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ABSTRACT 
The use of nerve signals for a prosthesis control or limb 
stimulation is one great challenge in medical tech-
nology. It requires a recording of the electroneurogram 
(ENG) data and an identification of the motion-based 
action potentials of motoric, feedback and sensoric 
nerves within the corresponding neural bundle. We have 
realized a prototyping system for the data acquisition of 
ENG data, including an identification framework, de-
scribed in (Klinger and Klauke 2013). 
In this paper we introduce the verification concept of 
the identification process using synthetic datasets gen-
erated based on robot manipulator and electroneuro-
gram simulator. The objective is to define a method to 
compare motion based trajectories and their cor-
responding ENG signals to prepare the future ana-
lysation and identification of human ENG data. 

 
Keywords: ENG-based prosthesis control, system 
identification and verification, simulation framework, 
agent-based evolutionary computation, robot-
manipulators 

 
1. INTRODUCTION 
The use of nerve signals to realize an intelligent control 
of prostheses or handicapped limbs is a key challenge in 
medical technology. Compared to the information 
acquisition via electroencephalogram (EEG) or 
electromyogram (EMG) signals, the use of ENG signals 
has several advantages (Klinger and Klauke 2013). So, 
our approach is the direct use of action potentials of 
peripheral neural bundles via an ENG (Gold, Darrell, 
Henze, and Koch 2007; Neymotin, Lytton, Olypher, and 
Fenton 2011). Based on these signals, a prosthesis, for 
example, an artificial hand or an artificial forearm, can 
be controlled specifically.  
For the measurement of the very small electric signals 
up to sub-microvolt a technically optimized measuring 
circuit which permits the admission of electric axon 
signals in sub-µ area has been realized (Bohlmann, 
Klauke, and Klinger 2013}. The identification of the 
action potential movement patterns is based on methods 
of the machine learning (Bohlmann and Klinger 2010; 
Bohlmann, Klauke, Klinger, and Szczerbicka 2011). 

The proof of the identification concept is based on a 
verification framework described in this paper. 
 
At first we present a short system overview and point 
out some aspects of the whole framework. Subsequently 
we give a brief description of the identification method. 
In subsection 1.3 we introduce the multipolar cuff 
electrode which provides some key characteristics for 
the used identification technique.  
The main part of this paper is described in section 2. 
Here we present the verification concept based on a 
Matlab-based robot manipulator and explain the 
generation of stimulation patterns for the simulator, 
which is part of the verification concept. In section 3 we 
present results for the following aspects: 

• Robot manipulator data based on specific 
sequence of motions 

• Transformation into trigger pulses (action 
potentials) for the NEURON simulator  

• NEURON simulation and generation of ENG 
data in accordance to the used multipolar cuff 
electrode 

• Identification results 
 
1.1. Overall System Architecture 

In Figure 1 the overall concept, denoted as Smart 
Modular Biosignal Acquisition, Identification and 
Control System (SMoBAICS) in the following text, is 
shown in a block diagram. Two central components are 
to be recognized in this top-level: The data acquisition 
and signal conditioning in the analog front-end as well 
as the data evaluation and identification (Pattern 
Recognition, Learning). 

In the data acquisition block the action potentials 
of the nerves are captured by a so called cuff electrode; 
the type of this electrode type is introduced in the 
following subsection. Following this the analog signals 
are being amplified and digitalized. Subsequently a two-
stage evaluation and identification step follows. During 
these steps the ENG data stream has to be correlated to 
movement trajectories. We are using a multi-agent-
based evolutionary algorithm optimized for a three step 
process (Klinger and Klauke 2013). The subdivision in 
two phases is necessary to allow a learning phase and an  
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Figure 1. System architecture of SMoBAICS 

 
operation phase. In the learning phase the base 
identification which allows a correlation between nerve 
signal and movement is carried out. The operation 
phase is using the identification results of the learning 
phase to realize a customization and adjustment due to 
parameter drift or electrode movement and to control 
the exoprosthesis. Therefore the base identification 
from the learning phase is used by a mobile processing 
device, which supports continuous learning. The 
objective is to integrate the necessary components for 
this phase within the organism using a system in 
package (SIP). New technologies, like energy 
harvesting, have to be used to operate this body 
mounted part. 
 
1.2. Identification 

The huge number of signal lines within a nerve 
- the axons - and the combination from actuatory, 
reactuatory and sensory information lines makes it 
practically impossible to perform a detailed analysis 
with the objective of a manual or automatic prosthesis 
control without using algorithmic tools. Therefore the 
machine learning and identification part is the most 
complex and the most important system module 
(Wodlinger and Durand 2011; Verdult2002). We are 
using a multi-agent-based evolutionary algorithm 
optimized for a three step process described in (Klinger 
and Klauke 2013). This work continues the former work 
about system identification presented in (Bohlmann, 
Klauke, Klinger, and Szczbericka 2011; Bohlmann, 
Klinger, and Szczerbicka 2009; Bohlmann, Klinger, and 
Szczerbicka 2010). At first a data pre-processing is 
executed to filter the data and to improve the data 
condition regarding the signal-noise ratio (SNR). The 
identification is subdivided into three-levels. In the 
first-level, the algorithm recognizes patterns of axon 
related action-potentials. This set of solutions is 
checked to well-known parameters, like impulse 
frequency, the relative magnitude of the nerve impulse 
amplitude and the refractory period. In addition, clusters 
are build up to model the different groups of activation 
and their related sensory information (feedback by 

proprioceptors). So, certain clusters in the neural bundle 
can be arranged to map muscle groups and their 
corresponding receptors. In the second level the agent-
based set of solutions is combined to global solutions 
taking the causality between actor and sensory 
information into account. The third level correlates the 
first- and second-level solutions with trajectory 
information from a camera-system or a micro-electro-
mechanical system (MEMS) for trajectory information, 
using inverse kinematics algorithms. 

Once the identification procedure based on the 
recorded action potentials is successful, the recognized 
pattern can be used to drive a robotic prosthesis. Such 
devices are typically similar to serial manipulators, 
which can be modeled and controlled by applying well 
established methods from the field of robotics (Craig 
2004; Sciavicco and Siciliano 2000; Khalil and Dombre 
2002). Given the known direct and inverse kinematics 
of the serial mechanism, the task planning can either be 
performed in the joint space or in the task space. For the 
considered case, each motion pattern recognized by the 
action potential classifier corresponds to a predefined 
trajectory given in joint coordinates. Using the internal 
control unit of the prosthesis, the joint angle commands 
translate to the desired motion of the robotic device. 

 
1.3. The Cuff Electrode 

This type of electrode is put around the neural 
bundle to be examined. The single electrodes, part of 
the multipolar cuff-electrode, are inserted within 
biomedical silicone. This silicone protects the single 
electrodes and fixes them within the specific 
measurement arrangement. The main advantage of such 
an electrode is the non-invasive character. Properly 
designed this electrode can be used without cutting or 
traumatizing any nerves within a neural bundle. In 
contrast, using a sieve electrode the probability of an 
irreparably damage of the nerves is very high. 
The cuff-electrode used in this application is a special 
cuff-electrode depicted in Figure 2. It consists of several 
electrodes organized in rings and segments. As 
elementary simulation set-up with minimal  configura- 
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Figure 2. The Cuff Electrode 

 
tion there are three segments (120°) and three rings 
necessary. 

The three electrodes depicted there are evenly 
distributed on the circumference of the cuff (0°, 120°, 
240°) to guarantee an uniform coverage of the action 
potentials triggered by the neural bundle for example 
via triangulation. Higher order of rings and segments 
depends on the space for the implanted cuff-electrode 
and the best available precision for electrode 
manufacturing. The number of axons of a neural 
bundles ranges up to several tens of thousands 
depending on the type of neural bundle and the selected 
application localization, like nervus ischiadicus, nervus 
radialis or nervus medianus. 

 
2. VERIFICATION CONCEPT 

To verify the identification process, it is necessary 
to generate well defined verification vectors. So, these 
vectors, called SimVectors, are used instead of recorded 
action potential data to allow specific verification 
scenarios. In addition, it is possible to reduce the 
number of animal trials using the verification and 
simulation framework. 

To generate data according to the real existing 
biology mechanism we are using the well established 
NEURON framework for empirically-based simulations 
of neurons and networks of neurons (Carnevale and 
Hines 2006; Coates, Larson-Prior, Wolpert, and Prior 
2003; Law and Kelton 2000) . 
The different constraints, like myelin structures, all-or-
none, two directions of information flow, frequency 
borders of the action potentials, etc. has been taken into 
account. We have configured the simulator and realized 
a complex neural bundle including our cuff electrode 
setup to generate verification data for several 
information transfer scenarios. The action potentials 
used for the NEURON-simulator are derived by human 
arm modeling via Matlab Robotics Toolbox (Corke 
2011). With this model for verification we are able to 
concentrate on specific muscle groups and their 
reactuatory answer and therefore we are able to generate 
verification patterns. 

Our first simple model which will provide proof of 
verification concept consists of 121 individual axons 
which run in parallel being arranged in a square grid. 
The dimensions of this array are depicted in Figure 3. 
Each axon has a diameter of 10 μm and a total length of 
20 mm which is subdivided by 20 equally spaced nodes 
of Ranvier. Each Ranvier node has a length of 50 μm. 
These parameter are used with regard to the anatomical 

data from the selected laboratory animals (here: rats). It 
is obviously possible to redefine these parameters 
according other laboratory animals or later on human 
beings. 

The simulation environment uses the Hodgkin-
Huxley model to simulate the axon internal membrane, 
the ion channels and the extra cellular space (Hodgkin 
and Huxley 1952). So, the propagation of action 
potentials along the axons is modeled used these 
equations. Furthermore, the mechanisms concerning the 
passive membrane channels are included. In this 
context, each axon is considered myelinated while the 
Ranvier nodes are characterized by the absence of this 
surrounding sheath. In order to enable extra cellular 
recording, a mechanism is implemented that reports the 
contributions of local membrane currents to the total 
signal acquired by a recording electrode placed at a 
defined location with respect to the axon grid. Here, we 
consider the cuff electrode, introduced in 
subsection 1.3, which has three electrical contacts 
equally distributed along the interior wall of the 
cylindrical cross section. For simulation purposes, we 
define the radius of the circular contact arrangement 
according the dimensions of the defined nerve bundle. 
Furthermore, during simulations, this cuff electrode can 
be translated along the axon array in order to acquire the 
extra cellular potential at multiple locations as well as 
multiple time steps in accordance the multiple rings of 
the electrode. 

Using the NEURON simulator, predefined or 
randomized excitation patterns can be applied to the 
modeled axons. An excitation is achieved by injecting a 
defined current in one end of an axon. The functionality 
of the simulation framework is further increased by the 
given ability to specify the number, duration and period 
length of the injection. By running the simulation, each 

 

 
Figure 3. Used model for axon bundle 
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excitation pattern is translated into potentials acquired 
by the recording cuff electrode. Hence, identification 
algorithms processing time series of such potentials can 
easily be validated due to the fact that the excitation 
pattern, i.e., the ideal identification result, is known. 

As an enhancement of the previously described 
simulation framework, the simplified model of a human 
arm was implemented in Matlab using the Robotics 
Toolbox. Based on this human arm model specific 
scenarios can be defined to generate sets of SimVectors 
for the verification process which provide complex 
interactions of muscle activities (actuatory) and 
feedback via proprioceptors (reactuatory). 

The kinematics of the human arm can be 
approximated by a serial mechanism consisting of 7 
active joints (Grecu, Dumitru, and Grecu 2009). The 
base coordinate frame is assumed to be located at the 
shoulder while the coordinate frame associated with the 
endeffector of the mechanism coincides with human 
wrist, see Figure 4. Both hand and fingers are omitted 
here. Following this approach, the simplified kinematics 
of the human arm can be expressed in terms of the 
Denavit Hartenberg parameters. 

 

 
Figure 4. Matlab-based robot manipulator for human arm modeling 

 

 
3. RESULTS 

In order to validate the identification procedure 
proposed in this paper, we present here one scenario 
based on the movement of the forearm and the hand 
where the generation of the StimParameters is focused 
on the movement of the forearm. The resulting time 
series of simulated extra cellular recordings are fed to 
the identification algorithm. 

In Figure 5 the joint acceleration, the joint 
moments, the joint angles and the joint velocity for the 
selected sequence of motion are shown. The process of 
movements demanded by the selected scenario and 
generated by the Matlab Robotics Toolbox is 
transformed into a sequence of action potentials 
according to the following criteria: 

 

• Position of the axon according the axon 
membership to the specific muscle and 
proprioceptor sensors depicted in Figure 3. 

• The frequency of actions potentials is set in 
accordance to the force vectors and the 
physiological data like maximum frequency 
and refractory period. 

• The sequence of actuatory and reactuatory 
(proprioceptors) signals is set with regard to 
the causal relationship and the signal 
propagation times.     

 
The sequence of signals is transformed into actions 

potentials and simulated by the NEURON simulator 
using the axon bundle configuration and the cuff 
electrode setup. The data acquired by this simulated 
cuff electrode is shown in Figure 6. In this Figure the 
frequency of the action potentials and their signal 
amplitudes, caused by the superposition of several 
actions potentials, is shown.  

The Figures 7 and 8 show two different details 
from the overall signal sequence in Figure 6. Figure 7 
shows the simulated data for three adjacent rings of the 
cuff electrode. The three time series are different 
because of the superposition of actuatory and 
reactuatory signals during the zoomed time period. 

 

 
Figure 5. Joint data for sequence of motion 

 

 
Figure 6. NEURON simulation of the actuatory and reactuatory action 
potentials of the selected sequence of motion (simulated ENG) 
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Figure 7. Zoom of Figure 6: Movement of action potentials 

 

 
In Figure 8 the data acquired by three different 

segment electrodes of one electrode ring are shown. 
With regard to the position of the axon within the axon 
bundle the amplitudes are differing. 

The identification method is using only the data 
acquired by the cuff electrode, no additional 
information. Here two different aspects of the 
identification process are shown: 

 
• The detection of the direction to identify 

actuatory and reactuatory signals, and 
• the clustering of action potentials to enable an 

assignment of the action potentials to specific 
areas. 

 

 
Figure 8. Zoom of Figure 6: Superposition and triangulation 

 

Both aspects are necessary to realize a nerve signal 
based identification of the type of movement. In 
Figures 9 and 10 both aspects of the identification are 
shown, based on the SimVectors generated from the 
Robotics Toolbox. Figure 9 shows the direction 
detection, Figure 10 the cluster assignment. 

 

 
Figure 9. Restructured action potentials using the identification 
method and detection of actuatory and reactuatory action potentials 
 

 
Figure 10. Clustering of the actuatory and reactuatory axons within 
the axon bundle according to the axon bundle model in Figure 3 
 

 
 

4. SUMMARY AND FURTHER WORK 
The SMoBAICS approach to identify of motion-

based action potentials in neural bundles for 
exoprosthesis control or for handicapped limb 
simulation provides an integrated solution from ENG 
based action potential recording up to the identification 
procedure.  

This paper focuses on the verification method 
based on generated action potentials used to enable the 
proof of the identification concept. On the basis of a 
movement trajectory, actuatory and reactuatory 
trajectory-based action potentials are simulated with the 
NEURON simulator according the axon bundle model. 
This simulation provides an ENG with regard to the 
special type of cuff electrode to enable a triangulation 
and direction detection. The identification method based 
on evolutionary algorithms (Bohlmann, Klinger, and 
Szczerbicka 2010; Klinger and Klauke 2013) reads 
these simulated ENG-data and reconstructs the action 
potentials, their motoric, feedback or sensoric 
characteristic and the location inside the axon bundle. 
Based on this identification a correlation between the 
action potentials and the corresponding movement 
actions is possible. Due to this solid foundation, the 
ENG-based motion detection for prosthesis control or 
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limb stimulation offers considerable potential. The used 
method based on a on robot manipulator and 
electroneurogram simulator allows a complex 
verification process and can be used for a large number 
of movement scenarios. The most important tasks in the 
next month  will be: 

• Adding noise to the SimVectors to analyze the 
identification process regarding the loss of 
signal to noise ratio. 

• Including sensory feedback from hand’s 
sensory areas in the simulation to take these 
additional nerve signals into account.  

• Starting the clinical tests to achieve 
measurement results according the real 
existing biology mechanism. 

Based on clinical tests the robustness of the 
identification method has to be optimized. To start these 
test the new measurement platform has to be finished. 
In addition inverse kinematics algorithms have to be 
integrated into the identification procedure. 
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