
SIMULATIONS OF UTERINE ELECTRICAL ACTIVITY USING 
PARALLEL COMPUTING 

 
 

Tanguy Hedrich(a), Jeremy Laforet(b), Catherine Marque(c) 
 
 

(a)(b)(c)CNRS UMR 7338 
 Biomecanique et Bioingenierie  

Universite de Technologie de Compiegne  
60200 Compiegne, France 

 
(a)thedrich@etu.utc.fr, (b)jlaforet@utc.fr, (c)cmarque@utc.fr 

 
 
 
 
ABSTRACT 
The uterine electrical activity can be realistically 
modeled by representing the principal ionic dynamics at 
the cell level, the propagation of electric activity at the 
tissue level. 
 A simplified model based on the physiology was 
already presented (Laforet 2011). We were able to 
simulate 0-dimension to 2.5-dimension grids of muscle 
cells. 
 In this study, we implemented this model as an 
easy-to-use software using oriented-object python, 
under an open-source license. We developed a parallel 
integration based on shared memory by using python 
standard libraries to improve the computational 
effectiveness of the simulations. 
 The execution times of parallel computed 
simulations are up to 25 times less than the serial 
integration. We observe an effect of the size and the 
dimension of the grid on the computation time per cell. 
 Thanks to this improved computation time, further 
studies will provide bigger and more realistic 
simulations in a reason- able time. 

 
Keywords: Simulation, Electrophysiological signals, 
uterus, Python 

 
1. INTRODUCTION 
The sequence of contraction and relaxation of the my- 
ometrium results from the electrical activity associated 
to the generation and propagation of cellular action 
potential bursts. The uterine electrical activity can be 
measured noninvasively on the abdomen by standard 
electrodes and it is referred to as electrohysterogram 
(EHG) [2]. 
 At the myometrial level, the cellular action 
potential generation and propagation have been 
previously modeled as function of a large number of 
electro-physiological parameters related to ionic 
dynamic (Rihana 2009). This model is physiology-
based and has been demonstrated to be representative of 
the main ionic mechanisms responsible for the genesis 
and evolution of the uterine electrical activity (Rihana 

2009). However, this model is computationally 
demanding and therefore unsuitable for a direct 
integration in a multi-scale approach. 
 In view of this challenging objective, we have 
defined a new simplified physiology-based model of the 
electrical activity generation at the cell level and of the 
electrical propagation at tissue level, based on the full 
model described in (Laforet 2011). 
 Unfortunately, even the simplified model is still 
computationally demanding for large amount of cells. 
To step closer to obtain full organ simulations in a 
decent time, we present a parallel implementation of the 
models integration. We show 
how this can help us reduce the computation time by a 
factor up to 24. 

 
2. MODEL 
In view of this challenging objective, we define a global 
multi-scale model, from the myometrial cell to the skin 
surface (Laforet 2011). This model is physiology based 
and takes into account the following levels: 

• myometrial cell: generation of the electrical 
activity.  

• uterine tissue: propagation of this activity from 
cell to cell.  

• organ level: propagation of the electrical field 
thought the tissue layers from the uterus to the 
skin surface (Rabotti 2010).  

• abdominal level: recording on the skin surface 
by an electrode grid. 

 
 In this paper, we focus on the improvements of the 
computational effectiveness of the uterine muscle 
model, as it is the most time consuming step within the 
global model. We previous presented a simplification of 
the complete model in (Laforet 2011). Starting from the 
6 variables uterine cell reduced model (referred as Red6 
model) (Rihana 2009), we obtain a 3 variables model 
(referred as Red3) defined as follow: 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 40



( )leakKCaKCastim
m

m IIIII
C

=
dt

dV
−−−−

1
 (1) 

Kn

KKK

τ

nh
=

dt
dn −

∞     (2) 

[ ] [ ]( ),CaKαIf=
dt

Cad +2
CaCac

+2

−−   (3) 

 

with Vm the transmembrane potential, nK the 
potassium activation variable, and [Ca2+] the 
intracellular calcium concentration. 
 The Red3 model is generally 50% faster than the 
Red6 model and will be used as default model in this 
work. However, the Red6 will be kept for studies on 
small number of cells when requiring a higher accuracy. 
 At the tissue scale, the communication between the 
my- ometrial cells through gap-junctions is modeled by 
the spatial diffusion of the electrical potential over the 
cells. 

 
3. IMPLEMENTATION 
We implemented both Red6 and Red3 models using 
Python (version 2.7) in an object oriented approach. The 
code will be published under an open-source license and 
its required dependences are only common Python 
modules beside the standard library (Numpy and Scipy). 
It can be executed under Mac-OS X , Windows, and 
GNU/Linux systems. 

 
3.1. Models 
First, we defined a generic cell model class from which 
Red6 and Red3 classes inherit. It enables us to define all 
common elements in the models only once, in the parent 
class. This structure is illustrated in figure 1. 
 At the tissue level, the cells are arranged into a 
Cartesian grid. This tissue model can be 0D (a single 
cell), 1D (a cable-like line of cells), 2D (a flat surface), 
or 2.5D (a flat surface with non-null thickness). The 
grid is represented directly by a N-dimensional state 
array where each element represent a cell which is 
electrically coupled with its direct neighbors (2, 4 or 6 
depending on the dimensions). 
 For 2D and 2.5D tissue model, in order to simulate 
a simple model of cylindrical geometry, the border in 
one of the dimensions of the model may be considered 
as the neighbor of the opposite border. 
 The dimension of a cell, the membrane resistance, 
and different physiologic features can be modified for 
each cell individually along each spatial dimension. 
This way makes possible to add anisotropy to the model 
and also to take into account local variations of the 
parameters. It is also possible to represent non-muscular 
cells (ie connective tissue). These 

cells would be affected by the spatial diffusion as the 
other cells but the model defined in Eq. 1 would not be 
applied to generate their own response. 
 To simulate the pacemaker cells, an external 
current is applied to the cells that will act as pacemaker. 
This external current is modeled by a half sine wave to 
avoid discontinuities. It can be applied to two different 
areas of the model during simulation. 
 Finally, we added a two-layer padding on the 
borders to avoid side effects of the spatial filtering. 
These ’ghost cells’ have a coefficient of diffusion 104 
times lower than the other cells to efficiently attenuate 
the signals at the borders. 

 

 
3.2. Integration 
We implemented two methods to compute the models. 
The first method is the serial integration, which 
computes the model by using only one process. This is 
the usual way to integrate such models, but it is 
ineffective on modern multi-core CPUs as only one of 
the cores is used. For a huge number of cells or for a 
long simulation duration, the computation time will rise 
to an unacceptable level. To improve the performance 
of the model (in term of computational time), parallel 
computing can be used. The idea is to divide the size of 
the tissue model into several processes which are 
running in parallel so that the global execution 
decreases. 
 A different process computes each part of the tissue 
model and for each time step, the processes share their 
results. For this study, we developed an integration 
model based on shared memory. 
 

Figure 1: Main classes of uEMG. 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 41



1) SERIAL: The serial integration computes the model 
using the Euler finite difference method. For each time 
sample, a discrete version of the cell model described in 
Eq. 1 is applied for every muscle cell of the tissue 
model. 
 After the muscle model, for each time step as well, 
the spatial diffusion model is applied to the cells to 
represent the electrical communication through gap-
junctions. On a Cartesian grid the computation of this 
diffusion is a spatial Laplacian filtering which global 
weights are the diffusion coefficients. Those 
coefficients are dependent on the geometry and the 
membrane conductance of the cells. 
 We implemented an adaptive temporal step size to 
improve the efficiency of this simple scheme in terms of 
computation time. After each time step, the step size is 
refined according to the previously computed derivative 
value. The new temporal step �t at the nth iteration is 
computed as follows: 
 

Δtn =Δt min
ΔV max

max (Δ(V m)n− 1)− Ft
 

where ≥tmin (0.05ms) is the minimum step size 
accepted, ≥Vmax (1V) is the estimate of the maximum 
of change in Vm and F t is an adjustment constant. The 
minimum step has been determined from previous 
study, to assure the model stability. 
 
2) PARALLEL: We used the multiprocessing module 
of Python standard library for the parallel implementa- 
tion. It allows several processes to use a shared 
memory. 

 
To deal with Numpy arrays (more convenient than the 
standard type of array) using shared memory, we used 
the module shmarray, written by David Baddeley (under 
BSD license). 
 At the beginning of the stimulation, a master 
process does the initializations and divides the grid of 
muscle cells and then generates as many processes as 
required (the default value being the total number of 
cores available) and then waits until all the processes 
are done. 
 The spatial domain is divided according to the 
number of working processes so that all the processes 
receive a sub-domain of roughly the same size (Minkoff 
2002). Empirically, we found that the 1D-division 
presented better results than 2D- or 3D-parcellization. 
For that reason, only the rows of the state array are 
fairly divided for all the processes used since this 
method gives better results than dividing both the rows 
and the columns of the grid. Each process is dependent 
of its neighbors because it needs border information for 
the spatial diffusion process. 
 Each process has two rows of the cell grid in 
common with its neighbors so that the spatial diffusion 
can be computed accurately along the whole grid. In 
other words, a process can only modify the part of the 
grid that has been affected to him and can only “see” 

this domain as well as the two rows above and bellow. 
All the models of each sub-domain are computed 
asynchronously (both the cell and the spatial diffusion 
models). However all processes need to stay 
synchronized to process the same time step. This 
synchronization has been implemented as a barrier for 
all the processes, each of them storing its own results in 
the shared memory. A barrier basically blocks all 
participating threads until the slowest participating 
thread reaches the barrier call. 

 
3.3. Tools 
We also implemented several tools which could be 
useful for further studies as methods of the generic 
integration class.  

 
1) Show(): A first need to arise was the ability to 
display the results of the simulation. To do so the 
generic integration class provides the show() method. 
Concerning 0D and 1D models, we used the matplotlib 
library (http://matplotlib.sourceforge.net/) to plot 
matlab-like graphics. Figure 2 shows the example of a 
1D simulation, each column expresses the state of the 
whole model at a given time (100 cells computed here) 
and respectively each lines is the time course of one 
cell. 
 For higher dimensions model, we use the 3D-
visualization library mayavi (http://code.enthought.com/ 
projects/mayavi/). It allows us to show 2D and 3D 
animated simulations. Figures 3 and 4 show examples 
of simulation results displayed mayavi. 

 
 

 
Figure 2: Representation of a 1D simulation using 
matplotib library. The x-axis represent the time, and the 
y-axis represents the cells. In this simulation, the cell 
number 3 the pacemaker. 

 
 
 

 
 
 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 42



2) Save(): To store the simulation results, we imple- 
mented the method save() using the file management 
abilities of the Numpy library. It saves a time array 
describing the sampling and the N-dimensional array 
describing the electrical potential for each saved time 
step. It is possible to part the results into several lighter 
files if the weight of the data to store is too important. A 
text file containing a description of the model used is 
saved as well. 
 
3) Speed(): Finally, we implemented an easy way to 
measure the conduction velocity between two cells on 
the tissue model. To do so, we simply compute the 
delay between the time course of the two chosen cells 
by using the maximum of the cross-correlation. We then 
calculate the Euclidean distance to get the value of the 
conduction velocity. The existence of an actual 
propagation is assessed by a threshold applied on the 
value of the maximum of the cross-correlation. 

 
4. RESULTS 
To test the efficiency of the parallelization of the model, 
the model was first run on a 8 core MacBookPro (Intel 
Core i7 2.2Ghz, 8GB RAM, OSX 10.6 64bits). Once 

our code became reliable enough for deployment, the 
simulations were run on a 24-core calculator (Intel 
Xeon X7542 2.67GHz, 256GB RAM, RedHat 
Enterprise 64bits). We first present the computation 
time per cell for simulations of a 2D models (going 
from 300 × 300 to 1000 × 1000 cells) with a given 
number of cores, to test the grid size effect. Then, we 
present the effect of parallel computing on a 500 × 500-
cell model (250000 cells, referred later as 2D model) 
and on a 150 × 150 × 20-cell model (450000 cells, 
referred later as 2.5D model) by using 1 to 24 cores. 

 
 Figure 5 shows the time per cell for a 1-second 
simulation for different grid dimensions and by using 12 
processors. To assess repeatability, each simulation was 
run 5 times. For small dimensions, the parallelization is 
less efficient. Symmetrically, when the dimension of the 
model increases, the time of execution per cell increases 
as well. For both cases, it can be explained by the fact 
that the cost of the access to the shared memory stops 
being negligible compared to the gain of time due to the 
parallelization. For higher dimensions, one can also 
think that the memory hierarchy effects are less visible 
for these cases. The figure shows that the dimension of 
the grid does affect the performance of the parallel 
computing. Indeed, for too small or too big sizes of the 
grid, the benefit of the parallel computation is limited 
by issues of accessing the data. 
 Figures 6 and 7 show the mean of computation 
times over 5 simulations respectively for the 2D and 
2.5D models, by using 1 to 24 cores. As expected, the 
2.5D model takes more time than the 2D one. The time 
ratio between the times per cell of the two models is 
1.88 (standard deviation: 0.07) which means that even 
with the same number of cells, a 2.5D model would be 
more time-consuming than a 2D model. The main 
reason of the time gap is attributed to the spatial 
diffusion model, where spatial diffusion is applied in 3 
directions for the 2.5D model instead of 2 for the 2D 
model. 

Figure 3: Representation of a 2.5D simulation using 
mayavi library. Electrical potential amplitude is color-
coded. 

Figure 4: Time per cell (execution time divided by the 
number of cells) for different number of cells and 12 
cores. 

Figure 5: Execution time for 500x500 and 150x150x20 
models. Curves are in Log-Log scales to simplify their 
reading. 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 43



In both cases we notice a dramatic reduction of the 
computation time, from several hours to a few minutes. 

 
 
 
To analyze more precisely the gain in the computation 
time given by the parallel computing, we calculated the 
speedup, which is defined as: 
 

speedup (n)= T (1)
T (n)     (4) 

 
where T (n) is the execution time on the parallel system 
with n processors, and T(1) is the execution time with 
only one process. In other words, speedup is defined by 
how much faster a simulation will run on n processors 
compared to a serial execution. In theory, the ideal 
speedup is linear, so for n processors it would be n. 
However in practical cases, supra-linear speedup has 
been noticed. Indeed, in some cases the computation 
time is reduced by a factor higher than the number of 
processors used for the parallelization (Camargos 
2009). the memory hierarchy effects can explained this 
result, and mostly the use of memory cache that reduces 
the access time to the data. Figure 7 presents the results 
of the two models. This effect can be noticed in our 
data, since speedup values for both models follow a 
slightly supra-linear curve (results over the ideal curve). 

 
5. CONCLUSIONS 
Modeling the electric activity of the uterine muscle by 
realistic simulation is a challenging issue that raises the 
problem of computational time. We developed a 
complete tool to be able to parallelize time-consuming 
simulation. Our model is able to simulate uterine tissue 
model from 0D to 2.5D. 
 By using shared-memory parallel computing, we 
were able to reduce the execution time up to 25 times. 
In other terms, we could turn a simulation that lasted 
more than 2 hours into a 5-minute run. Indeed, our 

speedup curves follow a slightly supra-linear 
progression. However, for large dimensions model, the 
efficiency of the parallelization decreases. This will 
permit us to increase the dimension of the model, thus 
inducing an increase in the simulation duration, but 
keeping this increase reasonable enough. It will allow 
realistic simulations that could be validated by 
physiological experiments. 
 Our model still presents some limits. For instance, 
it is only able to simulate tissue areas of simple shapes 
(rect- angular, cylindrical). We will need better meshing 
abilities to be able to represent the complex uterine 
tissue structure. Another limit will be memory usage as 
the size of the simulated model increases. A work-
around will be to support distributed memory 
calculators. We are developing a integrator class relying 
on message based parallelization (using MPI library) in 
this aim. Once deployed on a similar scale calculator 
we’ll be able to confront the two approaches. 
Finally, a user-friendly graphical interface will be added 
to the software in order to make its exploitation possible 
by non-specialists. 
 

 
ACKNOWLEDGMENTS 
This work was funded by ANR, partner of the ERASys- 
Bio+ initiative supported under the EU ERA-NET Plus 
scheme in FP7. 
 
 
REFERENCES 
Camargos, A., Batalha Martins Silva Soares, R. C. E. 

G., 2009, Super-linear speedup in a 3-d parallel 
conjugate gradient solver, IEEE Transactions on 
Magnetics, 45:1602 –1605 

Devedeux, D.,  Marque Mansour Germain Duchene, C. 
S. G. J., 1993, Uterine electromyography: a 
critical review, American Journal of Obstetrics 
and Gynecology, 169:1636–1653  

Laforet, J., Rabotti Terrien Mischi Marque, C. J. M. C., 
2011, Toward a multiscale model of the uterine 
electrical activity, IEEE Transactions on Bio-
Medical Engineering, 58:3487–3490  

Minkoff, S.E. 2002, Spatial parallelism of a 3D finite 
difference Velocity-Stress elastic wave 
propagation code, SIAM Journal on Scientific 
Computing, 24:1 [5] 

Rabotti C., Mischi Beulen Oei Bergmans, M. L. S. J., 
2010, Modeling and identification of the 
electrohysterographic volume conductor by high-
density electrodes, IEEE Transactions on 
Biomedical Engineering, 57:519– 527  

Rihana, S., Terrien Germain Marque, J. G. C., 2009, 
Mathematical modeling of electrical activity of 
uterine muscle cells, Medical & Biological 
Engineering & Computing, 47:665–675  

 
 
 
 

Figure 6: Speedup values for both
configurations, for 1 to 24 cores. 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 44



AUTHORS BIOGRAPHY 
 
Tanguy Hedrich was born in Poissy (France) in 1989. 
In 2011 he received both the Engineering degree in 
computer engineering and the Master degree in 
biomedical engineering from Compiègne University. He 
is now a Master student in biomedical engineering at 
McGill university, Canada. His research interests 
include statistical signal processing and localization of 
epileptic spikes using distributed sources modeling. 

 
Jeremy Laforet was born in France on Feburary 19, 
1983. He recieved both the Master and Ph.D. Degrees 
from Montpellier 2 University, Montpellier, France, in 
2006 and 2009. He's now post-doctoral researcher at 
Compiegne University in the biological engineering 
departement. His interests include neuro-musclar 
models and their indentification and validation.  

 
Catherine Marque was born in France on January 15, 
1958. She received the degree of Engineer from the 
Ecole Nationale Supérieure des Arts et Métiers, Paris, 
France, in 1980 and the Ph.D. degree from Compiègne 
University, Compiègne, France, in 1987.She is 
presently Professor at Compiègne University in the 
biological engineering department where she manages 
the biomedical engineering formation. Her interests 
include signal processing and instrumentation applied to 
the biomedical field.  

 
 

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 45


