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ABSTRACT 
The appearance of algebraic constraints among energy 
variables in models of physical systems leads to sets of 
(possibly nonlinear) implicit state equations, which 
usually complicate the treatment of the problems to be 
solved on the model. Building up on the Bond Graph 
model of a Planar Mobile Robotic Manipulator, this paper 
discusses some techniques to handle this kind of 
situations, determined here by the coupling of rigid 
bodies. Two alternatives to break the constraints are 
presented, consisting in the insertion between the coupled 
elements of: a) parasitic components –mostly spring-
dampers, which is standard practice– or b) residual sinks –
which is equivalent to the practice of adding constraint 
forces. Modifying the Bond Graph through the 
introduction of storage fields is the third method 
presented. Further, the extraction of constraint-free Euler-
Lagrange and Hamiltonian descriptions from the Bond 
Graph are addressed. Finally, the suitability of all of these 
five alternatives for the purposes of simulation, analysis 
and control system design are discussed, and illustrated 
with simulation results. 

Keywords: Planar mobile manipulator, Bond Graphs, 
Euler-Lagrange equations, Port-Hamiltonian systems, 
Simulation, Nonlinear control. 

1. INTRODUCTION
The multidomain nature of modern engineering systems 
has renewed the interest in energy-based modeling 
formalisms. This is above all true in Mechatronics in 
general and Robotics in particular. Euler-Lagrange (EL) 
modeling is the classical approach in Robotics (Siciliano 
et al., 2009). Since relatively recent times the Hamiltonian 
formalism under the new, extended Port-Hamiltonian 
System (PHS) version has also been considered for the 
purposes of nonlinear control system synthesis, mainly in 
the framework of Passivity-Based Control (PBC) (Ortega 
et al., 2002). Besides these two modeling approaches 
rooted in Classical Physics, the Bond Graph (BG) 
technique, an engineering graphical modeling method, has 

gained importance (Karnopp, Margolis and Rosenberg, 
2006), (Merzouki et al., 2012). It uses a reduced and 
unified set of symbols –which describe basic energy 
phenomena and interconnection structure in a physical 
system– able to represent not only the mechanical parts of 
a multidomain system, but also the electromechanical 
actuators and their associated power electronic converters, 
pneumatic or hydraulic actuators, etc. 
One of the advantages of BGs is their modular or object-
oriented modeling nature which allows to construct the 
whole system model by coupling the models of its 
subsystems. However, this advantage comes with a 
drawback in certain cases: when the system order is lower 
than the number of energy variables, there appear 
algebraic constraints among them, fact that leads to sets of 
implicit state equations (Karnopp, Margolis and 
Rosenberg, 2006). Graphically, this translates into 
storages being in derivative causality and the presence of 
algebraic loops or zero order causal paths (ZCP), see (van 
Dijk and Breedveld, 1991) for a classification. This is a 
recurrent problem when modeling mechanical systems, 
especially in systems with kinematic constraints. The 
existence of ZCP always implies that the set of state 
equations is an implicit set of Differential-Algebraic 
Equations (DAEs) with the consequent problems to the 
numerical solvers, see for example (van Dijk and 
Breedveld, 1991) or (Cacho, Felez and Vera, 2000) for the 
numerical issues in solving these systems. Modern 
modeling and simulation (M&S) software is equipped 
with tools capable to handle implicit systems, but they 
frequently fail when the algebraic dependence is complex. 
In these cases, while still useful for direct analysis of 
some system properties, the BG models are not 
immediately useful for simulation or control system 
design. They must be suitably adapted for those purposes. 
To deal with ZCPs the authors in (Karnopp and Margolis, 
1979) add some parasitic components to break the causal 
loops. While this classic engineering approach is simple to 
implement, it is not always evident how to parameterize 
the parasitic components, and results in highly stiff 
models of higher order which increase the total simulation 
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time and, occasionally, the numerical errors too. An 
alternative technique to break the ZCPs without 
modifying the dynamics consists in adding residual sinks 
(rS) in adequate positions of the causal paths (Gawthrop 
and Smith, 1992) (Borutzky and Cellier, 1996). This 
resource has been incorporated in certain simulation tools 
via programming commands, called “constraint” in some 
of them (20sim®, for instance, see (Controllab Products, 
n.d.)). This method solves the problem calculating efforts 
that enforce the geometric or kinematic constraints 
producing the ZCP. As it proceeds numerically at each 
simulation step, it could increase the total simulation time 
and accumulate errors beyond admissible limits. This 
problem can be circumvented when the constraint can be 
explicitly solved and embodied in the residual sink 
(Nacusse and Junco, 2017), as it is done in the example 
case treated in this paper. A radical different approach is 
to collect the dependent storage phenomena in a so called 
storage field (Karnopp, 1992). This approach, while 
abandoning the modular feature of the BGs, yields a 
model without ZCPs between energy storage elements. 
Another solution, which is directly in line with the 
construction of the storage field, consists in choosing sets 
of independent coordinates in the BG model and to derive 
EL- or PHS-models from it (Karnopp, 1977) (Donaire and 
Junco, 2009) (van der Schaft and Jeltsema, 2014).  
The main goal of this paper is to present the derivation 
and discuss the application of the full panoply of the 
previously mentioned alternative models starting from a 
BG of a planar mobile robotic manipulator (PMRM) 
featuring derivative causality. Even if issues related to 
analysis and control synthesis and design are considered, 
the main stress is put on simulation matters. 
The rest of the paper is organized as follows. Section 2 
briefly reviews the EL and PHS formalisms and describes 
the PMRM. The construction of the BGs is done in 
Section 3. First the base BG in derivative causality is built 
and then it is shown how to get the models with rS or 
parasitic elements to break the ZCPs. Second, following 
the procedure detailed in (Karnopp, 1992), a BG featuring 
an IC-Field is derived as a means to avoid the derivative 
causality. Section 4 compactly discusses the derivation of 
EL and PHS models from the BGs previously introduced. 
Section 5 presents some simulation results with the 
PMRM in closed-loop to compare the differents 
approaches in terms of simulation time and error. Finally, 
some conclusions are given in Section 6. 
 
2. MODELING FORMALISMS AND SYSTEM 

DESCRIPTION  
 

2.1. Modeling formalisms 
The EL equations are probably the most classical 
approach to modeling in the field of robot dynamics. 
These equations are obtained performing the operations 
indicated in (1) on the Lagrangian function ℒ(𝑞, �̇�) =
𝒯∗(�̇�) − 𝒱(𝑞), where 𝒯∗(�̇�) is the kinetic co-energy, 
𝒱(𝑞) is the potential energy, 𝑞 and �̇� are the vector of 
generalized coordinates and velocities respectively, and 𝐸 
is the vector of generalized non-conservative forces. 

ୢ
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Since more recently, a Hamiltonian formulation of the 
system dynamics called PHS has gained importance in 
robotics because of the benefits it offers through the 
application of the Passivity-Based Control (PBC) 
techniques to robot control problems (Ortega et al., 2001). 
Classically, the Hamilton equations of motion are derived 
from (1) via the definition of the generalized momenta 
𝑝 ∶=  𝜕ℒ 𝜕�̇�⁄  and the Legendre transformation 𝔊{ℒ(𝑞, �̇�)}
∶= 𝑝்�̇� − ℒ(𝑞, �̇�). This yields the Hamiltonian state 
function as ℋ(𝑞, 𝑝) = 𝔊{ℒ(𝑞, �̇�)} =  𝑇(𝑝, 𝑞) + 𝑉(𝑞), 
where 𝑇(𝑝, 𝑞) is the kinetic energy in the system. 
Furthermore, operating on (1), and assuming a system 
with 𝑛 degrees of freedom, the following Hamiltonian 
model is obtained: 
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This classical model is a particular case of the PHS form 
(3), which explicitly shows the presence of dissipation in 
the system, and admits state variables other than 𝑞 and 𝑝 
describing the system dynamics (van der Schaft and 
Jeltsema, 2014). 

�̇� = [ 𝐽(𝑥, 𝑢) − 𝑅(𝑥, 𝑢)] 𝛻௫ℋ + 𝑔(𝑥) 𝑢 

Here 𝐽(𝑥, 𝑢) is the structure or interconnection matrix 
which conserves the skew-symmetric property of 𝐽 in the 
classical formulation, but does not need to be composed 
by unitary submatrices. The dissipation matrix 𝑅(𝑥, 𝑢) is 
a symmetric, positive (semi–) definite matrix, and 𝑔(𝑥) is 
a matrix weighting the inputs 𝑢. This latter vector is 
composed of control and, possibly, disturbance inputs. 
The presence of 𝑥 and  𝑢 as arguments of 𝐽 and 𝑅 takes 
into account the fact that some interconnection or 
dissipation elements could be state-dependent (the 
magnetic flux modulating the electromechanical power 
exchange in an electric actuator, for instance) in the case 
of 𝑥, and that control actions 𝑢 could be exerted through 
the interconnection structure (as in power electronic 
converters feeding electromechanical actuators) or the 
dissipation structure (as in a hydraulic control valve). 
In this paper the BG approach, an energy-based graphical 
modeling formalism (Karnopp, Margolis and Rosenberg, 
2006), is resorted to as the primary modeling tool. Indeed, 
starting from a first BG model, other BGs are derived 
aiming at different purposes, as well as an EL and a PHS 
model of the PMRM under consideration. 
 

2.2. System description 
The physical system, shown in Figure 1, is a PMRM 
consisting of a mobile base (MB) coupled to a 
manipulator arm (MA) with two rigid links connected by 
revolute joints. The MB is a circular platform driven by 
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three independent Omniwheels symmetrically located at 
120 degrees each other. 
The following set of fourteen relevant coordinates can be 
distinguished in the sketch of Figure 1: 

{𝛺௪ଵ, 𝛺௪ଶ , 𝛺௪ଷ, 𝑥, 𝑦, 𝜙, 𝜙ଵ, 𝜙ଶ, 𝑥ଵ, 𝑦ଵ , 𝑥ଶ, 𝑦ଶ, 𝜃ଵ, 𝜃ଶ} 

where: 𝛺௪ଵ,ଶ,ଷ are the rotational angular positions of the 
three wheels; 𝑥,ଵ,ଶ and 𝑦,ଵ,ଶ are the positions of the 
centers of mass (CoM) of the MB and the two links with 
respect to the inertial Cartesian frame (𝑋ி , 𝑌ி); 𝜙,ଵ,ଶ 
specify, respectively, the angular positions of the 
attachment point of link 1 to the MB and of links 1 and 2, 
all the three of them measured with respect to the 𝑋ி axis; 
and 𝜃ଵ,ଶ are the relative angular positions of the links, as 
indicated in Figure 1. This is not a set of independent 
coordinates. As the three wheels are independently 
actuated, a restriction between the subsets 
{�̇�௪ଵ, �̇�௪ଶ, �̇�௪ଷ} and {�̇�, �̇�, �̇�} can be derived, which 
can be expressed by an invertible matrix, as done in the 
next section. Under the assumption of holonomy of the 
MB, this relationship enforces a restriction among the 
respective coordinates. Also the subsets {𝜃ଵ, 𝜃ଶ} and 
{𝜙ଵ, 𝜙ଶ} are each other dependent. Finally, as shown in 
equation (5), 𝑥ଵ,ଶ and 𝑦ଵ,ଶ can be written in terms of 
𝑥, 𝑦, 𝜙, 𝜙ଵ, 𝜙ଶ. As usual in Robotics, the short 
notations 𝑠థ = sin (𝜙) and 𝑐థభ

= cos(𝜙) have been used. 

𝑥ଵ = 𝑥 + 𝑙𝑐థబ
+ 𝑙ଵ𝑐థభ

𝑦ଵ = 𝑦 + 𝑙𝑠థబ
+ 𝑙ଵ𝑠థభ

𝑥ଶ = 𝑥 + 𝑙𝑐థబ
+ 𝑙ଵ𝑐థభ

+ 𝑙ଵ𝑐థభ
+ 𝑙ଶ𝑐థమ

𝑦ଶ = 𝑦 + 𝑙𝑠థబ
+ 𝑙ଵ𝑠థభ

+ 𝑙ଵ𝑠థభ
+ 𝑙ଶ𝑠థమ

 

The previous discussion shows that the system has five 
degrees of freedom (DoF). Different subsets out of the 
whole set of fourteen coordinates could be used according 
to the modeling approach followed. When modeling a 
manipulator in the EL context is a common practice to 
consider the relative angles between links as generalized 
coordinates, and the torques applied at the joints as 
generalized input forces. The corresponding choice of the 
vector 𝑞 would then be 𝑞ఏ = [𝑥, 𝑦, 𝜙, 𝜃ଵ, 𝜃ଶ]. As the 
EL model presented in this paper is derived from a BG, 
which considers inertial velocities, the angles 𝜙ଵ, 𝜙ଶ 
measured with respect to the inertial frame will be used, 
instead of the relative angles 𝜃ଵ, 𝜃ଶ. To this choice 
corresponds the set 𝑞 = [𝑥, 𝑦, 𝜙, 𝜙ଵ, 𝜙ଶ]் . No matter 
which set of independent generalized coordinates is used, 
the general form of a robot model derived from (1) is 
given in equation (6). 

𝑀(𝑞) �̈� + 𝐶(𝑞, �̇�) �̇� + 𝑅(𝑞) �̇� + 𝐺(𝑞) = 𝑊(𝑞) 𝑇 

Here 𝑀(𝑞) is the symmetric, positive definite inertia 
matrix, 𝐶(𝑞, �̇�) is the Coriolis and Centrifugal matrix, 
𝑅(𝑞) is the matrix of dissipative forces, 𝐺(𝑞) is the matrix 
of gravitational forces and 𝑊(𝑞) is a matrix that weights 
the input torques 𝑇. Notice that, for the robot under 
consideration, 𝑅(𝑞) and 𝐺(𝑞) are equal to zero since no 

friction and only planar movement on a horizontal base 
have been considered. Under these conditions, the model 
reduces to (7). 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� = 𝑊(𝑞) 𝑇  

The first BG presented, from now on called the base BG 
and denoted BG1, will be constructed relating its 1-
junctions to the velocities associated to the dependent set 
𝑞ீଵ = [𝛺௪ଵ, 𝛺௪ଶ, 𝛺௪ଷ, 𝑥, 𝑦, 𝜙, 𝑥ଵ, 𝑦ଵ, 𝑥ଶ, 𝑦ଶ, 𝜙ଵ, 𝜙ଶ]். 
As it has 12 components, i.e., 7 more than the number of 
DoF, there are algebraic dependencies among their 
associated velocities, fact that will produce a BG with 
dependent storages, leading to what is called –in the 
jargon of the BG community – derivative causality or 
ZCP. 
 
3. BG MODEL OF THE PLANAR ROBOTIC 

MANIPULATOR 
The base BG is built following the standard procedure for 
mechanical systems briefly detailed below (Karnopp, 
Margolis and Rosenberg, 2006). It needs the relationships 
among the different velocities considered in the model, 
i.e., among the time derivatives of the components of 
vector 𝑞ீଵ. 
 

3.1. Construction of the base BG 
Equation (8), expressing the relationships between the 
rotational velocities of the wheels, i.e. �̇�௪ =

ൣ�̇�௪ଵ, �̇�௪ଶ, �̇�௪ଷ൧
்
, and the velocities associated to the MB, 

i.e, �̇�ଵିଷ = ൣ�̇�, �̇�, �̇�൧
்
, can be obtained analyzing the 

geometry of the MB and the arrangement of the wheels. 
The shorthand notation 𝑞ଵିଷ ∶= [𝑥, 𝑦, 𝜙]் has been 
used here. On the other hand, equation (9), obtained 
taking the time derivatives of (5), expresses the 
relationships between the Cartesian velocities of the CoM 
of the links, i.e. �̇� ∶= [𝑥ଵ̇, 𝑦ଵ̇, 𝑥ଶ̇, 𝑦ଶ̇]், and the vector of 
velocities associated to the coordinates 
𝑞 = [𝑞ଵିଷ, 𝜙ଵ, 𝜙ଶ]்  of the MB-MA. 𝐽ଵ(𝜙୧) is the Jacobian 
associated to (5). 
 

 
Figure 1: Schematics of the PMRM physical system. 
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The BG interconnection structure is built using (8) and (9) 
by putting a 1-junction to represent each velocity, 0-
junctions and MTFs to represent the sum of flows 
according to (9), and MTFs to represent the modulated 
power transfer among the different parts of the system. 
Finally the base BG, shown in black color in Figure 2, is 
completed by putting the I-elements (representing the 
storage of kinetic energy in the system) and the effort 
sources that model the torque inputs. 
The causality assignment is carried out using the standard 
sequential causality assignment procedure (SCAP) 
(Karnopp, Margolis and Rosenberg, 2006). Integral 
causality can be assigned only to a proper subset of the I-
elements of this BG, the choice being those attached to the 
1-junctions associated with the �̇� velocities. This 
restriction, as already anticipated due to the holonomic 
constraints (5) among the coordinates of the links, induces 
differential causality in some of the storage elements of 
the BG, with possible negative effects in numerical 
simulations of the model. To make it suitable for 
simulation tests, the BG of Figure 2 is adapted in the next 
subsection. For reasons of space and the sake of better 
understanding, the modifications –which consist in adding 
some elements and changing some causal strokes– are 
shown on the same Figure 2, with the new elements 
represented in red color.   
 

3.2. BG for simulation purposes 
Most current M&S software, particularly 20sim 
(Controllab Products, n.d.), a tool accepting model 
specification in the form of BG (among other usual 
formalisms), can deal with models featuring differential 
causality, i.e., in the presence of ZCPs. But not all M&S 
software applications are equipped with this tool, which is 
particularly necessary when the dependency among the 
storages is strongly nonlinear. This is the case of the BG1, 
where this dependency is given by the MTF structure 
having the matrices given in equations (8) and (9) as 
gains. Three different approaches helping to deal with 
ZCPs are treated next. The first one consists in breaking 
the ZCPs by adding effort residual sinks (rSe) elements. 
A residual sink is a computational device that injects the 
necessary effort (or flow) in order to make vanish the 

power conjugated variable entering into the sink, see the 
Appendix for a brief description. This element can be 
interpreted in the EL framework as the addition of 
Lagrange multipliers in the Lagrangian function. The 
second one breaks the causal loops by adding parasitic 
components between the statically coupled storages. As in 
this case these are I-elements, the pertinent parasitic 
components are C-elements, that must be of high stiffness 
in order to alter the dynamics the less possible. The third 
methodology eliminates the causal loops representing the 
whole energy storage by means of an IC-Field (Karnopp, 
1992). Its equivalent is the use of a set of independent 
coordinates in the EL framework. 
 
3.2.1. BG with rS to enforce integral causality 
The addition of rSe done in red color in  Figure 2 converts 
the implicit system of DAEs associated to the base BG 
into the explicit systems of DAEs, shown in (10), subject 
to restrictions (8) and (9). 

𝑀ଵ�̈� = 𝐵(𝑞) 𝜆 + 𝑊(𝑞) 𝑇
𝑀ଶ �̈� = 𝐶 𝜆௫௬

𝑀ఆ �̈�௪ = 𝜏ఆ − 𝜆ఆ

 

Where 𝑀ଵ = 𝑑𝑖𝑎𝑔(𝑚 , 𝑚 , 𝐼 , 𝐼ଵ, 𝐼ଶ), 𝜆 = ൣ𝜆ஐ, 𝜆௫௬൧
்
, 

𝜆௫௬ = ൣ𝜆௫ଵ, 𝜆௬ଵ, 𝜆௫ଶ, 𝜆௬ଶ൧
்
,𝜆ஐ = [𝜆ஐଵ, 𝜆ஐଷ, 𝜆ஐଷ]், 

𝜏ஐ = [𝜏ஐଵ, 𝜏ஐଶ, 𝜏ஐଷ]், 𝑇 = [𝜏ஐ, 𝜏ଵ, 𝜏ଶ]், 𝑀ஐ =
𝑑𝑖𝑎𝑔(𝐼௪ଵ, 𝐼௪ଶ, 𝐼௪ଷ), 𝑀ଶ = 𝑑𝑖𝑎𝑔(𝑚ଵ, 𝑚ଵ, 𝑚ଶ, 𝑚ଶ), 
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The variables 𝜆௫ଵ,ଶ, 𝜆௬ଵ,ଶ and 𝜆ஐଵ,ଶ,ଷ are the outputs of 
the residual sinks, see Figure 2. 

Remark 1. It is stressed here that (10) is equivalent to the 
operations performed by the simulator solver processing 
the BG model, i.e., obtaining this equation system is not a 
task for the user of the M&S software. 
Even with M&S software able to solve numerically the 
added constraints at each integration step, as 20Sim does 
for this example, it is in general convenient to solve the 
algebraic restrictions explicitly offline, and then to add 
them to the model, as this strongly reduces the 
computational cost of the simulation. This is done by 
taking the time derivative over (8) and (9) which results in 
(11) 

�̈� = 𝐽ଵ(𝜙)�̈� + 𝐽ଵ̇(𝜙)�̇�

Ω̈୵ = [𝐴(𝜙) 0ଷ௫ଶ]�̈� + [�̇�(𝜙) 0ଷ௫ଶ]�̇�
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Figure 2: BG model of the planar robotic manipulator. In black: base BG with derivative causality. In red: residual sinks added 
to enforce integral causality in all the storage elements, and modified causal strokes for the originally dependent storages. 
 

 
Figure 3: BG model using an IC-Field. 

 
Figure 4: Block diagram of the IC-Field. 
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λ = ൬
𝑀ఆ 0
0 Mଶ

൨ 
A୰(ϕ) 0ଷ୶ଶ

Jଵ(ϕ୧)
൨ Mଵ

ିଵB(q) − 
−Iଷ୶ଷ 0ଷ୶ସ

0ସ୶ଷ C
൨൰

ିଵ

ቊ− 
𝑀ఆ 0
0 Mଶ

൨ 
A୰(ϕ) 0ଷ୶ଶ

Jଵ(ϕ୧)
൨ Mଵ

ିଵW(𝑞)τ − 
𝑀ఆ 0
0 Mଶ

൨ ቈ
Ȧ୰(ϕ) 0ଷ୶ଶ

J̇ଵ(ϕ୧)
 q̇ + ቂ

τன

0ଷ୶ଵ
ቃቋ

 (13) 
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Then, replacing (11) into the second and third equation of (10) 
results in (14). 
Further, taking the first equation of (10) into (14) results in an 
explicit solution for 𝜆 as in (13). Then using (13) in (10) an 
explicit set of state equations is obtained. 
Remark 2. It is stressed here that the BG-processor takes care 
of solving (10) (implicit in the BG) and (13), which must be 
first obtained by the user and then programmed in the BG in 
place of the rS. 


Mஐ 0
0 Mଶ

൨ 
A୰(ϕ) 0ଷ୶ଶ

Jଵ(ϕ୧)
൨ q̈ + 

Mஐ 0
0 Mଶ

൨ ቈ
Ȧ୰(ϕ) 0ଷ୶ଶ

J̇ଵ(ϕ୧)
 q̇

= 
−Iଷ୶ଷ 0ଷ୶ସ

0ସ୶ଷ C
൨ λ + ቂ

τஐ

0ଷ୶ଵ
ቃ

 

  (14) 

3.2.2. BG with parasite components to enforce integral 
causality 

The rS can be interpreted as the limit case of a storage element 
with its internal parameter tending to zero (Borutzky and 
Cellier, 1996). Thus, a non-ideal implementation of a rS 
would be reached assigning a very low value to this parameter. 
As it would cause a response with high frequency contents, the 
addition of a 𝑅 component of convenient value is suggested to 
quickly damp the fast dynamics. Moreover, these parasite 
components, can model the elasticity and the friction between 
links occurring at the bushings.  
 

 
Figure 5: Residual sink replacing options for. a) rSe, b) rSf. 
 
The use of parasite components to break algebraic loops is the 
most common solution among BG practitioners (Karnopp and 
Margolis, 1979) (Karnopp, Margolis and Rosenberg, 2006) as 
a method to eliminate derivative causality in multibody system 
models due to constraints introduced by mechanism joints, 
because its simplicity to achieve an explicit state equation set 
suitable for simulation without the need of extra calculations. 
As counterpart, the parametrization task of this extra 
component is usually difficult; moreover, this practice results 
in numerical stiff models. A parameter selection method based 
on the energetic activity of the parasitic components can be 
found in (Rideout and Stein, 2003) as well as an account of 
other techniques previously contributed within the bond graph 
community. Using this approach the BG model can be 
obtained replacing the rS components by the options depicted 
in Figure 5. 
 

3.2.3. BG with storage IC-Field 
The BG-theory recognizes explicit and implicit fields 
(Karnopp, Margolis and Rosenberg, 2006). The latter results 
when incorporating several (possibly single-port) components 
of akin type into a unique multiport device. This technique can 
be applied to BGs with derivative causality in order to 
eliminate it by subsuming the dependent storage elements with 
others in integral causality, building in this way one or more 
storage fields. Here all the energy stored in the system will be 
captured in a unique mixed-energy IC-Field. Even if there is 
no potential energy in the system, the C-part in the field 
appears because the topological coupling through the MTFs 
among the I-elements depends on the coordinates. 
There are alternative ways of doing this, but all of them rely 
on the same rationale. It will be explained at an abstract level 
considering the EL model (7), taking into account that it can 
be extracted from the base BG of Figure 2, i.e, there is a direct 
correspondence between both descriptions. The details can be 
checked in (Karnopp, 1992). Equation (7) is a (vector) effort 
balance, which in a BG would occur at a (vector- or field-) 1-
junction. The first term on the left-hand side would be the time 
derivative of the momentum-vector 𝑝 =  𝜕ℒ 𝜕�̇�⁄  of an I-
multiport attached to the 1-junction via a multibond, the 
second term would be the effort generated by a C-multiport 
attached to the same junction. Due to the dependence of both 
matrices 𝑀 and 𝐶 on 𝑞, both energy-storing fields constitute in 
fact a unique mixed IC-field. The second member of the 
equation is interpreted as the action of the (vector of) sources 
acting on the system through a 𝑴𝑻𝑭 of matrix modulus 𝑊(𝑞) 
and the 1-junction. See the detailed expressions ofthe matrices 
𝑀(𝑞) and 𝐶(𝑞, �̇�) in equations (15), (16) and(12). 
The resulting BG model is shown in Figure 3. Every vector 
component referred-to above, up to the IC-Field, is shown in 
its details, i.e., via its scalar components (the three 1-junctions 
on the left excluded, as they do not belong to the vector 1-
junction; they are just shown to improve the understanding of 
the BG through the annotation of the wheels velocities). The 
constitutive relationships of the storage IC-Field defined in 
this way is depicted in the block diagram of Figure 4, where 
each integrator symbol stands for 5 scalar integration 
operations. This model solves the problems associated with 
differential causality assignment in the storage elements via 
the representation of the whole energy in a single storage field. 
 
4. FROM BG MODELS TO EL AND PHS MODELS 
In this section the method presented in (Karnopp, 1977) is 
employed to derive the EL model from the base BG. Then the 
PHS model is derived from the BG model with the storage IC-
Field. 
 

4.1. From BG to EL equations. 
The procedure to obtain the EL equations of motions from a 
BG (Karnopp, 1977) is briefly detailed next: 

1. Assign causality to all effort and flow sources (Se and 
Sf) and extend the causality through the structure of the 
model. 

a)

a.1) a.2)

a.3)

b)

b.3)

b.1) b.2)
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2. Choose a 1-Junction for which the flow has not been 
imposed and add an artificial flow source (Sf) to this 
junction. 

3. Assign causality to the artificial flow source and extend 
it through the structure of the model. 

4. Repeat the step 2 and 3 until all the bonds have been 
causally oriented. 

5. Label the flows imposed by the artificial flow sources as 
�̇�.  

6. Using the standard equation-reading procedure based on 
the causality assignment, read the incoming efforts to the 
artificial flow sources and express them in terms of the �̇�. 

 
Placing the artificial flow sources at the 1-junctions associated 

with the vector �̇� = ൣ�̇�, �̇�, �̇�, �̇�ଵ, �̇�ଶ൧
்
, i.e. choosing the 

outputs of the storage elements in integral causality in the BG 
of Figure 2 as generalized velocities �̇�, would yield 𝑞 =
[𝑥, 𝑦, 𝜙, 𝜙ଵ, 𝜙ଶ]் as the vector of generalized coordinates. 
Because of space restrictions the procedure just described is 
not shown graphically here, but it is stressed that following it 
the EL equations derived from the base BG of Figure 2 are the 
same given in (7), with the following particular expressions 
for the matrices 𝑀(𝑞) and 𝐶(𝑞, �̇�) (detailed expressions for 
𝑀(𝑞) and 𝐶(𝑞, �̇�) are given in (12)): 

𝑀(𝑞) = 𝑀(𝑞) + 
𝐴்(𝜙)𝑀ఆ𝐴(𝜙) 0ଷଶ

0ଶଷ 0ଶଶ
൨ 

𝐶(𝑞, �̇�) = 𝐶(𝑞, �̇�) + 
𝐴்(𝜙)𝑀ఆ�̇�(𝜙) 0ଷଶ

0ଶଷ 0ଶଶ
൨ (16) 

4.2. From BG to PHS models. 
The method presented in (Donaire and Junco, 2009) to obtain 
a PHS from the BG model of Figure 2 cannot be applied 
directly since the causal path that relates the storage elements 
in derivative and integral causality pass through a MTF which 
depends on the state variables. However, see (Donaire and 
Junco, 2009) for a detailed definition, the relationship between 
the BG and the PHS variables are the same, i.e. the inputs and 
outputs of the storage elements in integral causality are, 
respectively, the time derivatives �̇� and �̇� of the state vectors 
and the components of the gradient of ℋ(𝑝, 𝑞). 
Here an explicit PHS is obtained from the BG of Figure 3 
considering the IC-Field model of Figure 4. Reading through 
the causal paths on Figure 3, the relationship between the state 
vector and the gradient components can be obtained. From 
these relationships the skew symmetric structure matrix is 
computed. Then, reading through the causal paths from the 
sources to the IC-Field, the matrix that weights the inputs is 
obtained. Altogether this results in the PHS expressed in (17). 

൬
�̇�
�̇�

൰ = ൬
0 Iହ୶ହ

−Iହ୶ହ 0
൰ 𝛻௫ℋ + ൬

0
𝑊(𝑞)൰ 𝑇 

5. SIMULATIONS RESULTS 
All the models derived from the base BG model are well-
suited for simulation and control system design (at least to 

tune the control law via simulation experiments), but not all of 
them are good for model-based controller synthesis. Here, the 
distinction between control system synthesis, referring to the 
derivation of the control law, and control system design, 
denoting its parameterization, has been made, following 
Wonham (Wonham, 1979). It is not the purpose of this paper 
to provide new control laws nor a new method to obtain them, 
but just to point out the suitability of the previous models to 
these aims. Tuning controllers with the help of simulation is a 
typical method used, for instance, to adjust the gains of a PD 
controller taking care of point-to-point missions. On the other 
hand, only the BG with the IC-field and, of course, the EL and 
PHS models, are suitable for control system synthesis, as this 
needs a proper system model. Indeed, the BG with the residual 
sink is not, as it shows all the energy variables in integral 
causality, thus having an artificially created excess of state 
variables. Nor is suitable for this purpose the BG with the 
parasitic spring-damper components, because it contains the 
spurious states associated to the spring energy variables. 
Readers interested in methods for control system synthesis and 
design of robotic manipulators affine to the modeling 
techniques considered in this paper, could refer to (Siciliano et 
al., 2009) and (Ortega et al., 2013) for classic and energy-
based methods, and to (Merzouki et al., 2012) for methods in 
the BG-domain. 
The model parameters of the links are: 𝑚ଵ = 0.5𝐾𝑔, 𝑙ଵ =
0.5𝑚, 𝐼ଵ = 0.0015𝐾𝑔𝑚ଶ, 𝑚ଶ = 0.5𝐾𝑔, 𝑙ଶ = 0.25𝑚, 
𝐼ଶ = 0.0012𝐾𝑔𝑚ଶ. The simulation parameters of the MB are: 
𝐼୵ଵ = 0.1 𝐾𝑔𝑚ଶ, 𝐼୵ଶ = 0.1𝐾𝑔𝑚ଶ, 𝐼୵ଷ = 0.1𝐾𝑔𝑚ଶ, 𝑟 =
0.05𝑚, 𝑙 = 0.15𝑚 and 𝐿 = 0.2𝑚.  
All the models were simulated in 20sim® (Controllab 
Products, n.d.), in closed loop with the same control law, a 
feedback-linearization based tracking controller, see (Siciliano 
et al., 2009) for a detailed description of the control scheme 
(resulting from an EL-model based design). The Modified 
Backward Differentiation Formula (MDF) has been selected 
as the integration method, with a tolerance for relative and 
absolute errors of 1e-5.  
In this section two simulation scenarios are addressed. In the 
first scenario the desired end effector trajectory is a 
circumference of radius 𝑅 = 𝑙ଵ + 𝑙ଶ with center at the origin 
of link 1. As the PMRM is redundant, infinite configurations 
of vector 𝑞 can realize the desired trajectory. In this particular 
scenario, the end effector trajectory is achieved by moving 
only link 1 while the other coordinates remain constant. The 
performance of the model is analyzed taking into account the 
simulation time and the integral of the error 𝑒 defined in (18), 
where (𝑥, 𝑦) and (𝑥 , 𝑦) are the end effector position and 
desired end effector position respectively. 

𝑒 = ට൫𝑥 − 𝑥൯
ଶ

+ ൫𝑦 − 𝑦൯
ଶ
 

All the four BGs previously presented have been simulated in 
this scenario. Table 1 presents the results. The three first 
simulations present a similar behavior regarding the errors. 
Even though their values are quite similar, the simulation time 
of the BG model with derivative causality is higher. This 
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behavior suggests that the numerical solution of BG with 
derivative causalities takes less time if ZCPs are broken 
adding residual sink efforts or parasitic components. However, 
in the latter case, as parasitic components are a non-ideal 
implementation of residual sinks, there will be a dependency 
of the simulation errors on the parameter tuning criteria. 
Finally, as it can be seen, the IC-Field method presents the 
smallest error, a consequence of the exact cancellation by the 
controller of nonlinearities in the IC-Field BG. But this 
advantage has a negative counterpart: implementing the IC-
Field implies inverting the system inertia matrix in the BG 
model (precisely the nonlinearity cancelled by the controller), 
the cause of the increase in simulation time with respect to the 
two previous models. In this simple system this increase is not 
an issue, but may noticeably slow down the simulation in 
more complex systems. 

Table 1: Simulation times and errors. 

BG Simulations models 
Simulation 

Time [s] 
Error 

BG with derivative causality 2.302 0.1838 
BG with rS (constraint) 0.495 0.1839 

BG with parasitic components 0.453 0.1861 
BG with IC-Field 0.732 0.0021 

The evolution of the positions in the simulation of the IC-
Field model are shown in Figure 6. Starting from the initial 
condition 𝑞 = [4.35,0,0,0,0]்  and zero velocities, the circular 
trajectory is followed. Figure 7 depicts the error (18). 

 
Figure 6: Evolution of the positions in the BG with IC-Field.  

The second scenario has two stages: in the first, the MB 
moves from the initial condition 𝑞 = [0,0,0,0,0]் to the point 
𝑞 = [4.35,0,0,0,0]். In the second, once that point reached, 
the end effector describes a circumference of radio 𝑅 = 𝑙ଵ +
𝑙ଶ by moving only link 1. The evolutions of all the generalized 
positions are depicted in Figure 8. Figure 9 shows the 
trajectory performed by both the end effector and the tip of 
link 1 for this scenario. 

It is concluded that all the BG models are useful for the 
numerical test of the closed-loop performance. 

 
Figure 7: Evolution of the error in the IC-Field BG model. 
 
 

 
Figure 8: Evolution of the generalized positions in the BG 
with IC-Field in scenario 2. 

 
Figure 9: End efector and tip of link 1 in workspace. 
 
6. CONCLUSIONS 
In this paper a BG model of a planar mobile robotic 
manipulator was obtained with the standard BG-modeling 
procedure. This model presents nonlinear state-dependencies 
among storage elements that could be inconvenient for, or not 
manageable by numerical solvers of some simulation tools. As 
solutions to this problem, three modifications of the base BG 
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model have been presented. These modifications consist in 
breaking the ZCP by adding parasitic elements or, 
alternatively, rS, and introducing storage fields with energy 
variables without constraints. Also, the inherent properties of 
BGs have been exploited to derive from the base BG Euler-
Lagrange and Port-Hamiltonian models, the two main energy-
based modeling formalisms used for control system design. 
Even though the main objective of this work was not the 
design of the controller for the planar mobile robotic 
manipulator, a model based control technique has been 
implemented in order to perform simulation allowing to 
validate the BG models. 
 

ACKNOWLEDGMENTS 
The authors wish to thank SeCyT-UNR for the support to this 
research through the financing of PID-UNR_ING502, and 
MinCyT (Argentina) and DST (India) for the financing of 
project IN/14/07 in the framework of the bilateral cooperation 
between Argentina and India. 
 
APPENDIX: RESIDUAL SINKS 
A residual sink element, graphically represented in Figure 10, 
can be interpreted as an energy-storing device whose 
parameter tends to zero. For example, an effort residual sink 
can be interpreted a C element in integral causality: 

 𝐶�̇� = ∆𝑓 

If the parameter C tends to zero, then �̇� is determined by the 
algebraic equation ∆𝑓 = 0. 

 

Figure 10: Effort and flow residual sinks.  
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