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ABSTRACT 

An SIS epidemic is a common approach to model a 

contagious disease. Three different modelling 

approaches are used to simulate an SIS epidemic. These 

methods are an ordinary differential equation model, an 

agent-based model and a stochastic model. The aim is to 

compare them in equivalent settings and analyse the 

qualitative and quantitative similarities and differences. 

Furthermore, they are extended to simulate diseases 

based on two serotypes. For the models with one 

serotype the results for all three approaches are very 

similar. For two serotypes there are some situations in 

which the three models agree and some in which they 

do not agree. Our conclusion is that the models are not 

completely equivalent. However it is not possible to 

determine which model is the best because this always 

depends on the actual situation. The comparison of the 

three modelling approaches can help to get a better 

understanding of SIS epidemics. 

 

Keywords: SIS epidemic, ODE model, agent-based 

model, stochastic model 

 

1. INTRODUCTION 

Models of epidemics have been of interest for humanity 

for a long period of time. They are important to study 

the mechanism by which diseases spread, predict the 

courses of epidemics and to evaluate plans to control 

them. Common questions are interventions like 

vaccination strategies and isolation plans. 

There are different types of epidemics and different 

concepts to model them. One of the first epidemic 

models was created by Kermack and McKendrick in the 

1920s (Kermack and McKendrick 1927). They used 

ordinary differential equations (ODEs) to model SIS 

epidemics, the most simplified approach for contagious 

diseases. Today this serves as a classical model and is 

still used. 

This concept can also be transferred to other modelling 

techniques. In this paper three approaches are 

considered: an agent-based model (AB model), an ODE 

model and a stochastic model (STOCH model). The 

purpose is to find out if these approaches are 

appropriate for epidemic simulation and to get a deeper 

understanding of the spread of epidemics. Since the 

basic characteristics of these techniques are different, it 

is important to have a closer look if the models are 

really equivalent and to compare the models in various 

scenarios.  

The goal is to compare the three different approaches to 

model a simplified SIS epidemic with one and two 

serotypes in various scenarios and to analyse the 

differences if they exist. 

 

2. SIMPLE SIS MODEL 

An SIS model is a simplified concept of contagious 

diseases that describes the spread of an infectious 

disease within a constant and homogeneous population 

(denoted by N) of individuals. This means that there are 

no births, deaths and migration and all individuals are 

of the same type. The state of every person is either 

infected (denoted by I) or susceptible (denoted by S).  

Since the population is constant and there are only two 

states Equation (1) holds at every point in time t: 

 

                (1) 

 

The susceptible individuals can be infected through 

contact with an infected individual and stay infected for 

a specified constant period of time. After this time, they 

change their state from infected to susceptible and they 

can potentially be infected again (see Figure 1).  

 

 
Figure 1: Illustration of the States and Transitions of the 

Simple SIS Model 
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There is no immunity or any other disease states. The 

transmission of infection is direct. There is no period of 

latency, this means the time period between the 

transmission of infection and the initiation of the 

infectiosity does not exist. 

 

2.1. Ordinary Differential Equation Model 

The ODE model splits the population in two parts, the 

infected and the susceptible part; these are the two state 

variables of the model. The infected part is denoted by 

I, the susceptible part by S. The size of the states varies 

in time, because susceptible can become infected and 

vice versa. Figure 2 shows the two states S and I and the 

transitions between them. The transition rate from S to I 

is α, from I to S it is described by β. 

 

 
Figure 2: Illustration of the States and Transitions of the 

ODE Model 

 

The parameters of the ODE model are α and β. α is the 

average number of transmissions per person per time 

unit caused by contacts between susceptible and 

infected individuals. α also depends on the infection 

probability. β is the ratio of recovery. 

The ODE model consists of two ODEs (Equation (2) 

and (3)) with initial conditions (4) and (5) which 

describe the shift of the susceptible and the infected part 

of the population. The ODE model is similar to the 

model of McKendrick and Kermack. 

 

                          (2) 

 

                           (3) 

 

              (4) 

 

              (5) 

 

Equation (2) describes the change of the number of the 

infected part in time. The first term on the right hand 

side of Equation (2) represents the newly infected and 

the second term the recovered. Equation (3) describes 

the change of the number of the susceptible part in time. 

Since the population is constant the right hand side of 

Equation (3) varies only in the sign from the right hand 

side of Equation (2). 

The two ODEs are analytically solvable and the solution 

of the ODE system is unique. 

 

2.2. Agent-Based Model 

The AB model describes the behaviour of the single 

individuals. Therefore it is an intuitive approach. An 

individual can either be infected or susceptible. All 

agents are identical except for their states. Individuals 

have contacts with other individuals and these contacts 

are created randomly within the population. Susceptible 

individuals can be infected when they meet infected 

individuals. This process represents the contagion. For 

one susceptible agent the contacts and the contagion are 

illustrated in Figure 3. 

 

 
Figure 3: Illustration of the Contagion of a Susceptible 

Agent 

 

After a fixed period of time an infected agent becomes 

susceptible again (see Figure 4). 

 

 
Figure 4: Illustration of the Recovery of an Infected 

Agent 

 

The spread of the disease occurs upon the above-

mentioned rules and is not defined explicitly.  

The parameters of the model are the probability of 

infection ω, the number of contacts per agent κ and the 

duration of disease γ.  

For the comparison with the other models, the numbers 

of infected and susceptible individuals are aggregated. 

 

2.3. Stochastic Model 

The STOCH model treats the two states susceptible and 

infected. The model consists of two equations, one for 

the number of infected individuals and one for the 

number of susceptible individuals.  

The parameters of the model are identical to the 

parameters of the AB model, namely the probability of 

infection ω, the number of contacts per individual κ and 

the duration of disease γ.  

The number of infected individuals for the present time 

step is determined dependent on the number of infected 

and susceptible individuals of the previous time steps 

(Equation (6)). In Equation (6) the newly infected 

individuals of time step t are represented by ni(t) and 

r(t) is the number of the recovered at time step t. The 

number of the susceptible individuals results from the 

difference of the size of the population and the number 

of infected individuals (Equation (7)). 

 

                             (6) 

 

                (7) 

 

The part of the population which changes the state is 

calculated in discrete time steps.  

Proceedings of the International Workshop on Innovative Simulation for Health Care, 2012
978-88-97999-13-3; Backfrieder, Bruzzone, Longo, Novak, Rosen, Eds. 116



 

2.4. Comparison of the Models 

The three models use different parameters (see Table 1). 

 

Table 1: Parameters of the Models 

ODE Model AB Model and STOCH 

Model 

α ω 

β γ 

 κ 

 

In order to compare the models in equivalent settings it 

is important to know the relations between the 

parameters. 

 

  
   

 
       (8) 

 

  
 

 
       (9) 

 

The Equations (8) and (9) show the relation of the 

parameters and therefore the models became 

comparable by parameters that represent the same 

situation. 

These relations have been found by the following 

considerations: In the STOCH model the number of 

contacts between I and S individuals with transmission 

of infection per time unit is 
       

 
 . To obtain the 

parameter α from the ODE model the last expression 

has to be divided by     (see Equation (8)). The 

duration of the disease is the reciprocal of the ratio of 

recovery (see Equation (9)). 

In general, the results of the models show that in each 

model a steady state is reached after an adaption phase 

in the beginning of the simulation. 

The steady states of the three models are independent of 

the initial value of the number of the infected 

individuals and only depend on parameters that 

represent infection probability, recovery time and 

contact number. 

The AB model and the STOCH model have similar 

adaption phases, while the adaption phase of the ODE 

model is different. The ODE model and the STOCH 

model reach the same steady states and the steady states 

of the AB model are slightly different. 

During the adaption phase of the AB model and the 

STOCH model a so-called “overshooting” occurs (see 

Figure 6 and 7). The ODE model has no “memory” and 

therefore there exists no “overshooting” (see Figure 5). 

That means the number of the infected depend only on 

the number of the infected of the previous time step. 

The AB model and the STOCH model use numbers 

from earlier time steps too. 

For the results shown in Figure 5, 6 and 7 the size of the 

population N is 10000 and the initial value of the 

number of infected individuals I0 is 1000. 

 

 
Figure 5: ODE Model with Parameters: α = 5·10

-5
; 

β = 0.1 

 

 
Figure 6: AB Model with Parameters: ω = 0.05; γ = 10; 

κ = 10 

 

 
Figure 7: STOCH Model with Parameters: ω = 0.05;  

γ = 10; κ = 10 

 

The quantitative discrepancy between the results of the 

models is small and therefore the three models are 

appropriate methods to simulate an SIS epidemic. 

 

3. SIS MODEL WITH TWO SEROTYPES 

In contrast to the simple SIS model there are three 

states: individuals can either be susceptible or infected 

with serotype 1 or infected with serotype 2. A serotype 

is a variation of the pathogen of a contagious disease. 

The assumption for the simulated diseases is that an 

infected person can only be infected by one serotype at 

one time. An infected individual can become infected 

with the other serotype and then it loses the original 

serotype (see Figure 8). This property of the model is 

necessary, because models become instable when 

infected individuals are not susceptible for the other 

serotype (Urach 2009; Bauer, Pöll, and Winterer 2011) 

and therefore the model is unusable. 
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Figure 8: Illustration of the States and Transitions of the 

SIS Model with Two Serotypes 

 

Further assumptions are the same as for the simple SIS 

model. 

 

3.1. Ordinary Differential Equation Model 

The ODE model splits the population in three state 

variables: I (infected with serotype 1), J (infected with 

serotype 2) and S (susceptible). Figure 9 shows the 

three states S, I and J and the transitions between them.  

 

 
Figure 9: Illustration of the States and Transitions of the 

ODE Model with Two Serotypes 

 

The parameters of the ODE model are α1, α2, β1 and β2. 

α1 and α2 are the average numbers of transmissions per 

person per time unit caused by contacts between 

susceptible and infected individuals. α1 and α2 also 

depend on the infection probability of each serotype. β1 

and β2 are the ratios of recovery of serotype 1 and 2. 

The ODE model consists of three ODEs (Equation (10), 

(11) and (12)) with initial conditions (13), (14) and (15). 

Every ODE represents the change of the number of 

individuals of one state. The ODEs are more complex 

than the ODEs of the simple SIS model. 

 

                                     
                                      (10) 

 

                                     
                                      (11) 

 

                                     
                                     (12) 

 

                         (13) 

 

                         (14) 

 

                           (15) 

 

The ODE system cannot be solved analytically, but at 

least the solution of the ODE system is unique. 

 

3.2. Agent-Based Model 

The AB model is an extension of the AB model for one 

serotype. The rules for the agents are very similar. It is 

easy to extend the AB model, because in the model only 

the phase of the transmission of infection has to be 

adjusted, because now an infected can be infected with 

the other serotype. 

The parameters of the model are the probabilities of 

infection with serotype 1 ω1 and serotype 2 ω2, the 

number of contacts per agent κ and the duration of the 

diseases γ1 and γ2. 

 

3.3. Stochastic Model 

The STOCH model consists of three equations, one for 

the number of individuals infected with serotype 1, one 

for the number of individuals infected with serotype 2 

and one for susceptible. 

The parameters of the model are identical to the 

parameters of the AB model, namely the probabilities of 

infection with serotype 1 ω1 and serotype 2 ω2, the 

number of contacts per individual κ and the duration of 

the diseases γ1 and γ2. 

The number of infected individuals of each serotype for 

the present time step is determined dependent on the 

number of infected and susceptible individuals of the 

previous time steps (Equation (16) and (17)). In 

Equation (16) and (17) the newly infected of time step t 

are represented by ni1(t) and ni2(t). r1(t) and r2(t) are the 

numbers of the recovered at time step t. c1 (respectively 

c2) is the part of the infected individuals with serotype 1 

(respectively 2) which becomes infected by serotype 2 

(respectively 1). The number of the susceptible 

individuals results from the difference of the size of the 

population and the number of infected individuals 

(Equation (18)). 

 

                                     
                   (16) 

 

                                     
                   (17) 

 

                               (18) 

 

The equations are more complex than the equation in 

the STOCH model for one serotype. 

The numbers of I, J and S are calculated in discrete time 

steps. 

 

3.4. Comparison of the Models 

The three models use different parameters (see Table 2). 
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Table 2: Parameters of the Models 

ODE Model AB Model and STOCH 

Model 

α1 ω1 

α2 ω2 

β1 γ1 

β2 γ2 

 κ 

 

The relations of the parameters of the three models are 

like the relations of the parameters of the simple SIS 

model (see Equation (19) and (20)). 

 

   
    

 
 ,    

    

 
               (19) 

 

   
 

  
 ,    

 

  
                (20) 

 

This strategy enables further comparability of the three 

models. 

There are two different cases for the parameterisation of 

the three models. On the one hand, the parameters for 

the two serotypes are equal (equally strong serotypes), 

on the other hand, there is a difference in at least one 

parameter of the serotypes (unequally strong serotypes). 

The models always reach a steady state. The steady 

states of the AB model and the STOCH model are 

independent of the initial settings. In the ODE model in 

case of equally strong serotypes the steady states are 

dependent on the initial settings, for unequally strong 

serotypes they are independent. 

The main difference between the models is that 

coexistence of both serotypes is more often found for 

the AB model (see Figure 11). The STOCH model and 

the ODE model have almost no situations of 

coexistence for unequally strong serotypes. This means 

that the weaker serotype usually dies out (see Figure 10 

and 12). 

For the results shown in Figure 10, 11 and 12 the size of 

the population N is 10000 and the initial value of the 

number of infected individuals with serotype 1 I0 and 

serotype 2 J0 is both 1000. 

 

 
Figure 10: ODE Model with Two Serotypes with 

Parameters: α1 = α2 = 2.5·10
-5

; β1 = 0.1; β2 = 1/15 

 

 
Figure 11: AB Model with Two Serotypes with 

Parameters: ω1 = ω2 = 0.05; γ1 = 10; γ2 = 15; κ = 5 

 

 
Figure 12: STOCH Model with Two Serotypes with 

Parameters: ω1 = ω2 = 0.05; γ1 = 10; γ2 = 15; κ = 5 

 

In case of two equally strong serotypes, the steady states 

are different for all three models. In the cases where one 

serotype dies out in all three models, the steady states of 

the STOCH model and the ODE model are the same 

and the steady state of the AB model is very similar, 

while the adaption phase is similar for the STOCH 

model and the AB model and different for the ODE 

model. These results are obvious, because after extinct 

of one serotype the models are equivalent to the simple 

SIS models. There are two problems: First, for the ODE 

model and the STOCH model there is coexistence of 

both serotypes only in special cases. Second, the steady 

states of the models are quantitatively different. These 

problems show that further research for concurrent 

serotypes is required. 

 

4. CONCLUSIONS 

There are many possibilities to model a real problem. In 

this paper, three modelling approaches with different 

properties for an SIS epidemic have been compared in 

equivalent settings and there are some situations in 

which the three models agree and some in which they 

do not agree. In the latter case, a special validation of 

the results is needed to see which model gives the most 

realistic results. It is not possible to say only by 

comparison which modelling approach is the best, 

however it clearly shows qualitative and quantitative 

differences and similarities of these approaches. It 

always depends on the given situation which approach 

is right for the problem. In the cases where all three 

models agree, the models are considered to be valid. 

Cross-validation is an important method in the field of 

modelling (Bharathy and Silverman 2010). It describes 

the attempt to solve the question with an alternative 

model and compare it with the actual model. If the 
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alternative model provides the same results the actual 

model might be considered to be more reliable, and 

consequently more valid. 

In this study we show that the three modelling 

approaches all result in the same steady states for the 

simple SIS model, even though they have different 

adaption phases. The adaption phases can be explained 

by structural differences of the approaches. However, it 

seems that all three models are suitable to model SIS 

epidemics. 

The situation is more complex for two competitive 

serotypes. In that case only the agent based model 

produces a stable coexistence of both serotypes while 

the ODE model and the STOCH model lead to an 

unstable behaviour. This means that the models 

simulate different situations caused by different 

structures, although their assumptions are all the same. 

We conclude that the choice of a model for SIS 

epidemics with competitive serotypes highly depends 

on the actual situation. It is important to examine 

structures and values in the real world crucially, 

compare them with the model and choose the right 

approach upon this knowledge. However, only the AB 

model is able to produce stable coexistence of 

serotypes. Usage of this model will be subject to further 

validation methods depending on the actual problem. 

This work might include further examination and 

revision of the ODE and STOCH model to find out 

more about consequences of structural differences. 

Finally, the comparison of the modelling approaches 

can help to show in which situations models are valid 

and to get a better understanding of SIS epidemics.  
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