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ABSTRACT 

This paper proposes an anti-windup solution for a STR 

controller with two degrees of freedom (2DoF). The 

main advantage of this kind of controllers is that the 

dynamic for tracking references can be different than 

the one specified for disturbance rejection. As a design 

condition, it is also proposed to eliminate the steady 

state error so that, the presence of an integral term in 

the controller is mandatory. Due to the physical 

limitations and an unstable factor in the controller, an 

anti-windup strategy is needed. These logics or non-

linear schemes are extensively studied for classical 

controllers but not for 2DoF strategies. 

The proposal has been verified both in simulation and 

on a physical plant. 

Keywords: two-degree control, anti-windup, integral 

action. 

 

1. INTRODUCTION 

Controllers with two degrees of freedom (2DoF) are 

attractive because they can separate the two control 

problems: the set point (SP) tracking and the 

disturbance rejection.  

PIDs are extensively used in controllers of two degrees 

of freedom (PID-2DoF). Tripathi R. and Hanamoto T. 

(2017) show the improvement between 1-DOF and 2-

DOF for the optimization of a dc voltage controller. 

Sahu R., Panda S., Rout U. and Sahoo D. (2015) 

compare different strategies and expose a new and 

better technique. Wang D., Liu T., Sun X., Zhong C. 

(2016) propose a discrete-time 2-DOF design method 

for integrating and unstable process with time delay. 

Even the anti-windup solutions have been largely 

studied for PID systems, as can be seen in the review of 

solutions presented by Espina J., Arias A., Balcells J. 

and Ortega C. (2009), it is not a closed subject. 

Particular solutions are always being studied and 

compared for specific systems; such is the case of Perez 

T. (2009), who presented an anti-windup design for the 

dynamic positioning of marine vehicles with control 

allocation. However, there are no previous thorough 

studies that provide a satisfactory Anti-Wind-Up 

solution for an STR 2-DoF system as for PIDs.  

Although the PID-2DoF is deeply studied and used, the 

STR has some advantages since any kind of dynamics 

can be introduced. Some authors (Matijevic M., 

Sredojevic R. and Stojanovic V., 2011), argue that the 

little industrial use of the STR is due to its complexity 

in the implementation. This paper shows a simple way 

to solve STR implementation problems, in particular 

the windup effect. 

The main advantage of a STR controller is its structure, 

which is able to carry out improved performances due 

to the fact that it stores several states of the set point, 

the process variable and the manipulated variable. What 

is more, STR method allows the user to divide the two 

degrees of freedom into individual and understandable 

elements and to add terms without being restricted to 

any amount of degrees. 

Nevertheless, a set-back of this structure is that the 

implementation of traditional anti-windup structures 

does not work. The anti-windup solution is more 

complex than the used in the classical controllers, where 

only one previously manipulated variable value is 

needed. 

Moreover, it is well known that controllers with any 

unstable term (e.g. integral action) working on a process 

with limited actuators can cause malfunctioning of the 

closed loop system or even have stability problems. For 

instance, if there is an integral term and the calculated 

control action is unfeasible (due to any actuator 

limitation), the integral calculation will increase 

indefinitely (windup effect). When the error changes its 

sign, the manipulated value variation will be delayed 

because of the windup. This problem is strictly of a 

physical nature because the model of the controller does 

not contemplate any kind of restriction. 

 

The main goal of this paper is to provide an anti-windup 

solution that works for a 2-DoF controller without 

adding an extra parameter decision or an extra 

mathematical resolution.  

First, we will provide a characterization of anti-windup 

and of the model used for investigation. Then we will 

explain the method used to build the STR control 

model. Next, we will assess the different anti-windup 

solutions for STR one degree of freedom controllers. 

And finally, we will present a solution for STR 2-DoF 

controller. 

 

2. PROCESS MODEL 
The process model adopted is the classical discrete 

linear model expressed in the following equation: 

kk uzByzA )()( 11    (1) 

where u(k) is the manipulated variable (MV) and y(k) 

the process variable (PV). 

The degree of )( 1zB  must be less than the degree of 

)( 1zA . The polynomials )( 1zA  and )( 1zB  have 
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no common factor, and the polynomial )( 1zA  is 

monic. 

  

3. CONTROL LAW 

Next figure shows the STR structure (Astrom and 

Wittenmark, 1997) where the block "process" 

represents the plant to be controlled. 

 
Figure1. STR Block Diagram 

 
The resulting linear controller is: 

     1 1 1

k k kR z u T z r S z y     (2) 

The closed loop transfer function becomes 

  kk spzTzByzSzBzRzA )()()()()()( 111111    (3) 

where the characteristic equation 

  )()()()()( 11111   zAlczSzBzRzA  (4) 

can be solved as a Diophantine equation. There is not a 

unique solution for the equation and this can be used to 

solve the 2DoF controller. Defining: 

       

     

     

1 1 1 1

1 1 1

1 1 1

mr

mr

mr lc

R z A z R z z

S z A z S z

T z B z A z

   

  

  

 





 (5) 

with 

 1 11z z     

           1 1 1 1 1 1

lcA z A z R z z B z S z       

       1 1 1 1

m m mG z B z B z A z     

In this way, it can obtain: a) the relation between PV 

and set point (SP) is  1

mG z , which can be arbitrarily 

defined; b) due to  1z , the controller has integral 

action, and c) the disturbance rejection dynamic is set 

independently, by the choice of  1

lcA z . 

Without any loss of generality, as an example, a process 

model of first order will be considered as follows: 
1

1

1

1

1A a z

B b z





  




 (6) 

 

The minimum degree of  1R z  and  1S z are: 

 1 1

11R z r z    

 1 1

0 1S z s s z    
(7) 

and 

 1 1 2 3

1 2 31lc lc lc lcA z a z a z a z        (8) 

 

Hence solving the diophantine equation using the 

Sylvester matrix: 

1 1 1 1

1 1 0 2 1

1 1 3

1 0 1

1 0

0 0

lc

lc

lc

b r a a

a b s a a

a s a

      
     

  
     
          

 (9) 

The unknown controller coefficients 

 1 0 1r s s always can be found if an only if 

 1A z and  1B z have no common roots. 

 

3.1. Control Law without Anti-Wind-Up 

According to (2) and (5), the resulting control law has 

the following polynomials: 

1 2 3 4 5

1 2 3 4 5

1 2 3 4

0 1 2 3 4

1 2 3

0 1 2 3

1R r z r z r z r z r z

S s s z s z s z s z

T t t z t z t z

    

   

  

      


    


   

 (10) 

 

4. ANTI-WINDUP STUDY FOR STR MODEL 

WITH ONE DEGREE OF FREEDOM 

There are two common situations that may lead to the 

need for an anti-windup solution: a) when a set point 

greater/less than the physically possible achievable is 

requested, and the manipulated variable saturates 

without reaching the set point; b) when a great 

performance is required, and the system is expected to 

react very fast so, the control actions are too violent, 

finding the upper or lower physical limitation. 

As is proposed in (Huang, Peng, Wang, 2008), the anti-

windup solutions can be divided in two groups: a) 

conditional integration and b) feedback calculation. In 

the former, the integration value is frozen and forced to 

be near the actual plant input (MV). In the later, an 

internal second feedback, which is related to the 

integrator term and the saturation element, is 

introduced. 

First, the anti-windup solution for the scheme with one 

degree of freedom will be analyzed, in order to 

demonstrate that the difference with PIDs is not only 

related to the two degrees of freedom condition. In this 

case the closed loop poles to follow references and to 

reject disturbances are the same. 

 

4.1. Conditional Integration 

As a first case of study, the conditional integration 

solution will be introduced. The control law, in case of 
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saturation, will be forced to be near the actual input 

variable (MV).  

Three controllers are initially simulated, namely: 

 Controller 1: with no anti-windup logic. 

 Controller 2: the actual MV is saved for futures 

calculations. 

 Controller 3: the actual MV is saved for futures 

calculations, and a “set point setup” is 

performed. 

The "set point setup" holds the actual set point value to 

a feasible reachable PV. Then, the system will store the 

saturated value as the new set point. When the 

stationary value for that situation is finally reached; the 

error will be zero because the system is in the new 

desired point. 
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Figure 2: Conditional Integration, 0.98Amrp   

 

Figure 2 shows a simulation of the three controllers 

with all the closed loop poles equal to 0.98Amrp  , and 

compares how the controllers work when set point is 

greater than the physically possible achievable for 

process variable and manipulated: 

Controller 1: the system gets stuck due to the 

difference between set point and process variable, 

which results in an accumulation of error. The control 

action starts working again after several further error 

samples of opposite sign, because there is no anti-

windup logic being applied. 

Controller 2: when the accumulated error is not 

correctly adjusted, the system may act automatically 

after the set point has been changed because the 

calculation of the control variable allows this. However, 

it may have an underdamped response, as is the case 

between times 1500 and 2000 in Figure 2. 

Controller 3: It works following the reference model 

without any delay. As can be seen, the set point error 

does not influence the performance either (response 

appears after time 1500 and 2500). Since the system 

stores previous set point values, these become a key 

factor in the anti-windup solution. 

In order to test Controller 3 against the second typical 

case where an anti-windup solution is required (that is, 

when great performance is required), the model poles 

0.90Amrp  is used. The simulation result can be seen in 

Figure 3. 
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Figure 3: Conditional Integration for 0.90Amrp  . 

 

Here, an underdamped behaviour appears. The 

conclusion is that this technique depends on the 

required performance. Therefore, the anti-windup logic 

has not only to limit the MV, but it has also to 

recalculate its internal value for further states.  

 

4.2. Integrator Feedback  

These methods consist of adding a feedback related 

with the saturation element and the integrator term. 

 

4.2.1. Tracking Feedback 

The integral part is separated from the rest of the 

controller. In Figure 4, it is shown the difference 

between the calculated manipulated variable (CMV or 

v in the figure) and the actual manipulated variable 

(MV or u in the figure).  

Both signals are compared and the difference affected 

by a gain, is fed to the integrator input. 

 

 
Figure 4: Tracking Feedback 
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If the MV is not saturated, this feedback has no effect; 

when the actuator is saturated, the feedback attempts to 

make the error signal equal to zero changing the integral 

value. 

The feedback gain (2, in the figure) has to be adjusted 

for having the fastest correction. 
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Figure 5: Tracking Feedback vs. Controller3 when the 

set point is greater than the physically achievable, 

0.98Amrp  . 

 

This controller uses several (more than a PID) past 

samples of PV and MV and SP. Therefore, the tracking 

feedback scheme presents a delay when the SP is not 

reachable. This effect can be seen in Figure 5. 

Thus, the magnitude of the difference between the set 

point and the process variable will affect the subsequent 

performance of the system, especially in the response 

time. 
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Figure 6: Tracking Feedback (green) vs. Controller3 

(light blue) when the set point is greater than the 

physically achievable. CMV. 

 

The CMV, by both methods in the saturation situation is 

shown in Figure 6 and 8. In the case of Controller 3, the 

first points in the saturation present difference between 

the CMV and the MV. This is due to the fact that the 

steady state has not been reached and the error is not 

zero. 

However, in the tracking feedback remains in a constant 

oscillating error that is quickly eliminated after the set 

point changes, but there is a small delay in the reaction.  

Figure 7 compares Tracking Feedback, Controller3 and 

an ideal situation without saturation, for the case of a 

great performance requirement. Until the manipulated 

variable is not saturated, both schemes give the same 

sequence of values and the same plant response. When 

the MV becomes saturated, the Controller 3 has an 

undesired underdamped performance while the tracking 

feedback reaches the set point with overdamping. 
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Figure 7: Tracking Feedback, Controller3 and Ideal 

Situation, for great performance case, 0.90Amrp  . 
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Figure 8: Tracking Feedback (green) vs. Controller3 

(light blue) for great performance case, 0.90Amrp  . CMV. 

 

It is interesting to see the calculated values of the MV in 

this situation (Figures 8). The conclusion is that the 

Proc. of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2017 
ISBN 978-88-97999-88-1; Bruzzone, Dauphin-Tanguy, and Junco Eds.                                                  

38



Tracking Feedback scheme is better in this situation, 

with a drawback: the response depends on the feedback 

gain that is another parameter to be set. 

The aim of this work is to present a method for 

designing a controller with anti-windup without 

requiring any extra parameter. 

 

4.2.2. Saturated Integration  

Another way to obtain an integral with saturation is 

shown in Figure 9. The advantage of this scheme is that 

there is not any unstable block.  

 
Figure 9: Saturated Integration 

 

Figure 10 shows two overlapped SP changes: a) SP 

changes from 180 to 40 (blue) and b) SP changes from 

90 to 40 (green). It can be seen that in case a) there is a 

greater delay in the MV (right side of figure 10). In this 

anti-windup scheme does not have into account the SP 

value, which should be considered to improve the logic.  

It can be proved that this delay depends on the position 

of the reference model poles. 

 

0 5 10 15 20 25
20

40

60

80

100

120

140

160

180

200

Time

P
ro

c
e
s
s
 V

a
ri
a
b
le

 

 

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Time

M
a
n
ip

u
la

te
d
 V

a
ri
a
b
le

Sp 180

Sp 90

Reaction 180

Reaction 90

 
Figure 10: The response in Performance Requirement 

with model poles of 0.90Amrp  . 

 

4.2.3. Polynomial Characteristic Observer 

Astrom and Wittenmark (1997) propose a different 

possible scheme that adds a characteristic polynomial 

observer  1W z to the system. Figure 12 presents the 

block diagram. 

 

 
Figure 11: Polynomial Characteristic Observer 

 

The linear equation of control (Equation 2) can be 

expressed as: 

     

    

1 1 1

1 1

k k k

k

W z v T z r S z y

W z R z u

  

 

 

 
 (11) 

 

This controller is equivalent to Equation 2 while the 

system is not in a saturated state; when saturated or 

equal to one of the saturation limits,  1W z will 

determine the dynamics of the saturator. However, the 

authors don’t explain how to define  1W z , which is 

a key factor. 

Considering that  1R z  is derived from Equation 5, 

 1W z can be defined as any part of  1R z or a 

combination of them.  

On the other hand, the stability must be guaranteed in 

the saturation situation or in the linear behavior. To 

assure the stability in the saturation situation, the 

polynomial    1 1T z W z 
must be stable which is 

easily seen rearranging Figure 11 as can be shown in 

Figure 12.  

 

Figure 12: Rearrangement of Astrom’s and 

Wittenmark’s Polynomial Characteristic Observer 
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If, by instance,  1 1

11W z r z   , then the system 

will be unstable in the saturation situation. Figure 13 

shows the response in this example. 
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Figure 13: Polynomial Characteristic Unstable Observer 

 1 1

11W z r z   . 

If    1 1

11 mrW z r z A   , the system is equivalent 

a pure integration feedback, which is not suitable for 

STR systems.  

If  1

mrW z A  , due to mr lcA A , the dynamic of 

then    1 1T z W z cte   . Thus, in saturation 

state, the controller update is made with actual values 

because they are updated with the manipulated variable 

that goes into the process (MV) and the process variable 

(PV). Then, the resulting system has a correct anti-

windup solution for all one degree of freedom cases. 
 

 
Figure 14: Polynomial Characteristic Observer, 

 1

mrW z A    

 

Figure 14 shows the block logic for the anti-windup 

solution for the STR 1-DOF. In the next Figure (15), the 

evaluated simulation for the example, the anti-windup 

for the same set of set points when the poles are 

positioned in 0.9 or 0.98, are shown. 
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Figure 15: Anti-windup solution for One Degree of 

Freedom  1

mrW z A  , poles 0.98Amrp   and 

0.90Amrp  . 

 

In conclusion, if mr lcA A  and the Control Law 

method (see section 4) is used to define all the 

polynomials, then it will always be possible to apply 

this anti-windup solution to any processes model. 

 

It is interesting to remark that with this solution one 

degree is added to the internal feedback of the Pure 

Integrator. This is clearly related to the fact that the 

STR model has higher degrees than the PIDs and that 

conventional system is not enough to guarantee anti-

windup for any possible situation. 

 

5. ANTI-WIND-UP STUDY FOR STR MODEL 

WITH TWO DEGREES OF FREEDOM 

With the scheme studied above, the anti-windup 

solution works exclusively when the poles are equal 

( mr lcA A ) because the term T  saves previous states. 

Then, if mr lcA A , which is the case in a two-degree 

of freedom systems, there is no anti-windup solution 

because the dynamics are not being completely 

canceled with  1W z  (see Figure 16). 
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Figure 16: No anti-windup solution for Two Degrees of 

Freedom mr lcA A , with  1

mrW z A  , poles 

0.98Amrp   and 0.90Amrp  . 

 

5.1. The anti-windup solution for 2DoF Controller  

Since  1T z dynamic is not cancelled, this 

polynomial is introduced in the saturation feedback. 

 

 
Figure 17: T Rearrangement 

 

  
Figure 18: Final anti-windup Block Diagram 

 

Figure 17 shows the rearrangement of Figure 12 and 

Figure 18 shows the new strategy introducing lcA  to 

the saturated intern loop. 

Hence, the Block Diagram is rearranged so that all the 

terms that use stored data are updated with the actual 

values of ku  and ky .  

As      1 1 1

mr lcT z B z A z   , then it turns out an 

open direct loop without dynamic can be used if and 

only if 
lcA is introduced in the loop.   

Since the internal saturation feedback has 

the    1 1

lcR z A z 
term inside, this diagram 

eliminates all previous information in case of saturation, 

leaving all the values stuck in the actual process-related 

values without accumulating any kinds of error. What is 

more, this method offers the possibility to decrees the 

order of the mrA  polynomial 

Figure 19 shows the anti-windup solution where 

mrA has three different degrees. 

Note 1: Figure 19 does not attempt to show better 

response, the regulation of the poles will deal to a better 

response or not. 
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Figure 19: Three different degrees of mrA with Anti-

Wind-Up solution, poles 0.98Amrp   and 0.90Amrp  . 

 

This gives a solution to the problem of anti-windup that 

is completely independent of the model and that is not 

subjected to any extra decision. It can be seen that the 

resulting performance is overdamped for all the times, 

regardless of the requirement of the system. 

 

6. EXPERIMENTAL APPLICATION 

Finally, the STR anti-windup solution for a real plant is 

presented. It is implemented in a tank, where the 

process variable is the water level and the manipulated 

variable is the valve, with limits 0min u  and 

0min u . The process to be controlled can be 

described as: 
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 (12) 

For modeling the plant, a test by exciting the plant with 

a pseudo-random binary sequence (PRBS), was 

performed. The parameters were obtained by least 

squares identification. 

For this model, with 0.98Amrp   and 0.90Amrp  , the 

polynomial controller result as follow: 
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Figure 20: Comparing Pure Integration Feedback, 

Polynomial Characteristic Observer 
mrAW   and the 

proposed anti-windup solution. Poles 0.98Amrp   and 

0.90Amrp  . 

In Figure 20, the response of the physical process is 

shown for different anti-windup strategies. The setpoint 

changes in t = 200 seconds and the solution proposed in 

this paper is the only one with no delay in response. 

It should be noted that the manipulated variable has a 

reaction problem. It is the so-called "stick-slim motion", 

and it is due to the friction of the actuator that 

introduces an oscillation in its movement but that is not 

observed in the process variable. 

 

7. CONCLUSION 

This new anti-windup strategy has been successfully 

analyzed for a STR controller, with either one or two 

degrees of freedom. 

Throughout the analysis of traditional solutions, it was 

possible to see not only why they are not accurate 

enough solutions, but also how different terms of the 

model influence the anti-windup logic, thus gradually 

leading to the proposed solution. 

It was also demonstrated that when the anti-windup is 

guaranteed to work for Set Point Greater/Less than the 

Physically Possible Achievable, it does not necessarily 

guarantee that it also works for great performance 

requirement (fast reaction), and vice versa. In order to 

state that the solution works properly, both situations 

must be verified. The reason for this is that the system 

is in different physical situations; hence, the process 

behavior is different and the controller receives other 

sorts of data. 

The solution finally proposed is a simple expression of 

an internal feedback. In addition to the simulation, it is 

shown the anti-windup problem and solution for a real 

process. 

This study is relevant to develop different control 

strategies unlike PIDs. The presented STR method 

allows the user to effortlessly divide the two degrees of 

freedom into individual and understandable elements 

and to add terms without being restricted to any model 

dimension. More importantly, the saturation is no 

longer a problem that doesn't allow the use of this kind 

of algorithms. 
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