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ABSTRACT
In this paper, a framework named model space based PHM 
design is proposed for PEM fuel cell systems. The objective is 
to address the PHM problem in consideration of the various 
operating conditions and system dynamics. In this frame, 
modeling of fuel cell systems is realized via a type of black box 
model named Delayed Feedback Reservoir Computing Model 
(DFRCM). The modeling and the PHM performance is validated 
using experimental data.

I. INTRODUCTION

Knowing that reliability and durability are two key criteria
for commercialization of Polymer Electrolyte Membrane Fuel
Cell (PEMFC) technologies, efforts have been taken not only
to improve the fuel cell (FC) design and assembly, but also to
optimize system operations. This necessitates the availability
of automatic detection and isolation of the faults and recon-
figuration of the control system accordingly. Recently, topics
on Prognostics and Health Management (PHM) of PEMFC
systems have attracted increasing attention of both academic
and industrial communities.

Fault diagnosis and prognosis are two main elements in
the PHM cycle. Fault diagnosis is deserved to detecting and
isolating the faults that occur at different parts of the system.
While the main goal of prognosis is to estimate Remaining
Useful Life (RUL) and associate a confidence interval [1]. A
main branch of theories on diagnosis and prognosis methods
are built with the assumption that the system process model
is available. The fault diagnosis can be realized by comparing
the measured physical variables with the ones that calculated
with the model and a part of measured data. While, prognosis
can be realized by evaluating the variation of some crucial
parameters of the system model.

PEMFC systems are undoubtedly complex and nonlinear
ones which involve the phenomenons of electro-chemistry,
fluid mechanics, thermodynamics. Modeling an arbitrary
PEMFC system with first principle is always considered as a
tough task. As well, various parameters, structures and control
laws exist for different FC designs and applications. Some
well-established models, such as the one proposed in [2], may
not be well fitted for other systems with different system
parameters, constructions and control laws. The adaptation of
a model form for an alternative FC system is not a trivial task.

Meeting the above mentioned difficulties on first principle
modeling, the researchers have been trying to analyze some

crucial variables by adopting advanced signal processing and
machine learning techniques to solve the PHM problems,
meanwhile avoid the modeling process. For instance, concern-
ing fault diagnosis aspect, Zheng et al. [3] propose to realize
the fault diagnosis via analyzing Electrochemical Impedance
Spectroscopy (EIS) with some machine learning tools. Be-
nouioua et al. [4] achieve fault diagnosis by analyzing voltage
signal via wavelet transformation combined with multifractal
formalism. Concerning prognosis aspect, method named Echo
State Network is used to simulate and predict the trajectory of
FC voltage degradation [5].

The common points of the above work is that the FC stack is
assumed to operate at a constant or quasi constant operating
conditions. In such conditions, the factors which affect the
variation of the FC behaviors are limited to the faults and
ageing effect. However, the assumption seems to be hard to
arrive in practical cases. First, the FC systems are usually
operated in a varied operating condition with dynamic and
transitional processes. The variation of FC behaviors can be
affected by changing operating condition other than faults or
ageing effect. Second, it has been found that the degradation
mechanism is highly dependent on operating conditions. The
operations such as dynamic load cycling, startup/shutdown
significantly accelerate the degradation rate of FCs. Hence,
PHM strategy should be designed in consideration of the
different operating conditions and dynamic processes.

To conquer the above mentioned problem, a framework of
PHM is proposed in this paper. In the framework, fault diag-
nosis and prognosis are not investigated in the data space but
in the model space. The inherent idea is that, the data sampled
in normal state with dynamic process in wide operating range
can be described by a behavior model. The parameters of the
model is constant if there are no faults and ageing effect. On
contrary, some faults or degradations related to ageing effect
are detected if the parameters of the model are changed to
some degree.

Considering that a process model can probably well describe
the dynamic process in a wide operating range, and a suffi-
ciently accuracy, generalized, but not sophistical first-principle
model is hard or even impossible to obtain for PEMFC sys-
tems, the model selected to describe the FC stack is a recently
proposed model. The model, inherently belongs to black-box
model class, is named Delayed Feedback Reservoir Computing
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Model (DFRCM) in this study. The main advantages of this
modeling technique are that the model fitting process can be
efficiently performed. Meanwhile, the high modeling precision
can be maintained.

In the rest of the paper, the frame work of model space
based PHM strategy is introduced firstly in Section II. Then,
the main effort is taken to presenting the technique DFRCM
in Section III and its application for PHM oriented PEMFC
system modeling in Section IV. Finally, the study is concluded
in Section V.

II. FRAMEWORK OF MODEL SPACE BASED PHM STRATEGY

Traditionally, PHM is realized in the data space. In this
paper, the framework in which the PHM is realized in the
model space instead of data space is proposed. As shown in
Fig. 1, the model space based PHM strategy is divided into
learning phase and implementing phase. In the learning phace,
the historical data including input and output ones are firstly
segmented into a series of data segments. Then, using these
data segments, a series of models with the same form can be
fitted. Therefore, the model parameters corresponding to the
data segments can be obtained. In the implementing phase,
fault diagnosis and prognosis can be implemented based on the
obtained system parameters. For instance, the fault detection
problem can be considered as a outlier detection problem
[6]. While prognosis can be considered as a curve fitting or
regression problem.
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Fig. 1. Schematic of model space based PHM

The benefits of this framework can be summarized as
follows:

• In a real FC system, a variety of dynamic processes
exist at the moments of starting up, shutting down,
increasing and decreasing the load. The data sampled
in dynamic processes are not time-independent. Dynamic
processes are considered in this framework though fitting
the models with time series.

• The models are fitted using both input and output data.
Therefore, the impacts of input variables other than faults
and ageing effect are taken into account.

III. DELAYED FEEDBACK RESERVOIR COMPUTING
MODEL

Recurrent neural network (RNN) has been considered as a
powerful tool to model a nonlinear and dynamic system, as it
can exhibit a nonlinear dynamical temporal behavior. At the
early of the last decade, a new paradigm, called Reservoir
Computing (RC) emerges which solves the training problems
of RNN effectively from a new perspective [7].

More recently, a simple structure consisting a single non
linear node and a delay line, i.e. DFRCM in this paper,
is proposed to implement RC experimentally via optoelec-
tronic tools [8]. The results proposed in [8] show that the
very simple structure has high-level information-processing
capabilities in both dynamic system modeling and pattern
classification aspects. Taking into account the characteristics of
simple structure and high performance in modeling dynamical
systems, DFRCM is selected to project the data into model
space.

A. Principle of DFRCM

The general scheme of DFRCM is shown in Fig. 2. In the
structure, a nonlinear node with delayed feedback is used.
A reservoir is obtained by dividing the delay loop into N
intervals and using time multiplexing. The input states are
sampled and held for a duration τD, where τD is the delay in
the feedback loop. For any time, the input state is multiplied
with a mask, resulting in a temporal input stream J(t) that is
added to the delayed state of the reservoir x(t− τD) and then
fed into the nonlinear node. The output is calculated as the
weighted sum of the state variables [8].
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Fig. 2. Illustration of basic RC structure [8]

B. Steps to realize a general DFRCM

Step 1: Time multiplexing
The input stream u(k) undergoes a sample-and-hold operation,
resulting in a stream I(t) that is constant in time delay τD, as

I(t) = u(k) ∈ RM×1 for τDk ≤ t < τD(k + 1) (1)

Within one delay of τD, Nnode virtual nodes are defined. τD
is separated into Nnode sub time interval, denoted as δτD =
τD/Nnode.
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Defining periodic mask function, as:

M(t) = WI,i ∈ R1×M , i = 1, . . . , Nnode (2)

for (i−1)δτD ≤ t < iδτD and M(t+τD) = M(t). Generally,
the values of WI,i are chosen randomly from some probability
distribution.

Then, the value to be injected into the reservoir is given by

J(t) = M(t) · I(t) (3)

Step 2: States calculation
In the reservoir, the nonlinear evolution equation is imple-
mented. In this paper, referring the proposal of [9], the
nonlinear equation of the following form is considered:

τ
dx(t)

dt
+ x(t) = βsin2[αx(t− τD) + γJ(t) + Φ] (4)

where τ is the internal characteristic time scale of the nonlinear
dynamic; x(t) is the state variable of the reservoir; β, α, γ,
Φ are parameters to be initialized.

The equation can be realized using the ronge-kutta method
(RK4). The integration time step, denoted as h, is a fraction
of response time τ .

For ith virtual node of the kth discrete reservoir, the state
is given by

xi(k) = x (kτD − (N − i)δτD) (5)

the states of all the nodes in kth discrete reservoir is collec-
tively expressed as x(k) = [x1(k), . . . , xNnode

(k)]T .
Step 3: Output calculation
To

y(k) = WOx(k) =

Nnode∑
i=1

wi · xi(k) (6)

where wi ∈ RL×1 is the element of output weight matrix
WO = [w1, . . . , wNnode

] ∈ RL×Nnode .
So-called ridge regression is used to pursue the weight

matrix in the training process. WO is obtained through

WO = (XT
trainXtrain + λI)−1XT

trainYtrain (7)

where I is Nnode order unit matrix,

Xtrain =

 x(1)T

...
x(Ntrain)T



Ytrain =

 y(1)T

...
y(Ntrain)T


DFRCM can be summarized as Algorithm 1.

Algorithm 1 DFRCM
Training:

1: Collect Ntrain input and output data, i.e. u(1), u(2), . . . ,
u(Ntrain), and y(1), y(2), . . . , y(Ntrain).

2: Initialize parameters β, α, γ, Φ, τD, Nnode, h, τ , λ.
Among them, τ is set as the base value, h and τD are
set with respect to τ .

3: Define mask function M(t) according to (2).
4: Calculate J(t) according to (3).
5: Initial x(t), 0 ≤ t < τD.
6: Calculate Xtrain according to (4) by using RK4 method.

7: Calculate WO according to (7).
Performing:

1: For a new input series u(1), . . . , u(Np).
2: Repeat step 2 to step 6 in training procedure. XNp

is
obtained.

3: Calculate y(1), . . . , y(Np) using XNp
and WO according

to (6).

C. Remarks

Algorithm 1 presents the training and performing proce-
dures to achieve a general modeling. In this study, DFRCM is
adopted not for a traditional modeling goal but for PHM. To
be specific, the parameters of output matrix WO obtained in
training procedure are considered as the variables for diagnosis
and prognosis goals.

IV. APPLICATION OF DFRCM FOR PEMFC SYSTEM

In this section, the DFRCM is applied for real PEMFC
systems in two aspects. In the first aspect, DFRCM is used
for modeling the dynamic behaviors of a commercial PEMFC
system. In the second aspect, DFRCM is used to extract the
PHM oriented features.

A. Example 1: Modeling dynamic profiles for a commercial
PEMFC system

The concerned PEMFC system is a commercial air-cooled
1.2-kW Ballard NEXA system. This stack is supplied by
compressed air and hydrogen and is cooled with air fans. The
detailed technique parameters can be found in [10]. From the
test bench, the stack voltage, stack temperature, load current,
reactant air flow rate, cooling air flow rate, and environment
temperature can be measured. A DC electronic load is used
to simulate an arbitrary current profile with abundant dynamic
processes.

In the experiment, a dynamic current cycle during 522 s
was produced using the electronic load. The current form is
shown in Fig. 1. To construct the DFRCM for this cycle, the
environment temperature, current, cooling air flow, and stack
temperature are considered as the input variables. While the
reactant air flow and stack voltage are seen as the output
variables. Actually, the reactant air flow is regulated with
respect to the current value. The stack voltage is normally
considered as the output variable of the whole system.
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Fig. 3. Load current profile

The first 312 samples are used for training, while the rest
211 samples are used to test the trained model. The parameters
used for the modeling procedure are summarized in Table I.

TABLE I
PARAMETERS USED FOR MODELING NEXA PEMFC SYSTEM

β α γ Φ τD Nnode h λ

0.85 1 0.5 0.76 160 400 0.02 5 × 10−6
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Fig. 4. Comparison between measured and simulated stack voltages

The real stack voltage response and the model results are
illustrated in Fig. 3. The proposed fuel cell stack model
demonstrates great accuracy with regard to the experimental
measurements. For the entire stack operating range, the max-
imum relative error in voltage is less than 5%. The voltage
dynamic behavior is well reproduced by the model.

B. Example 2: model based PHM

1) Experimental setting: The concerned fuel cell stack is
designed with the structure of open cathode and dead-end
anode. Some crucial parameters are listed in Table II.

TABLE II
PARAMENTERS OF THE INVESTIGATED FUEL CELL STACK

Fuel cell type Open cathode/Dead-end anode

Nominal pressure at hydrogen inlet 0.35 bar
Number of cells 15

Nominal output current 8 A
Nominal output power 84 W
Maximum temperature 75 °C

Maximum current 13.45 A
Lowest permitted stack voltage 7.5 V

A current profile obtained from the real motive application
is simulated thanks to the programmable DC load. A length
of current shape is shown in Fig. 5. It can be seen that the
current varies between 0 and 8 A.
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Fig. 5. Current profile

Stack voltage, individual cell voltages (cell voltages 1 to
15), temperatures (temperatures of the positions cell 1, cell 8,
and cell 15), current. Sample frequency is 5 Hz.

The data during the 1500 h test were recorded. The
overview of the stack voltage evolution is shown in Fig.
6(a). Some details can be seen in Fig. 6(b). These stops are
considered as the environment disturbances in this study.

2) DFRCM model identification: The whole data are di-
vided into 1000 equal segments. Thus, the duration of each
segment is 1.5 h. For each data segment, a DFRCM model
identification is implemented. The model input is defined as
the current values of present sample and last two samples
(I(k), I(k − 1) and I(k − 2)). After model identification
procedure, the output is defined as the current stack voltage
(V (k)). The model identification result, i.e. the model output
and real measurement, in a segment is shown in Fig. 7. It is
seen that the model fits the system behavior well.

3) Prognosis implemented in model space: With the iden-
tified model, the prognosis can be implemented in this model
space. Here, by setting the input as constant, the corresponding
steady state output voltage can be reconstructed. The output in
nominal condition can thus be pursued and considered as the
prognosis oriented feature. Based on the experimental data,
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Fig. 6. Stack voltage evolution
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the calculated nominal stack voltage versus time is shown as
the blue line in Fig. 8 and Fig. 9.

With the extracted nominal stack voltage evolution, the
prognosis can be implemented by creating a time series model
and using the model for prediction. Here, the time series
model is a 2nd order state-space system with noise input. The
implementation details can be found in [11].

Fig. 8 and Fig. 9 show the mean prognosis results. The
prediction horizon in Fig. 8 is 750 h, while the one in Fig.
9 is 300 h. The bounders which correspond to the 99.7 %
confidence interval. It can be seen that the prediction values
well fit the real signal evaluation in the two cases.
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Fig. 8. Model identification result

C. Discussion

1) In order to obtain a precise model, the data used for
model identification should contain sufficient informa-
tion on the concerned system dynamics. This requires
the data segment should be large enough.

2) The DFRCM is used to model the concerned fuel cell
systems. It should be noted that this specific model
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can possibly be replace by other models to obtain a
comparable performance.

V. CONCLUSION

In this paper, model space based framework is proposed to
design PHM for FC systems. DFRCM, a black-box model, is
used as the modeling tool to demonstrate the proposed frame-
work. By exploring the evaluation of the model parameters,
PHM in dynamic operating conditions can be realized without
knowing the first principle system model in prior. DFRCM
is firstly used for modeling the NEXA fuel cell system to
validate its modeling capability. Then, this modeling tool is
used to solve the prognosis problem for another fuel cell
system. The results show that DFRCM is suitable for modeling
the dynamics of fuel cell systems. Meanwhile, the model space
generated by DFRCM identification can be used for PHM and
acquire satisfying performance.
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