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ABSTRACT 
The cantilever beam is a component widely used in 
numerous engineering systems with its geometric and 
material properties varying depending on the application. 
Calculating the dynamic behavior of a cantilever beam is 
a challenging task since the critical physical phenomena 
and interactions vary significantly based on the geometry 
of the beam. There exist a number of theories that can be 
used to model the transverse motion of a cantilever beam 
of which one of the most commonly used is the 
Timoshenko beam theory. The Timoshenko theory is 
relatively more complex, than other theories used to 
model transverse motion of beams, however it is 
frequently used because it gives accurate predictions over 
a wider range of beam parameters. When a beam is part 
of a system as an individual component, then the model is 
developed using a finite segment approach since the 
beam can be easily connected with other lumped 
parameters components. In the case of a finite segment 
representation, it is critical to know the number of 
segments that the beam is divided into, in order to have 
accurate predictions of the dynamic behavior. Previous 
work by the author proposed a systematic procedure for 
addressing the issues of number of segments and physical 
phenomena to include in a dynamic model of a cantilever 
beam. It is the objective of this paper to extent that work 
by using variable segment length in order to further 
reduce the complexity of the model. 

The paper presents a new approach for developing a 
reduced model of a cantilever beam. The beam is 
discretized through the finite segment approach, however, 
the segments do not have the same length across the axis 
of the beam. More refined division is used at the areas 
with high dynamical behavior and a coarser division is 
used elsewhere. The model is developed using the bond 
graph formulation. The activity metric and the Model 
Order Reduction Algorithm is then used to determine 
which physical phenomena (inertial and compliant) need 
to be included in the model in order to have accurate 
predictions of the dynamic behavior. An illustrative 
example is provided to demonstrate the new 
methodology. 

Keywords: Finite segment modeling, cantilever beam, 
model reduction, activity metric. 

1. INTRODUCTION
Modeling and simulation have yet to achieve wide 
utilization as commonplace engineering tools. One reason 

for this is that current modeling and simulation 
techniques are inadequate. Specifically, a major 
disadvantage is that they require sophisticated users who 
are often not domain experts and thus lack the ability to 
effectively utilize the model and simulation tools to 
uncover the important design trade-offs. Another 
drawback is that models are often large and complicated 
with many parameters, making the physical interpretation 
of the model outputs, even by domain experts, difficult. 
This is particularly true when “unnecessary” features are 
included in the model. 

A variety of algorithms have been developed and 
implemented to help automate the production of proper 
models of dynamic systems. Wilson and Stein (1995) 
developed MODA (Model Order Deduction Algorithm) 
that deduces the required system model complexity from 
subsystem models of variable complexity using a 
frequency-based metric. They also defined proper models 
as the models with physically meaningful states and 
parameters that are of necessary but sufficient complexity 
to meet the engineering and accuracy objectives. 
Additional work on deduction algorithms for generating 
proper models in an automated fashion has been reported 
by Ferris and Stein (1995), Ferris et al. (1998), and 
Walker et al. (1996). The above algorithms have also 
been implemented in an automated modeling computer 
environment (Stein and Louca, 1996). 

In an attempt to overcome the limitations of the 
frequency-based metrics, Louca et al. (2010) introduced a 
new model reduction technique that also generates proper 
models. This approach uses an energy-based metric 
(element activity) that in general, can be applied to 
nonlinear systems, and considers the importance of all 
energetic elements (generalized inductance, capacitance 
and resistance). The contribution of each energy element 
in the model is ranked according to the activity metric 
under specific excitation. Elements with small 
contributions are eliminated in order to produce a reduced 
model using a systematic methodology called Model 
Order Reduction Algorithm (MORA). The activity metric 
was also used as a basis for even further reduction, 
through partitioning the model into smaller and 
decoupled submodels (Rideout et al. 2007). 

Such modeling approaches should be able to handle 
real mechanical systems that typically include distributed 
parameter (continuous) components, e.g. rods, beams, 
plates, etc. Frequently, modeling objectives and 
assumptions allow the lumping of continuous component 
properties into ideal energy elements that lead to a 
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dynamic model described by a set of ordinary differential 
equations. However, when property lumping is not 
acceptable, modeling of a continuous component requires 
a different approach since its inertial, compliance and 
resistive properties are spatially distributed and cannot be 
lumped into single equivalent elements. The dynamic 
behavior of continuous components is thus described by 
partial differential equations with derivatives in both time 
and space. Another approach that is considered in this 
work is the modeling of a continuous component with 
finite segments that are spatially distributed. The 
accuracy is a function of the number of segments for this 
approximation. The model accuracy improves as the 
number of segments increases. Model accuracy and the 
required number of segments can be addressed using a 
frequency-based metric (Ferris et al., 1998). 

Beyond physical-based modeling, modal 
decomposition is also used to model and analyze 
continuous and discrete systems (Meirovitch, 1967). One 
of the advantages of modal decomposition is the ability to 
easily adjust (i.e., reduce) model complexity since all 
modes are orthogonal to each other. The reduction of 
such modal decomposition models is mostly based on 
frequency, and the user defined frequency range of 
interest (FROI) determines the frequencies that are 
important for a specific scenario. In this case, modes with 
frequencies within the FROI are retained in the reduced 
model and modes outside this range are eliminated. As 
expected, mode truncation introduces error in the 
predictions that can be measured and adjusted based on 
the accuracy requirements (Li and Gunter, 1981; Liu 
et al., 2000). 

In the case of modeling continuous components 
(beam), element activity can be used to address model 
complexity in terms of number of segments and physical 
phenomena to be included in the model (Louca, 2015). 
The optimum number of segments can be defined using 
the input activity and the important physical phenomena 
using the activity of each energy element (inertial, 
compliant, and resistive). This optimum complexity was 
identified using a uniform division of the beam into 
segments of equal length. That analysis indicated that the 
segments towards the ends of the beam have higher 
activity due the higher inertial or compliant effects, 
leading to a reduced model with accurate predictions. 
Based on this observation the work in this paper 
introduces a new procedure for modeling continuous 
components, e.g., cantilever beam, in which the beam is 
not divided into equal length segments. Shorter segments 
are used towards the ends of the beam with the goal to 
have an even lower complexity of the reduced model. 

This paper is organized as follows: first, background 
about the energy-based activity metric is provided, along 
with the reduction algorithm and the closed-form 
expressions for steady state activities. Next, the equation 
formulation for a finite segment cantilever beam with 
non-uniform segment lengths is presented. Then the 
complexity of a cantilever beam is analyzed using 

MORA. Finally, discussion and conclusions are given in 
the last section. 

2. BACKGROUND
The original work on the energy-based metric for model 
reduction is briefly described here for convenience. The 
activity metric has been previously formulated for 
systems with nonlinearities in both the element 
constitutive laws and junction structure (Louca and 
Yildir, 2006; Louca et al., 2010). In this work, the 
activity metric is applied to linear systems for which 
analytical expressions for the activity can be derived, and 
therefore, avoid the use of numerical time integration that 
could be cumbersome (Louca and Stein, 2009). The 
analysis is further simplified if, in addition to the linearity 
assumption, the system is assumed to have a single 
sinusoidal excitation, and only the steady state response 
is examined. These assumptions are motivated from 
Fourier analysis where an arbitrary function can be 
decomposed into a series of harmonics. Using this 
frequency decomposition, the activity analysis can be 
performed as a function of frequency in order to study the 
frequency dependency of element activity. 

2.1. Element Activity for Linear Systems 
A measure of the power response of a dynamic 

system, which has physical meaning and a simple 
definition, is used to develop the modeling metric, 
element activity (or simply “activity”). Element activity, 
 A , is defined for each energy element as: 

A = P(t)
0

τ

∫ dt (1) 

where    P(t)  is the element power and  τ  is the time over
which the model has to predict the system behavior. The 
activity has units of energy, representing the amount of 
energy that flows in and out of the element over the given 
time  τ . The energy that flows in and out of an element is 
a measure of how active this element is (how much 
energy passes through it), and consequently the quantity 
in Eq. (1) is termed activity. Activity can be defined 
independent of the energy domain, type of energy 
element or nonlinearities. 

The activity is calculated for each energy element 
based on the system response. In the case that the system 
is modeled using a bond graph formulation, the state 
equations are derived using the multi-port bond graph 
representation (Borutzky, 2004; Brown, 2006; Karnopp 
et al., 2006; Rosenberg and Karnopp, 1983). In addition, 
when a system has a single input and linear junction 
structure and constitutive laws, the state equations are 
linear time invariant and have the following general form: 

    !x = Ax + bu (2) 

where,      A ∈ !
m×m,b ∈ !m  are the state space matrices, 

    x ∈ !
m  is the state vector,    u ∈ !  is the input, and  m  is 

the number of independent state variables. 
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For the above system, appropriate outputs are defined 
in order to calculate the power of each energy element in 
the model using the constitutive law of each element. For 
convenience, the outputs are selected to be generalized 
flow, effort, and flow for inertial, compliant, and resistive 
elements, respectively. The dual effort or flow needed for 
calculating the power is derived from the output variables 
and constitutive laws. The output vector for this set of 
variables has the form: 

y =

f
I

e
C

f
R

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

(3) 

where     y ∈ !
k  and       fI ∈ !

kI ,e
C
∈ !kC ,  and f

R
∈ !kR . The

variables    kI
, k

C
, and k

R
 represent the number of inertial, 

compliant, and resistive elements, respectively. The total 
number of energy elements is    k = k

I
+ k

C
+k

R
. Using the 

output variables set in Eq. (3), the output equations can 
be written as: 

   y = Cx + du (4) 

where      C∈ !
k×m,d ∈ !k  are the output state space 

matrices. 
Given this set of output variables the missing efforts 

or flows, needed for calculating the element power, are 
computed from the linear constitutive laws of each type 
of energy element as shown below: 

     

I: p
I

= r
I
f
I
⇔ e

I
= !p

I
= r

I
!f
I

C: q
C

= r
C
e

C
⇔ f

C
= !q

C
= r

C
!e
C

R: e
R

= r
R
f
R

(5) 

where   rI
, r

C
, r

R
 are known constants representing the 

linear constitutive law coefficients of inductance, 
compliance and resistance, respectively. For more 
compact expressions a vector,     r ∈ !

k , with all the linear 
constitutive law coefficients is introduced as shown 
below: 

r =

r
I

r
C

r
R

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

 (6) 

where     rI ∈ !
kI ,     rC ∈ !

kC , and     rR ∈ !
kR  are the constant

constitutive law coefficients. 
Finally, the power needed for calculating the activity 

of each element, as defined in Eq. (1), is computed as the 
product of generalized effort and flow, and by using 
Eq. (5) the following expressions for the activity are 
derived: 

A
i

= P
i

0

τ

∫ = r
i

y
i
!y
i
dt

0

τ

∫ ,    i = 1,…,k
I
+k

C

A
i

= P
i

0

τ

∫ = r
i

y
i
2 dt

0

τ

∫ ,   i = k
I
+k

C
+1,…,k

(7) 

2.2. Activity for Single Harmonic Excitation 
The time response of the output vector,    y(t) , in 

Eq. (3) is required in order to complete the calculation of 
the element power. For the purposes of this work, the 
excitation is assumed to be a single harmonic given by: 

    u(t) =U sin(ωt)  (8) 

where    U ∈ !  is the amplitude of the excitation and  ω  is 
the excitation frequency. The steady state response of the 
linear system in Eq. (2) and (4), and for the above 
excitation, is easily calculated using linear system theory. 
This gives the following closed form expression: 

      
y

i
t,ω( ) =UY

i
ω( ) ⋅ sin ωt +ϕ

i
ω( )( ), i = 1,…,k  (9)

where 
   
Y

i
ω( )  and 

   
ϕ

i
ω( )  are the steady state amplitude

and phase shift, respectively, which can be easily 
calculated from the state space matrices using linear 
systems theory. 

Within the context of this analysis, the output    yi
(t,ω)  

in Eq. (9) is either an effort or a flow that is used to 
calculate the activity of each element in Eq. (7). Finally, 
the activity can be calculated by Eq. (1), but first the 
upper bound of this integral must be specified. For this 
case, the steady state and periodicity of the response are 
exploited. A periodic function repeats itself every  T  
seconds, and therefore, a single period of this function 
contains the required information about the response. 
Thus, the upper bound of the integral is set to one period 
of the excitation,     τ =T = 2π ω . Therefore, the steady 
state activity for the energy storage elements is given by: 

A
i
ss ω( ) = r

i
y

i
!y
i

0

T

∫ dt = 2r
i
U 2Y

i
2 ω( ) (10) 

and for energy dissipation elements by: 

A
i
ss ω( ) = r

i
y

i
2

0

T

∫ dt =
πr

i
U 2Y

i
2 ω( )
ω

(11) 

The above simple closed form expressions can be 
used to calculate the activity of all energy elements for a 
given single harmonic excitation. The superscript 'ss' in 
Eq. (10)-(11) denotes the activity under a steady state 
harmonic response. 

2.3. Activity Index and MORA 
The activity as defined in Eq. (1) is a measure of the 
absolute importance of an element as it represents the 
amount of energy that flows through the element over a 
given time period. In order to obtain a relative measure of 
the importance, the element activity is compared to a 
quantity that represents the “overall activity” of the 
system. This “overall activity” is defined as the sum of all 
the element activities of the system and it is termed total 
activity,  A

Total . Thus a normalized measure of element 
importance, called the element activity index or just 
activity index, is defined as: 
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AI
i
ss ω( ) =

A
i
ω( )

ATotal ω( )
=

A
i
ss ω( )
A

i
ss ω( )

i=1

k

∑
(12) 

where  Ai
ss  is the activity of the  i

th  element given by 
Eq. (10) and (11). The activity index,    AI

i
ss(ω) , is 

calculated for each element and it represents the portion 
of the total system energy that flows through an element. 

With the activity index defined as a relative metric for 
addressing element importance, the Model Order 
Reduction Algorithm (MORA) is constructed. The first 
step of MORA is to calculate the activity index for each 
element in the system for a given system excitation and 
initial conditions. Next, the activity indices are sorted to 
identify the elements with high activity (most important) 
and low activity (least important). With the activity 
indices sorted, the model reduction proceeds given the 
desired engineering specifications. These specifications 
are defined by the modeler who then converts them into a 
threshold  β  of the total activity (e.g., 99%) that he or she 
wants to include in the reduced model. This threshold 
defines the borderline between the retained and 
eliminated model elements. The elimination process is 
shown in Figure 1 where the sorted activity indices are 
summed starting from the most important element until 
the specified threshold is reached. The element which, 
when included, increments the cumulative activity above 
the threshold, is the last element to be included in the 
reduced model. The elements that are above this 
threshold are removed from the model. 

Figure 1: Activity index sorting and elimination. 

3. TIMOSHENKO BEAM MODEL
Models of continuous systems can be developed using 

solid mechanics techniques, which lead to Partial 
Differential Equations (PDE) with derivatives in both 
space and time (Bauchau and Craig, 2009; Genta, 2009; 
van Rensburg and van der Merwe, 2006; Li, 2008). The 
continuous cantilever beam used in this work is shown in 
Figure 2, where its transverse motion is considered when 
excited with a vertical load at its free end. The motion of 
a given cross section,   w(x,t)  and    ϕ(x,t) , from its 
undeformed state varies with time and location thus 
having PDEs describing its motion. Note that due to the 

rotation  ϕ , a cross section does not remain normal to the 
neutral axis according to the Timoshenko beam theory 
that is used in this work. One method for solving these 
PDEs is separation of variables, which produces a modal 
expansion solution (Meirovitch, 1967). An analysis of the 
advantages and disadvantages of this approach is beyond 
the scope of this work, however, it is safe to say that the 
solution of PDEs is more cumbersome than the solution 
of ordinary differential equations that describe the 
behavior of lumped parameters system. 

Figure 2: Cantilever beam transverse vibration. 

A different approach for modeling the transverse 
vibration of a cantilever beam is to divide it into 
segments of equal length. This approach is motivated by 
the procedure for deriving the PDEs describing the 
motion of a beam. Each of these segments has linear 
inertial and compliant properties that can be determined 
from solid mechanics theory. Shear effects and rotational 
inertial effects are also considered, which results in a 
more generic model that is valid for a larger range of 
geometric parameters. This is known as the Timoshenko 
beam model, which is usually used for non-slender beams 
in order to get accurate model predictions. The use of this 
more complex model using the Timoshenko beam theory 
is also mandated from the use of MORA in the process of 
determining the appropriate model complexity. In this 
approach the most complex model is first developed, and 
then MORA is used to identify what is actually needed in 
order to reach a reduced model with accurate predictions. 

3.1. Non-uniform Finite Segments 
The ideal physical model under these assumptions is 

shown in Figure 3 where the beam is divided into  n  
segments. This model approaches the partial differential 
equations of the continuous system, as the number of 
segments approaches infinity. Previous work studied 
modeling and model reduction of a cantilever beam when 
it is uniformly divided and the length of segments are 
equal, i.e.,   Δx = L n . The number of segments and 
physical phenomena to be included in each segment, 
while accurately predicting the dynamic behavior, were 
identified using activity (Louca, 2014; Louca, 2015). 

Figure 3: Ideal physical model of a Timoshenko beam. 
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For the purposes of this work, the segments are 
assumed not to have equal length based on results of 
previous work. The activity analysis, for equal length 
segments, identified as high activity and important 
elements the ones near the ends of the beam. The 
elements near the fixed end (left) have high activity due 
to the high bending and thus high compliant effects. On 
the other hand, elements near the free end (right) have 
high activity due to the high motion and thus high inertial 
effects. On the contrary, element around the middle have 
lower activities since they have lower bending and 
motion. 

Therefore, a different division of the beam is 
proposed in order to address the localization of the 
dynamic effects. Shorter segments are used towards the 
ends, while longer segments are used around the middle 
of the beam. The transition of segment length from the 
ends towards the middle is selected to be linear for 
simplicity as shown in Figure 4. In addition, segment 
length is assumed to be symmetric. The variable segment 
length for the first half (left) of the beam is therefore 
given by the linear equation: 

  
Δx

i
= a +b i−1( ), i = 1,…,n 2 (13) 

where  a  and  b  are constants defining the initial length 
and rate of increment, respectively. 

Figure 4: Linear increase in segment length. 

In order to have an increase in segment length, and 
not a decrease, the constant  a  has to be smaller than the 
segment length for uniform division, i.e.,   a < L n . 
Given a value for  a , constant  b  is calculated such that: 

Δx
i

i=1

n 2

∑ =
L
2

(14) 

Constant  b  is calculated by substituting Eq. (13) into 
Eq. (14). Solution of the resulting equation for  b  gives: 

b =
4 L−an( )
n n−2( )

(15) 

The slope of the segment length is increasing as the initial 
segment length,  a , decreases. Thus this parameter 
controls the segment length variation along the beam. 

Similarly the length of the segments for the second 
half (right) of the beam is given by the linear equation in 
Eq. (16). This equation provides a linear decrease in 
segment length and the lengths of the last and first 
segment are equal, i.e.,    Δx

1
=Δx

n
= a . A sample 

division of a beam into non-uniform but linearly varying 
segments is given in Figure 5, where    a = 0.4L n  and 
   n = 20 . Segment lengths are symmetric with shorter 
segments toward the ends. 

  
Δx

i
=Δx

n 2
−b i−1−n 2( ), i = n 2 +1,…,n (16)

Figure 5: Non-uniform segment lengths. 

The location of the each segment,  xi
, along the axis 

of the beam is calculated by the summation of the 
previous segment lengths as given by Eq. (17) and the 
location of the last segment is equal to the length of the 
beam, i.e.,   xn

= L . 

x
i

= Δx
j

j=1

i

∑ , i = 1,…,n (17) 

Given the segment length the constitutive law 
parameters of the energy storage elements are calculated, 
and the beam is assumed to have density  ρ , Young's 
modulus  E , shear modulus  G , length  L , cross sectional 
area  A  and cross sectional moment of inertia  I . Given 
these physical parameters of the beam, the element 
parameters in the above linear model are given by the 
expressions below: 

m
i

= ρAΔx
i
, i = 1,…,n

I
i

= ρIΔx
i
,

c
i

=
Δx

i

EI

cs
i

=
Δx

i

κGA

(18) 

where  κ  is a dimensionless constant that accounts for the 
non-uniform distribution of the shear stress and depends 
on the shape of the cross-section. The inertial parameters 

 mi
 and  Ii

 represent the linear and rotational inertia of 
each segment, respectively. The parameters  ci

 and  csi
 

represent the bending and shear compliance between two 
segments, respectively. These parameters are not equal 
across segments due to the different length of each 
segment. The beam is assumed to have no energy losses 
therefore there are no damping elements in the model. 
These parameters are used to define the parameter vector 
as defined in Eq. (6). 

For developing the dynamic equations, the bond 
graph formulation is used. Bond graphs provide the 
power topography of the system and it is a natural 
selection for implementing the power-based activity 
metric. The bond graph model of the ideal physical model 
as shown in Figure 3 is developed and given in Figure 6. 
The bond graph has   4n  independent state variables since 
each segment is modeled by 4 independent energy 
storage elements and its state vector has the form 

     x = {p
1
,…,p

n
,p

I1
,…,p

In
,q

1
,…,q

n
,q

s1
,…,q

sn
}T . The 

transverse velocity of the each mass,  vi
, represents the 

xLL/2

Δx

a
b

0

L0 L/2
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velocity at a given location of the continuous beam and 
Eq. (19) expresses the relation between the discrete and 
continuous variables. The other kinematic variable of the 
model,   ωi

, is the rotation at a given location and its 
relation to the continuous variable is given in Eq. (20). 

    
v

i
(t) = !w

i
= !w x

i
,t( ) (19) 

ω
i
(t) = !ϕ

i
= !ϕ x

i
,t( ) (20) 

For easy calculation of the state equations and the 
output equations that are required for calculating power, 
the equations are derived using the multi-port approach 
(Rosenberg, 1971). According to this approach, the state 
space and input matrices are given by: 

    A = J
SS

S, b = J
SU

(21) 

The output matrices, as defined in Eq. (4), that are 
required for calculating the power flow into the energy 
elements are given by: 

  C = S, d = 0 (22) 

The output vector according to the analysis in the 
previous section is given by      y = {f

1
,…, f

2n
,e

1
,…,e

2n
}T . 

The dimensions of the state space matrices are    m = 4n  
and    k = 4n . Based on this set of state variables, the 
junction structure matrices,   JSS

 and   JSU
, are derived and 

given in the Appendix. 
For the above model with  n  segments the steady-

state response is first calculated using Eq. (9) and based 
on the state space equations in Eq. (21)-(22). Then the 
element activity is calculated from Eq. (10) and (11), 
which gives the following expression for the energy 
storage elements of the model: 

   
A

i
ss ω( ) = 2r

i
U 2Y

i
2 ω( ), i = 1,…, 4n (23) 

The above analysis enables the calculation of the 
element activity for a given single harmonic excitation. 
The activity index that is used by MORA is independent 

of the excitation amplitude, as shown in Eq. (12), and 
therefore can be set to an arbitrary value, e.g., set to 
one (1) for simplicity. Model complexity and which 
physical phenomena need to be included can be 
determined given the element activity in Eq. (23) and 
MORA. The complexity of the beam is investigated in 
the next section in order to identify the significant 
elements based on beam length and element location. A 
series of analyses is performed in order to get more 
insight into the beam dynamics under different scenarios. 

4. BEAM COMPLEXITY BASED ON ACTIVITY
The activity metric and MORA is applied to a steel 
cantilever beam with parameters   ρ = 7860 kg/m3, 
  E = 210 GPa,   G = 80 GPa,   A = 3×10-3 m2, 
  I = 2.5×10-6 m4,   κ = 0.85. The length of the beam is 
varied,   L = 0.2-2 m, in order to study the variation of 
element significance. The methodology is easy and 
computationally inexpensive to implement due to the 
simple and closed form expressions used for calculating 
the state space matrices, frequency response and activity.  

First, the beam length is set to 2 m and the length 
coefficient    a = 0.1L n . The number of segments is set 
to   n = 30 and therefore there are a total of 120 energy 
storage elements modeling the beam. The modeling target 
is to accurately predict static behavior to low frequency 
dynamics, thus the excitation frequency is set to 95% of 
the first natural frequency (122.68 rad/s). 

The results of the activity analysis using Eq. (23) and 
under these assumptions are shown in Figure 7 where the 
activity index of all 120 elements is shown. Element 
numbers 1-30 represent the activity index of the linear 
inertia ( mi

) and 31-60 the activity index of the rotational 
inertia ( Ii

) of each segment. Next, element numbers 
61-90 and 91-120 represent the activity index of the 
bending ( ci

) and shear ( csi
) compliance, respectively. 

For each range of elements the smallest numbers 
represent elements that are next to the fixed end of the 
beam. It is clear from the activity analysis that the most 
important elements are related to the linear inertia and the 
bending stiffness of the beam. On the contrary, the 

Figure 6: Bond graph model of a cantilever Timoshenko beam. 
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elements related with the rotary inertia and shear stiffness 
have very low activity and thus are insignificant under 
these conditions. The activity analysis agrees with 
common practice, in which a slender beam is modeled 
using the Euler-Bernoulli theory that neglects rotational 
inertia and shear stress effects. 

Figure 7: Element activity indices. 

Model complexity is systematically addressed using 
MORA as it is described in Section 2.3. Elements are 
ranked according to their activity index as shown in 
Figure 8 where the sorted activity indices along with the 
cumulative activity index are plotted. According to 
activity analysis, 36 of the 120 elements account for 
almost 99% of the energy the flows through the model. 
This is a significant result verifying that unnecessary 
complexity is included in the model, however, the figure 
does not directly depicts the elements that are 
insignificant and could be eliminated from the model. 

Figure 8: Element ranking for slender beam. 

The important elements are next identified using 
MORA. Using a reduction threshold,   β = 99%, MORA 
identifies the elements that have a significant contribution 
to the system dynamic behavior. The results of this 
analysis are shown in Figure 9 where both the activity 
and elimination/inclusion in the reduced model are 
depicted. The '+' symbol identifies the elements with 
significant contribution and must be included, where the 
'o' symbols identifies that an element is insignificant and 
must be eliminated from the full model in order to 
generate the reduced model. Out of the 120 elements 
only 37 are important and the remaining 83 can be 

eliminated. More specifically, MORA identifies that all 
rotational inertia and shear stiffness elements must be 
eliminated from the model. Linear inertia elements that 
are close to the support have low activity and can be 
eliminated from the model, where inertia elements 
towards the free end of the beam have high activity and 
must be retained. The reverse is true for the bending 
stiffness elements, where the elements towards the free 
end can be eliminated and the ones near the support must 
be retained. More specifically, 18 of the linear inertia and 
19 of the bending stiffness elements have high activity 
and must be included in the reduced model. 

Figure 9: Model reduction for slender beam,   L = 2 m. 

The same reduction using MORA is performed with 
different beam lengths in order to study how element 
importance changes as the length is reduced. The 
reduction for a beam length of 1.0 m is shown in 
Figure 10. The same trend is observed for the elimination 
of linear inertia and bending stiffness elements. The 
activity index of all rotational inertia elements (31-60) is 
higher than before (  L = 2 m) but still very low, and 
therefore, they are eliminated from the model. The 
activity of shear stiffness (91-120) also increases but still 
not significant to be included in the reduced model. A 
total of 40 elements are included in the reduced model 
with 20 linear inertia and 20 bending stiffness elements. 

Figure 10: Model reduction for   L = 1.0 m. 

The beam length is further reduced to 0.2 m in order 
to examine if more elements become important. The 
activity index of the linear inertia and bending stiffness 
remains almost unchanged as shown in Figure 11. 
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However, the activity index of the rotational inertia and 
shear stiffness is further increased such that some of them 
become important. More specifically the rotational inertia 
elements towards the free end are important and the ones 
near the fixed end are eliminated. A total of 74 elements 
out of 120 are included in the reduced model with 20 
linear inertia, 13 rotational inertia, 20 bending stiffness 
and 21 shear stiffness elements. 

Figure 11: Model reduction for   L = 0.2 m. 

The variation of beam length showed that the total 
number of important elements increases as the beam 
length decreases. This variation is investigated in more 
detail by varying the beam length from 0.2 to 2 m with a 
step of 20 mm. The number of included linear and 
rotational inertia, and bending and shear stiffness is 
recorded along with the total number of elements. The 
results of this analysis are shown in Figure 12. The total 
number of elements is monotonically increasing as the 
beam length is decreased. The number of linear inertia 
and bending stiffness remains almost constant as the 
length changes. On the contrary, the number of shear 
stiffness elements is zero until about 0.9 m where it 
becomes important and starts increasing. Further 
reduction in length results in a monotonic increase in the 
number of included shear stiffness element. A similar 
behavior is observed for the number of the rotational 
inertia elements, however, they become important at a 
lower beam length of about 0.5 m. 

Figure 12: Model reduction for length variation. 

The validity of the generated reduced models is 
verified by analyzing the accuracy of the model. 

Specifically the steady state response amplitude for the 
velocity at the free end and the torque at the fixed end are 
calculated. The comparison is made with the 
corresponding response of the full model and over the 
range of beam lengths used before. The accuracy for both 
variables, as shown in Figure 13, varies as the beam 
length is changed, with averages around 85%. The 
variation in accuracy is due to the change of model 
complexity as different elements are added or removed in 
the reduced model according the activity metric. The 
accuracy of the first natural frequency is also studied and 
has similar trends, as the two outputs, but with an average 
accuracy around 99% (the plot is not included for 
brevity). 

Figure 13: Model accuracy. 

5. DISCUSSION AND CONCLUSIONS
A new methodology is developed that reduces the 
complexity of a cantilever beam model by providing 
more insight into the beam dynamic behavior at the same 
time. The proposed methodology provides a systematic 
modeling procedure for cantilever beams that are 
modeled through the finite segment approach. The beam 
is divided into segments in a non-uniform fashion in an 
attempt to achieve further reduction in the model size 
while maintaining the accuracy of the predictions. This is 
demonstrated through the example and reduced models 
have an average of 15% lower complexity (number of 
states) as compared to the complexity of reduced models 
with uniform segment lengths. 

The results presented in this work are in agreement 
with the assumptions of beam theories, which propose 
that the Timoshenko beam model must be used for 
shorter rather than slender beams. The proposed 
methodology can be used when modeling beams, in order 
to decide which of the two models to use, Timoshenko or 
Euler-Bernoulli. In addition, the activity metric can refine 
the modeling assumptions by identifying what physical 
phenomena need to be included in each segment, i.e., 
linear and rotational inertia, bending and shear stiffness. 

The number of segments is a significant parameter 
when it comes to modeling with the finite segment 
approach but it was considered constant in the analyses of 
the presented results. The methodology was also 
performed with various, lower and higher, number of 
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segments, however these results are not presented in this 
paper for brevity. The reduced models for different 
number of segments are identical with the ones presented 
in this work. The only difference is the actual number of 
included elements, as shown in Figure 12, however, the 
ratio of included elements to the total number of elements 
remains constant. 

The number of segments of the reduced model is 
smaller when compared to the results of previous work, 
where the beam model was divided into segments of 
equal length (Louca, 2015). Thus, the proposed non-
uniform segment length leads to an even higher reduction 
of model complexity. 

The activity analysis is performed for a given single 
excitation frequency that is lower than the first natural 
frequency. This excitation is chosen since the model is 
expected to be used with low frequency excitations. A 
similar analysis with the one presented in this work can 
be performed for a higher frequency or range of 
frequencies in order to account for more realistic 
excitations. However, this procedure has to be formalized 
and this remains as an item for future research. 

Because this work uses an energy-based modeling 
metric, it is convenient to use a model representation and 
formulation approach from which energy can be easily 
extracted/calculated. The bond graph approach explicitly 
presents the power topography of a dynamic system, and 
therefore, it is used in this work for calculating the 
necessary variables required for the power calculations. 
To be clear, the use of this methodology is not limited to 
systems represented by bond graphs. It can also be 
applied when the continuous system is modeled using any 
other modeling methodology, e.g., Lagrange’s equations, 
Newton’s Law, etc. However, in this case the calculation 
of power that is required for the proposed methodology 
might not be as trivial as using the bond graph 
formulation. 

The results of this paper provide more insight into 
the nature of the reduced ordered models produced by 
MORA, and therefore, demonstrate that MORA is an 
even more useful tool than previously realized for the 
production of proper models of nonlinear systems. The 
activity metric effectively addresses the model 
complexity of distributed parameter components and in 
addition provides physical insight into the model. 

APPENDIX: JUNCTION STRUCTURE MATRICES 
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