will necessitate the future utilization of histogram 
equalization. 
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