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ABSTRACT

Time-delay processes are frequently found in industry
and the most common representation is afirst order plus
delay time (FOPDT) transfer function. The
identification of time delay systems is a challenging
task. Usually, the process has to be disturbed in order to
excite enough the system to provide the information for
identification. This work presents a genetic algorithm to
identify the system using closed loop information.
Therefore, a setpoint change in the reference is used,
avoiding disturbances to the process.

Keywords: time-delay system, identification, genetic
algorithm

1. INTRODUCTION

Despite of the growth of Model Predictive Controllers
(MPC) in the industry, the PID (Proportional-Integral-
Derivative) is the dominant feedback control algorithm.
In most MPC applications, the manipulated variables
are the setpoints of PID controllers. Therefore, the
performance of the regulatory control loops is
important. As indicated by Desborough and Miller
(2002), only one third of the controllers performance
found in the continuous process industry are acceptable.
Lots of benefits can be obtained by improving
performance of PID loops, and the identification of the
systems dynamicsisthe first step.

Yang and Seested (2013) used a genetic algorithm
method for identifying first order plus dead time
(FOPDT) transfer functions and compared the results
with other identification techniques using open loop
data and different excitation signals.

The present work consist in the study and
implementation of a real coded genetic algorithm to
identify FOPDT transfer functions from the input-
output data obtained from a closed loop step test.
Therefore, correlated information will be used to
identify the process, as data is obtained from a setpoint
change in the controller. Considering a system which is
controlled by a PID algorithm, three vectors containing
information of sample time, controller output and
system output are necessary to feed the identification
software.

The structure of this paper is as follows. In this section

the mathematical model of the system is presented. In
Section 2, a description of the genetic algorithm for the
identification. In Section 3, the data set generation for
testing the algorithm. In section 4, the results and a test
using data from a closed loop system in an industrial
facility and conclusions in Section 5. Finaly, future
worksin Section 6.

1.1. Plant mode

A first order plus dead time model (FOPDT) isused (1).
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The discrete form of the model preceded by a ZOH is
described in (2).
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2. THE GENETIC ALGORITHM FOR

IDENTIFICATION

Inthe FOPDT model, the parametersto be identified are
gain, delay time and time constant. Yang and Seested
(2013) showed that the identification of unknown time
delay systems is often a non-convex optimization
problem and that the cost surface could have more than
one minimum. They also showed that better results are
obtained while using the continuous time parameters
rather than the discrete ones, because of the exponential
relationship between them (4) that affects the
performance of the genetic algorithm.

In the algorithm, the output of each system in the
population is calculated using the real datainput vector.
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The cost function to minimize is defined as the sum of
the absolute error between the real output and the model
estimated output.

N
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2.1. The genetic algorithm

The genetic algorithm is a well known tool to solve
optimization problems. It's based in principles of
genetics and natural selection. It's composed by a
population of individuals, that evolves on each iteration
to minimize (or maximize) a cost function.

One of the most important benefits of the genetic
algorithm is that it can handle a complex cost surface
and its possibilities to jJump out of alocal minimum.
The agorithm was introduced by Holland (1975) and
De Jong (1975) and popularized by Goldberg (1989).
The population of solutions can be described as in (6),
and the best solution at thetimetis x! .

Py = % X (6)
Where
x=1{K,7,6} )

The initial values of P are randomly generated between
the established limits for each variable.

At each iteration, the population evolves through the
application of the genetic operators. heuristic crossover,
static mutation and dynamic mutation.

Janikow and Michalewicz (1991) described the benefits
regarding processing speed and precision of the rea
coded algorithm compared to the binary coded one.
Therefore, a real coded genetic algorithm is used. The
population number is set to 50, and the execution is
limited to 200 iterations. The surviva rate is 60% and
the mutation rate is set to 20%.

2.1.1. Heuristic crossover

On each iteration, the population is sorted by the
function cost, and natural selection occurs. The worst 20
individuals are discarded, to make room to the new
ones. 20 pairs of individuals are selected randomly to
generate the offsprings to be included in the popul ation.
The heuristic crossover method, which is described in
Wright (1990), isused. The functionis (8)

%= B(X, %)+ %, )

Where p is a random number between O and 1, and
with x, better thang, .

With this function exists the possibility to create an
offspring outside the limits. This condition must be

checked, and in case it occurs, another offspring should
be generated with a new random number.

With this operator, the information of the better
solutions is combined to generate new solutions. It
explores a point by moving outward of the better parent.
The constrain is that no new information is introduced
in the population.

2.1.2. Static mutation

The genetic algorithm can converge to alocal minimum
solution quickly. To avoid this issue, the mutation
operator is introduced, which enables the exploration of
other surfaces of the cost function by producing random
changes in the variables. As the mutation rate is set in
20%, 10 variables will be changed by random numbers
on each iteration. This operator isimportant in the early
phases of the algorithm, as searches on different
surfaces areas.

2.1.3. Dynamic mutation

When the iteration number is in 100, the dynamical
mutation described by Janikow and Michalewicz (1990)
isintroduced. The operator is described in (9).

< - % +A(t,UB-x ) if arandombitisO ©)
““ % —Alt,x —LB) if arandombitis1

Where LB and UB are the limits of the variable. The
function A(t, x) is defined in (10)

Alt,x)= xr.f (1— _:_J (10)

Where f is a scale factor equal to 0.01, r is a random
number between 0 and 1, and T is the maximal iteration
number.

This operator improves the “fine tuning”, as the
searched space decreases at the later stages of the
population life.

2.1.4. Genetic algorithm flowchart
In Figure 1 a flow chart describing the genetic
algorithm implementation is shown.
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Figure 1: genetic algorithm flowchart.

2.2. Variableslimits

The boundaries of the searched variables are defined.
For the gain, the maximum and minimum values of the
input and output vectors are used, with a margin of 10,
asindicated in (11)

_pmadyr-miny} (11)
MM max{u} — minf{u}

The delay time limit is calculated as (12)

N
0, =N (12)
LIM TS

With N the length of the vector.
The constant time limit is calculated as (13)

Tyw =5x 0y (13)

3. TESTING DATA

3.1. Generation of thetesting data

For the testing of the identification algorithm, three
different transfer functions are used, as described in
Table 1, with a relationship between the time delay and
time contant of 0.2, 1 and 5.

Table 1. parameters of the testing transfer functions

System1 | System 2 | System 3
Gain (k) 0.8 0.8 0.8
Delay (0) 4 10 20
Time constant 20 10 4
)]
Delay (B) / Time 0.2 1 5
constant (1)

Three different PI controllers are designed, in order to
obtain underdamped, critical damping, and overdamped
simulated closed loop information.

Three different levels of white noise are added to the
process variable, with a variance of 0 (no noise), 0.001
and 0.01.

Therefore, 27 sets of simulated closed loop information
are used to test the identification algorithm.

n
r y
—_— Gc( 9 G (9 —

Figure 2: simulation block diagram for testing data
generation.
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4. RESULTS

4.1. Gain parameter

The identification of the gain parameter can be seen in
Figure 3. The valueis normalized to 1.

Gain (K)
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Normalizedvalue
o
o
3

0.96 ~—Noise0
——Noise 0.001

Noise 0.01

System1 System1l System1 System2 System2 System2 System3 System3 System3
Under  Critical Over Under  Critical Over Under  Critical Over
damped damping damped damped damping damped damped damping damped
Model

Figure 3: gain parameter for different models and noises
variance.

4.2. Timedelay parameter
The identification of the time delay parameter can be
seen in Figure 4. The value is normalized to 1.
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Figure 4: time delay parameter for different models and
noises variance.

4.3. Time constant parameter
The identification of the time constant parameter can be
seenin Figure 5. The valueis normalized to 1.
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Figure 5: time delay parameter for different models and
noises variance.

4.4. Noise influence

The influence of noise in the identification is shown in
figure 6. It can be seen that for higher noise, the
standard deviation of the estimated parametersis higher,
showing the negative impact of noise.

Parameters estandar deviation
0.1400

4.5. Influence of the controller tuning parameters of
the closed loop data

The controller “&’ is the one tuned with the more
aggressive parameters, with an underdamped closed
loop response. The identifications with the information
from this controller show the minimum standard
deviation in the time constant and time delay parameters
figure 7.
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Figure 7: standard deviation of the estimated parameters
under different controllers.

4.6. Examples of responsesfor the higher noises

The identification results are shown as an example for
data with higher noise. It can be seen the data from the
simulation used for the identification, and the identified
system outpuit.

In figure 8 the system with K=0.8 / t=20 / 8 =41is
used, with a controller generating an underdamped
response.

In figure 9 the system with K =0.8 / t=10 / 8=101s
used, with a controller generating a critical damping
response.

In figure 10 the system with K=0.8 / t=4 / 6=201s
used, with a controller generating an overdamped
response.

It can be seen the data from the simulation used for the
identification, and the identified system outpuit.

Identification results
0.1200 2.00
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0.1000 150 ﬁjﬁl“ A‘ .
[ ‘1'
q m u
1.00
R g g
o2 / i 19
Mot
0.0400 o o'"ﬂ"‘ﬂ'ﬂ 20 3 4 50 s 70 s s 100"
-0.50 ——System output [ |
0.0200 — Estimated output
1.00 Controller output | |
0.0000 -
Gain Time constant Time delay 150 .
Figure 6: standard deviation of the estimated parameters 200 6
under different noises variances.
Figure 8: identification results for model 1.
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Figure 9: identification results for model 2.
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Figure 10: identification results for model 3.

4.7. Test of the algorithm with industrial data.

A closed loop information from an industria facility is
used to test the algorithm. The production site is an air
separation unit (ASU) that produces gaseous oxygen by
cryogenic distillation. The purity is controlled with the
oxygen flow production. Even though the loops are in
cascade (the purity controller Gep output is the setpoint
of the flow controller Gcf), the dynamics of the flow
loop are much faster than the purity one. Therefore, the
data from the output of the master purity controller is
used as input vector (setpoint of the flow controller),
and the purity as output vector.

Input Output
dat data
Purity  ector Flow Flow Purity  vector
controller controller  system system
Purity / PV

i.@..é?_,[ Gef H Gf ]__>[ Gp ]_—>

Figure 10: data collection block diagram.

A purity setpoint step from 97.3% to 97.2% is used for
identification. The results are:

6660
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97.05 6620
0 40 80 120 160 200 240 280 320 360
Min

Figure 11: identified system from industrial facility.

The identification software had to be adapted for the
real data usage. The Setpoint vector was included, in
order to detect a change in the reference. The system
data, until the setpoint change, is considered in steady
state, and the average of those samples are calculated as
in (14) and (15). Then, those values are substracted
from the u and v vector.

Uy
Uy = 1 (14)
k
k
2 (15)
_1
Yo K

This kind of loops, where the delay time and time
constant values are relatively high, are difficult to tune
with atrial and error approach, and it's common to see
them in Manual mode in the industries.

5. CONCLUSIONS

The algorithm showed a good performance and
robustness. Even with the higher noise variance, the
estimated parameters are acceptable and suitable for
controller design. The results obtained on area system
were satisfactory and alow the identification
application for closed-loop tuning controllers.

6. FUTURE WORK

After showing the capabilities of the genetic algorithm
in the identification of FOPDT systems, the objective is
to extend the scope to integrating process with time
delay and second order plus delay time (SOPDT).

Several rules exist for controller design based on the
transfer function parameters, as described by O’ Dwyer
(2000a and 2000b). In the future, the design of the

K =-0.0056 . S
controller using optimization methods based on a
7=130.29 min desired closed |oop response will be proposed.
0 =51.24 min
Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2016 72

ISBN 978-88-97999-82-9; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.



REFERENCES

De Jong, K. A. 1975. Analysis of the behavior of aclass
of genetic adaptive systems. Ph.D. Dissertation.
University of Michigan, Ann Arbor.

Desborough L., Miller R., 2002. Increasing Customer
Value of Industrial Control Performance
Monitoring—Honeywell’s Experience. AIChE
Symposium Series. pp. 169-189.

Goldberg,D. E. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading,
MA: Addison-Wesley.

Holland, J. H. 1975. Adaptation in Natura and
Artificial Systems. Ann Arbor: University of
Michigan Press.

Janikow C.Z., Michalewicz, Z., 1991. An experimental
comparison of binary and floating point
representations in genetic algorithms. Proceedings
of the 4th International Conference on Genetic
Algorithms, San Diego, CA, USA.

Janikow C.Z., Michalewicz Z., 1990. A speciaized
genetic algorithm for numerical optimization
problems,” Proceedings of the 2nd International
IEEE Conference on Tools for Artificial
Intelligence, p.798-804.

ODwyer A., 2000a. A summary of Pl and PID
controller tuning rules for processes with time
delay. Pat 1. PI controller tuning rules.
Proceedings of PID '00 IFAC Workshop on
Digital Control, pp. 175-180, Terrassa, Spain.

ODwyer A., 2000b. A summary of Pl and PID
controller tuning rules for processes with time
delay. Part 2: PID controller tuning rules.
Proceedings of PID '00 IFAC Workshop on
Digital Control, pp. 242-247, Terrassa, Spain.

Wright, A.H., 1990. Genetic Algorithms for Real
Parameter Optimization. In Rawlins, G. (Ed.),
Foundations of Genetic Algorithms, First
Workshop on the Foundations of Genetic
Algorithms and Classier Systems, Morgan
Kaufmann Publishers, Los Altos, CA, pp.205-218.

Yang Z., Seested G.T., 2013. Time-Delay System
Identification Using Genetic Part One: Precise
FOPDT Model Estimation. Proceedings of the 3rd
IFAC International Conference on Intelligent
Control and Automation Science. Vol. 3, pp. 561-
567.

AUTHORSBIOGRAPHY

Lucchesi, Algjandro:

Electronic Engineer graduated from the National
Technological University College St. Nicholas (UTN-
FRSN), Argentinain 2006.

Actually working on his Master degree thesis in
numerical simulation and control, from the College of
Engineering of the University of Buenos Aires (UBA),
Argentina.

Assistant professor of control systems in Electronic
Engineering career and researcher of the control
systems study group (GESIC) inthe UTN - FRSN since
2002.

Campomar, Guillermo:

Electronic Engineer graduated from the National
Technological University College St. Nicholas (UTN-
FRSN), Argentinain 2001 .

Magister in numerical simulation and control, graduated
from the College of Engineering of the University of
Buenos Aires (UBA), Argentinain 2006 .

Professor of control systems in Electronic Engineering
career and coordinator of the control systems study
group (GESIC) in UTN - FRSN since 2002.

Zanini, Anibal:

Electrical Engineer from National University of Rosario
— Argentina (1977) and the Phd. in Automatica from
Universidad Politécnica de Madrid — Spain (1983).
Associate Professor with University of Buenos Aires —
Argentina.

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2016 73
ISBN 978-88-97999-82-9; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.



