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ABSTRACT 
Segmentation of morphology in medical image data is a 
highly context specific and differs from various imaging 
modalities, necessitating the use of sophisticated 
mathematical models and algorithms to achieve good 
results. In this work an algorithm is presented for pre-
segmentation of general medical input data, based on a 
watershed-segmentation strategy utilizing both, original 
intensities and derived gradient magnitudes for region 
growing. The number of resulting pre-classified regions 
is iteratively reduced to a user-defined threshold using 
merge metrics, accounting for the similarity of intensity 
profiles of two neighboring regions to merge, as well as 
the height of the gradient barriers to overcome and 
geometric aspects like sphericity and size of the border 
area with respect to the total region size. Based on such 
a context-independent pre-segmentation, the resulting 
manageable number of regions can be further merged 
and classified, utilizing texture features and a priori 
statistical models. Results are presented from brainweb 
database.   
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1. INTRODUCTION 
Accurate and automated segmentation of medical image 
data is of high importance in a very broad range of 
medical applications. The evaluation of geometric 
properties like position, size and extent of anatomical 
structures necessitates previously performed image 
segmentation and is of high relevance in the domain of 
surgery planning as well as disease progression. Based 
on such an anatomical classification, e.g. in case of liver 
tumors, the position of the lesion with respect to the 
supplying vessel systems as well as the parenchyma 
size and shape can be assessed prior to liver lobe 
resection (Zwetter, Backfrieder, Swoboda, and Pfeifer 
2009). When combining data from different imaging 
modalities like CT/MRI for high anatomical resolution 
and SPECT/PET from the functional imaging domain, 
metabolic activity can be quantified utilizing 
segmentation masks of the corresponding anatomical 

region (Beyer, Schwenzer, Bisdas, Claussen, and 
Pichler 2010). Evaluation of therapy success and 
disease progression gets feasible in a quantitative way if 
morphological segmentations of the same patient at 
different points in time are available (Kuhnigk, Dicken, 
Bornemann, Bakai, Wormanns, Krass, and Peitgen 
2006). Furthermore, in virtual reality scenarios, patient-
specific segmentation models based 3D tracking and 
navigation, true 3D vision and rapid prototyping of 
haptic patient models (Wulf, Vitt, Gehl, and Busch 
2001; Torres, Staskiewicz, Sniezynski, Drop, and 
Maciejewski 2001) are highly applicable for the task of 
surgical training and planning (Stone 2011).     

To achieve accurate segmentation of particular 
organs and anatomical structures, semi-automated 
concepts like region growing (Gonzalez and Wintz 
1987) or live-wire contour definition (Barrett and 
Mortensen 1997) can be applied. Due to the high 
demand for user-interaction these concepts are improper 
for clinical use. Although requiring rarely no a priori 
knowledge and thus favoring generic segmentation, 
utilizing these strategies only rather awkwardly shaped 
structures with homogenous intensities can be 
segmented. Although not directly applicable for medical 
applications, these concepts are of high relevance 
preparing manual reference segmentations for model-
driven segmentation approaches.  

Utilizing deformable models (McInerney and 
Terzopoulos 1996) and incorporating a priori 
knowledge, particular structures with low anatomical 
variability can be precisely segmented. The generic use 
of deformable models for segmentation of arbitrary 
anatomical structures is not practicable, because the 
model parameters need proper adjustment to the target 
morphology and fine structures showing inhomogenous 
intensities remain hard to segment. Statistical Shape 
Models (Cootes, Taylor, Cooper, and Graham 1992) 
can be automatically derived from a set of reference 
segmentations, allowing for the use of geometric 
features of the target structures to segment. If trying to 
model several structures utilizing statistical shape 
models, the problem of shape overlapping as well as 
topological changes remain unconsidered. Furthermore, 
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modeling very thin and sparsely connected structures 
with respect to low imaging resolution or partial volume 
effects cannot be achieved with geometric shape 
modeling. Active appearance models (Cootes, Edwards, 
and Taylor 1998) introduce statistical properties of the 
targets structure expected intensity profile besides 
geometric features, thus being more robust in case of 
anatomical variability. Segmentation of small, loosely 
connected structures and changes in topology remain 
still unaddressed. Utilizing level sets (Osher and 
Sethian 1988), topological changes and anatomical 
variability can be handled, but adapting the steering 
parameters curvature, propagation and advection, only 
rather compact structures can be modeled. Furthermore, 
the level set parameters must be adjusted for each 
structure to segment, rather than deriving them from a 
set of reference segmentations. 

To facilitate generic segmentation of arbitrary 
anatomical structures, a context and modality invariant 
pre-segmentation is required as fundament for texture 
based merging for classification. Classifiers like fuzzy 
connectedness (Gammage and Chaudhary 2006) and 
confidence connected thresholding (Ibanez, Schroeder, 
Ng, and Cates 2003) necessitate initial seed points for 
separating clusters of homogenous intensity 
distributions. For application of k-means clustering 
(Kanungo, Mount, Netanyahu, Piatko, Silverman, and 
Wu 2002), no seeds are required but regions of the 
expected k clusters are defined according to expected 
constant intensity profiles within the entire input image 
volume.    

In this work we present a generic concept for pre-
segmentation on arbitrary medical image input data. 
Starting at local minima positions in a gradient 
magnitude representation of the image volume, regions 
are grown similar to the watershed algorithm (Vincent 
and Soille 1991; Beare and Lehmann 2006). To 
overcome limitations of the watershed algorithm along 
homogenously and slightly increasing areas, the input 
image is incorporated during the region growing 
process. The initially classified regions (catchment 
basins) are not merged solely due to watershed level 
tolerance, but a metric, also considering region 
neighborhood, geometric properties and similarity of 
intensity profiles. Thus, an arbitrary input image can be 
pre-classified independent of context and imaging 
modality at a user-specified number of target regions, 
defining granularity of the pre-processing step.  Based 
on this pre-segmentation, the final classification can be 
performed, utilizing statistical feature values 
automatically extracted from the set of reference 
segmentations.      
 
2. DATA 
For testing of generic pre-segmentation, a number of 
n=20 T1-weighted MRI datasets from the simulated 
brainweb database (Cocosco, Kollokian, Kwan, and 
Evans 1997; Kwan, Evans, and Pike 1999) and 
associated reference segmentations are used.  

Further test runs and validations are performed 
utilizing n=12 anonymous multi-modal patient studies, 
comprising morphologic image acquisitions (T1, T2, 
PD, …) as well as functional imaging (SPECT, PET). 
For patient data, the reference segmentations are 
achieved in a semi-automated way by applying image 
processing pipelines modeled and evaluated using the 
MeVisLab image processing platform (Ritter 2007; 
MeVis 2012). The image segmentation pipeline 
comprises filtering, region growing, mathematical 
morphology, image arithmetics and live-wire contour 
definition, see chapter 3.6 for more details.  

 
3. METHODOLOGY  
For the pre-segmentation strategy, in a first step input 
image data is filtered to smooth the intensity 
topography and suppress noise and artifacts. Later, the 
gradient magnitude is extracted as derivation of the 
original intensities for balancing differences in intensity 
level and reducing region definitions to their 
boundaries. Based on the gradient magnitude image, 
local minima regions are detected and enlarged utilizing 
region growing. Local minima forming autonomous 
regions are iteratively dilated with respect to a stepwise 
increased water surface. Finally for the grown regions 
image statistics are calculated, essential for pair-wise 
region merging until the number of pre-segmented 
regions falls below the target region count. For 
illustration of the processing chain, see Fig. 1. 
  

 
 

Figure 1: The sequential process chain (solid red 
arrows) comprises low-pass filtering, high-pass 
filtering, minima detection region growing, the 
watershed-type segmentation procedure and finally 
region merging until the convergence criterion is 
reached. Filtered input image and the gradient 
magnitude representation are required as input for 
several particular process steps (dashed green arrows).  
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3.1. Filtering 
As all local minima of input image derived gradient 
magnitude representation result in an additional initial 
region to grow, their number has to be limited by 
applying some lowpass filtering for smoothing the 
intensities. Limiting the number of autonomous regions 
prior to the final merge procedure is essential with 
respect to runtime and memory resources.   

For lowpass filtering classic filter methods like 
mean, Gaussian and the median rank filter are 
evaluated. As the image intensity smoothing should not 
be performed at the expense of weakened edges and 
reduced inter object contrast, diffusion filtering has to 
be applied. The applied filters are taken from the ITK 
image processing library (Ibanez, Schroeder, Ng, and 
Cates 2003). 

The filter configuration discussed in the following 
section refers to an input image with iso-voxel spacing 
of 1mm in each dimension. In case of data with different 
spacing configuration, additional noise or artifacts to 
handle, an individual additional pre-processing is 
required to prepare the data at sufficient quality and 
with properties needed.  

The major smoothing and fine tuning is 
accomplished applying several diffusion filter runs. 
Modules itk::GradientAnisotropicDiffusion 
and itk::CurvatureAnisotropicDiffusion are 
sequentially applied with parameterization 
(6;0.125;10.0) and (3;0.125;10.0)  for iteration, time-
step and conductance value. Utilizing both, gradient and 
curvature preservation aspects in diffusion equation, 
leads to balanced results, compared to an increased 
number of iterations for only one diffusion filter type in 
the image processing chain.  

Besides the diffusion filtering, median filter 
module itk::MedianImageFilter is utilized with 
radius 1 at the end of the filtering pipeline to minimize 
local outliers, preserved during diffusion filtering.      

 
3.2. Gradient Magnitude Calculation 
Besides the input image intensities, a gradient 
representation indicating closed borders between 
neighboring separated regions is required.  

For choice of the gradient calculation strategy, 
impermeability between two neighboring regions to 
separate is the most important criterion. Impermeability 
is achieved, if the gradient values of an enclosed region 
don’t show any kind of low gradient value by-pass 
connections to neighboring regions. In case of smooth 
intensity changes, only gradients of low magnitude 
remain to separate the regions, see Fig. 2. The weakest 
gradient borders delimit applicability of gradient-based 
segmentation strategies. To check the level of 
impermeability, the possible flood-fill level for well 
defined regions is evaluated. For details please refer to 
the results section.  

The itkGradientMagnitudeImageFilter 
filter algorithm is applied for deriving the edge 
representation from input image. Gradient magnitude 
values are calculated at floating-point precision. As 

discrete values are required for further merging 
neighboring pixels of same value into larger regions, the 
gradient magnitude is normalized to gradient range 
[0;maxVal], with maxVal=200 and rounded to integer 
type. This normalization ensures a constant level of 
segmentation granularity, independent from pixel type 
of input image data.   

 

 
            (a)                        (b)                        (c) 
 

Figure 2: Transversal brain slice (a) and calculated 
gradient magnitude (b). Although brain windings are 
mostly enclosed by high gradient magnitude values, the 
smooth intensity decline in ventral direction leads to 
smaller gradients along the borders, as illustrated 
utilizing a depth profile (c). 

 
3.3. Local Minima Detection 
Each local gradient minimum in N26 is a possible 
starting position of a new region to be grown in the 
course of watershed-type pre-segmentation. For local 
minimum detection, all pixels in the gradient magnitude 
representation of the input image are evaluated with 
respect to their direct neighbors. If all neighbors show 
equal or larger values, the current position is marked as 
local minimum, see Equ. 1.  

In areas of homogeny gradient values, an over-
classification of local minima is inevitable. 
Consequently, the marked positions are only region 
start positions for following initial region growing and 
candidates to form up a new region. The number of 
regions to grow is therefore significantly smaller 
compared to the total number of detected minima.   

 
)()(|)(:)( 26 pIqIpNqpLM                           (1) 

 
3.4. Initial Region Growing 
The detected local minima positions are seed point 
candidates for growing regions of identical gradient 
magnitude utilizing N18 neighborhood.  

Besides gradient magnitude as region growing 
criterion, similarity in filtered intensities is incorporated 
as second aspect for an adjacent voxel to be added to a 
particular region. The intensity topography must be 
accounted for, as regions of same gradient magnitude 
can show huge differences in intensity values due to 
marginal but steady changes.  

A threshold T is defined for the acceptable 
difference in intensity of a region to be grown with 
respect to matching gradient magnitude values. A voxel 
v can be added to an adjoined region R, if intensity 
limits after union are still within the defined tolerance 
interval T.  
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Due to incorporation of the input image intensities, 

large differences in intensities of a grown region can be 
prevented.  

In arbitrary medical image data, the variance of 
local intensities is expected to be quite inhomogeneous, 
e.g. lower variance σ for background intensity 
distribution compared to objects and structures 
belonging to the patient’s anatomy. Standard deviation 
of local intensities can be calculated for all voxel 
positions, thus the generation of a standard deviation 
map, indicating image areas with slightly homogenous 
voxel values and areas with high variance, is performed. 
To balance these local differences in the intensity 
profile of the entire image I, an adaptive region growing 
algorithm will segment the initial regions based on a 
tolerance interval TR, individually calculated and 
updated for each region R. 
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The standard deviation value for each pixel is 

calculated as mask operation with radius r=5, 
incorporating all neighboring voxels at a maximum 
Euclidean distance of r. Results are smoothed applying 
an 11x11x11 average kernel. With this adaptive region 
growing strategy, similar granularity of pre-segmented 
regions can be accomplished, balancing local variation 
in intensity standard deviation.  
 
3.5. Hybrid Watershed-Inspired Pre-Segmentation 
Based on the regions resulting from initial region 
growing, the tolerance level for gradients is iteratively 
increased, thus processing the border elements of the 
regions and growing neighbors with a matching 
gradient value. Only voxels with a gradient value of 
exactly the particular region start gradient value (from 
the local minima) plus the current gradient increment 
are candidates for growing. The gradient tolerance level 
is increased when none of the regions can grow at the 
current gradient tolerance level. The described 
algorithm refers to classic watershed segmentation and 
is labeled as GRG_WS.  

To stronger incorporate the intensity features, the 
grow conditions described in Equ. 2 and Equ.3 are also 
applied for growing the regions, resulting in a static 
intensity interval segmentation strategy (SII_WS) and 
an adaptive intensity interval segmentation strategy 
(AII_WS), see Code Listing 1.  

Introducing the new intensity conditions for the 
growing process, it is not assured that all voxels can be 
classified. Remaining voxels are iteratively assigned to 
the neighboring region with lowest difference in 

intensity. The intensity tolerance limit is set to 2 and is 
temporarily increased, whenever in the course of one 
full iteration, not a single voxel can be assigned to one 
of the existing regions, see Code Listing 2.  

 
regions = initialRegionGrowing; 
int gradientTolerance = 1; 
while(gradientTolerance < maxGradVal)  
  while(stillChanges) 
    for(region r : regions) 
      for(voxel u : r.border) 
        for(voxel v : u.N18) 
          if(unclassified(v) && 
             grad(v) == (r.initGrad 
               + gradientTolerance) && 
             aGrow(v, R)) 
            r.addToRegion(v); 
            v.classVal = r.regID; 
            r.addToBorderVect(v); 
            stillChanges = true;  
  gradientTolerance++; 
  for(region r : regions) 
    r.updateBorderVect(gradientTolerance); 

Code Listing 1: Illustration of the watershed-inspired 
pre-segmentation algorithm based on adaptive intensity 
intervals (AII_WS). 
 
int intensityTolerance = 2; 
while(unclassifiedVoxel.size > 0)  
  bool changes = false; 
  for(voxel u : unclassifiedVoxel)  
    for(voxel v : u.N18)  
      region r = region(v);  
      if(r != NULL &&  
           insideTolerance(u.intVal, r, 
             intensityTolerance)) 
        r.addToRegion(u); 
        u.classVal =r.regID; 
        r.updateIntToleranceInterval(); 
        changes = true; 
  if(changes) 
    intensityTolerance = 2; 
  else 
    intensityTolerance += 2;                         

Code Listing 2: Algorithm for iteratively assigning the 
voxels remaining unclassified during AII_WS to a 
neighboring region. 

 
3.6. Calculation of Region Features for Merging 
Based on the results of the pre-segmentation, the 
number of regions has to be significantly reduced 
applying region merging strategies. For classic 
watershed algorithm, a tolerance value for differences in 
the starting gradient value of neighboring regions is the 
key criterion for merging two separated regions u and v 
into one. This concept lacks steering of the resulting 
number of regions to remain.  

For the presented intensity interval and adaptive 
intensity interval pre-segmentation strategy, besides the 
gradient value gradW(u,v), also differences in the 
regions intensities as intW(u,v) and length of the borders 
as geometric property borderW(u,v) and indicator for 
sphericity are taken into account, with surf(u,v) as voxel 
count on the border between regions u and v and surf(u) 
as the total count of neighboring region voxels of a 
region u.  
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Thus, for every pair of neighboring regions u and v 

connected at a border b, the discussed features can be 
evaluated and a numerical merge feature value 
mergeW(u,v) can be evaluated, thus indicating similarity 
and weight for merging regions u and v. The weighting 
factors wg=2, wi=7 and wb=1 lead to good results as 
combining the different aspects and outperforming each 
single criterion.  

 

).vborderW(u,v)intW(u,v)gradW(u,w

:v)mergeW(u,

g 


bi ww
(7) 

 
Based on a sorted and steadily updated list of 

merge values, the total region count can be reduced by 
particularly merging the region pair showing the lowest 
merge value, until the target number of R remaining 
regions is reached.  

 
3.7. Semi-Automated Reference Segmentation 
For semi-automated generation of reference 
segmentations, MeVisLab (MeVis 2012) rapid 
prototyping platform is utilized. Particular anatomical 
structures are segmented using the LiveWire module 
(Handels 2009; Barrett and Mortensen 1997) if the 
shape is well defined and RegionGrowing module is 
applied for segmentation of smaller structures lacking 
insularity. Besides the segmentation modules, 
anisotropic filtering for initial smoothing and 
morphological post-processing (opening/closing 
utilizing Morphology) in case of artifact occurrence 
are additional process steps in the image processing 
pipeline. 

In contrast to brainweb reference segmentations, 
not the entire dataset will be semi-automatically 
segmented. For each imaging modality and test case, 
only particular anatomical structures, like gray matter, 
white matter and ventricle for brain MRI data, are 
chosen for algorithmic validation. 

 

4. RESULTS  
The presented watershed-inspired pre-segmentation 
strategy is tested utilizing the first n=6 samples and 
associated reference segmentations of the brainweb 
database. The image data is scaled to 8bit and iso-voxel 
spacing at size 256x307x256 using sinc-window-based 
Lanczos 3 interpolator (Burger and Burge 2008).    
 
4.1. Evaluation of the Filter Chain 
At first the filter chain is tuned with respect to the filter 
types and parameterization. As one quality criterion, the 
image mean intensity level should be kept constant. The 
smoothing effect can be estimated, evaluating changes 
on the voxel intensity’s standard deviation and the 
average voxel change. Besides noise reduction, the key 
goal of this filtering process is to balance 
inhomogeneity in local voxel neighborhood and thus, 
significantly reducing the number of initial regions to 
be detected during the first region growing run. Finally, 
the classification result quality after executing the filter 
chain is evaluated utilizing the reference segmentations. 
A comparison of different filter chain settings is given 
in Table 1. 

Based on the low number of initial regions, a small 
difference in mean intensity and preferably high 
precision, the chains Ga10 (0.01;145,622;0.98) and 
Ga6Ca3M1 (0.16;119,805;0.966) are best balancing the 
criterions, as charted in Fig. 3.  
 
Table 1: Evaluation of different filter chains, utilizing 
average (A), median (M), gradient anisotropic diffusion 
(Ga), curvature anisotropic diffusion (Ca) and Gaussian 
filtering (G) at different kernel sizes.  
filter chain I σI Imean #reg prec 
unfiltered 0.00 0.00 0.00 899,386 1.000 

A2 6.05 8.28 0.50 148,393 0.974 
M1A1 4.39 5.93 0.70 222,375 0.987 

A3 7.66 10.76 0.51 119,767 0.952 
Ga10 2.46 2.23 0.01 145,622 0.980 
Ca10 8.95 34.07 5.09 898,315 0.982 

Ga6Ca3M1 3.35 3.95 0.16 119,805 0.966 
G2 6.97 9.71 0.51 110,991 0.964 

G1Ga6Gc2 5.59 7.39 0.52 96,122 0.937 
 

 
Figure 3: Charting of the three key features Imean, 
#regions and precision as ratio with respect to filter 
chain M1A1. Despite precision, a low feature value is 
desired.  
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With the discussed filter chain parameterization 
Ga6Ca3M1 smoothing of local intensity homogeneity 
can be achieved but borders and gradients are 
preserved, see Fig. 4.  
 

  
                     (a)                                        (b)                         
 

  
                     (c)                                        (d)                         
 

Figure 4: Input image intensities (a), slice #76 of 
subject04, are significantly smoothed applying the filter 
chain (b). Furthermore, results of gradient magnitude 
calculation after smoothing (d) show less variance due 
to suppressed noise compared to gradient magnitude 
calculation on the original image data (c). 
 
4.2. Tests on Initial Region Growing 
Region growing is performed based on the gradient 
magnitude representation after processing the filter 
chain. For common watershed segmentation, neighbors 
in N18 with identical gradient value are grouped 
together. N18 adjacency demands two neighboring 
voxels to share at least one edge and thus excludes the 
eight corner diagonal members of N26. Focusing on the 
gradient values leads to high variability in intensities, 
see Table 2. With our presented strategies for initial 
region growing, intra-region intensity homogeneity can 
be enforced.  

For calculation of the voxel standard deviation 
map to be used for adaptive region growing (AII), a 
radius of r=5 with subsequent 11x11x11 average kernel 
application is sufficient for handling local intensity 
aspects, see Fig. 6.  

As presented in Table 2, the restrictions on the 
intensity range for initial region growing significantly 
improve quality of the results. Despite a slightly 
increased number of regions, configuration AII4 best 
balances the different criterions, see Fig. 5. Enforcing 
regions to show identical gradient and intensity values 
(SII0) does not lead to improved results but an 

increased number of regions to handle in the next 
processing steps.  
 
Table 2: Comparison of gradient-based region growing 
(GRG) with static intensity interval restriction (SII) and 
adaptive intensity interval restriction (AII) at different 
interval sizes. Maximum inner region intensity 
difference (max I) and mean region intensity 
difference (mean I) indicate homogeneity of 
intensities. The grow ratio reflects, how many voxels 
are processed during this first classification run.  

RG 
strategy 

max 
I 

mean 
I 

#reg grow 
ratio 

prec 

GRG 151 0.703 119,805 0.592 0.966 
SII6 6 0.458 123,056 0.589 0.967 
SII4 4 0.405 134,569 0.584 0.968 
SII0 0 0.000 196,984 0.542 0.972 
AII6 15 0.469 125,495 0.585 0.970 
AII4 10 0.401 138,323 0.592 0.972 

 

 
Figure 5: Charting of the features from Table 2 as ratio 
with respect to region growing strategy GRG. Despite 
precision and the classification ratio, a low feature value 
is desired.  
 

  
Figure 6: Two slices of the calculated standard 
deviation map at Euclidean radius r=5 with subsequent 
11x11x11 average filter application. Results are smooth 
enough to adequately reflect local intensity variation.  
 
4.3. Testing Watershed-Inspired Pre-Segmentation 
Based on the results of initial region growing for GRG, 
SII6 and AII4, the results after classification of all 
voxels are analyzed, see Table 3. Both, static intensity 
interval and adaptive intensity interval significantly 
improve results compared to common gradient-based 
watershed segmentation. Furthermore, the mean inter-

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 78



region intensity range (mean I) is reduced by a factor 
of 2.0, relevant for subsequent neighbor region merge 
process. The key criterions precision and mean inter-
region intensity range can be both improved compared 
to GRG_WS, see Fig. 7.  
 
Table 3: Comparison of common gradient-based 
watershed segmentation (GRG_WS) with the newly 
developed concepts for static intensity interval 
restriction (SII6_WS) and adaptive intensity interval 
restriction (AII4_WS). Maximum inner region intensity 
difference (max I) and mean region intensity 
difference (mean I) indicate homogeneity of 
intensities. The grow ratio reflects, how many voxels 
are processed during this first classification run.  

RG 
strategy 

max 
I 

mean 
I 

#reg grow 
ratio 

prec 

GRG_WS 215.5 21.974 119,955 1.00 0.883 
SII6_WS 166.2 10.818 123,056 0.89 0.910 
AII4_WS 168.2 10.768 130,466 0.87 0.920 
 

 
Figure 7: Charting of the features from Table 3 as ratio 
with respect to GRG_WS watershed segmentation. 
High precision and a low value for both, mean and max 
intensity range are highly recommended.  
 

Evaluating results in detail, GRG_WS is 
outperformed with respect to precision for each 
particular dataset. Furthermore, SII6_WS is 
outperformed by the adaptive AII4_WS for each 
particular brainweb sample, see Table 4 for the first 
n=6 samples.  
 
Table 4: Precision and mean I for the first n=6 
brainweb datasets. Precision of SII6_WS higher 
compared to GRG_WS and precision of AII4_WS 
higher compared to SII6_WS. Same for decrease in 
mean I, exempt from sample [5]sj20. 

 GRG_WS SII6_WS AII4_WS 
data mean 

I 
prec mean 

I 
prec mean 

I 
prec 

[1]sj04 22.1 0.881 11.0 0.910 10.9 0.915 
[2]sj05 20.6 0.888 10.4 0.915 10.3 0.924 
[3]sj06 21.3 0.849 11.0 0.883 10.6 0.908 
[4]sj18 24.9 0.885 11.7 0.913 11.7 0.920 
[5]sj20 21.9 0.904 10.3 0.928 10.5 0.931 
[6]sj38 21.1 0.889 10.6 0.913 10.6 0.921 
 

Results after AII4_WS are presented in Fig. 8. 
Regions showing rather related region labels are 
visualized in similar colors. Due to a still large number 
of regions (>100,000), the coloring reflects a trend of 
growing IDs from left to right according to the 
processing order.  
 

  
                     (a)                                      (b)                         
 

Figure 8: Color representation of regions resulting from 
AII4_WS. The MRI morphology is cognizable for 
slices #146 (a) and #55 (b) of dataset [1]sj04.  

 
Segmentation errors produced by GRG_WS and 

AII4_WS are compared in Fig. 9. Most of the wrongly 
classified voxels result from filtering effects and deficits 
of the reference segmentation, like differentiating 
between air outside and inside the head, see Fig. 10. 
 

    
(a)                                      (b) 

 

Figure 9: Color coded differences of errors produced 
from GRG_WS and AII4_WS for slices #140 and #182 
of dataset [1]sj04. Discrepancies only appearing for 
GRG_WS shown in blue and those only resulting from 
AII4_WS in red. 
 
4.4. Testing Calculation of Merge Features 
Tests show that in contrast to classic watershed 
segmentation approach, the target number of remaining 
regions can be precisely pre-defined by the user.  

Due to combination of different types of features, 
the achievable precision can be significantly increased, 
see Table 5 and Fig. 11. For common watershed 
segmentation only the tolerance in gradient level at the 
region borders is utilized as merge criterion. Results in 
Table 5 show that the watershed region merge metric is 
outperformed by incorporating intensity level and 
border ratio.  
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(a)                                      (b) 

 

Figure 10: Error (red) of AII4_WS with respect to the 
original image data at slices #70 and #155 of dataset 
[1]sj04.  
 
Table 5: Comparison of result quality utilizing different 
types of merge features. Analysis runs are performed 
based on AII4_WS pre-segmentation results. For the 
cumulated weight defined in Equation 7, the weights for 
intensity level similarity (squared diff in intensities), 
difference in gradient level and the border ratio are 
combined, thus leading to increased precision. The 
difference in mean region gradient level (squared diff in 
gradients) showed to be no proper metric for region 
merging.  

merge strategy #reg= 
2500 

#reg= 
5000 

reg=
7500 

random (region IDs) 0.474 0.458 0.477 
squared diff in intensities 0.809 0.803 0.836 
squared diff in gradients 0.514 0.497 0.517 

difference in gradient level 0.735 0.736 0.766 
border ratio 0.622 0.603 0.629 

cumulated weight 0.862 0.831 0.866 
 
5. DISCUSSION  
The incorporation of original image intensities in the 
process of region growing and gradient-based 
watershed-like segmentation showed to improve results 
significantly.  

Due to the fact that the number of local gradient 
minima is low in anatomically relevant areas of high 
pixel intensity variance, further region seed candidates 
will be evaluated in future. Besides the gradient values, 
local minima will also be searched for, utilizing the 
input image intensity voxel mask. It is thereby expected 
to increase the number of region seed candidates by 
around 20-30%, mainly in the sparse area of high 
variance.  

Furthermore the algorithm for iteratively assigning 
the voxels remaining unclassified during AII4_WS 
algorithm execution will be improved. If unclassified 
voxels show higher similarity to their neighbors being 
unclassified too, additional regions should be formed to 
keep the intra-region intensity range low.     
 
 

  
(a)                                      (b) 

 

 
(c)                                      (d) 

 

Figure 11: Final merged regions of dataset [1]sj04 after 
AII4_WS pre-segmentation and region merging 
utilizing cumulated metrics. Visualization with gray 
value colormap (a-b) and in color (c-d). Compared to 
Fig. 8, the color trend from left to right is replaced by 
solid and well defined regions representing anatomical 
structures. 
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