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ABSTRACT 

A constrained latent variable model predictive control 

(LV-MPC) technique is proposed for trajectory tracking 

in batch processes. The controller allows the 

incorporation of constraints on the process variables and 

is designed on the basis of multi-way principal 

component analysis (MPCA) of a batch data array that 

is rearranged by means of a regularized batch-wise 

unfolding approach. The LV-MPC formulation includes 

a novel prediction stage and is offset-free. The 

controller parameters are calculated on the basis of the 

identified latent model. The main advantages of LV-

MPC over other MPC techniques are: (i) a relatively 

small dataset is required (e.g., around 10-20 batch runs), 

(ii) nonlinear processes can efficiently be handled 

algebraically through MPCA models, and (iii) the 

tuning procedure is simple. The proposed constrained 

LV-MPC technique is numerically tested through a 

benchmark process that has been used in previous LV-

MPC formulations.  

 

Keywords: multi-way principal component analysis, 

latent variable model, constrained predictive control. 

 

 

1. INTRODUCTION 

In general, it is accepted that phenomenological inner 

behaviors of many batch processes (e.g., pharmaceutical 

or biotechnological processes) are not well understood 

at present, and for this reason, fundamental or 

knowledge driven models are difficult to be obtained. 

An additional difficulty that complicates the 

development of such models is the small production 

scales associated to pharmaceutical products, especially 

when compared to the large amount of product obtained 

in many chemical and petrochemical processes. For 

these traditional processes, a large amount of 

knowledge-driven models has been developed and 

extensively used over the last decades. However, for 

any process, an available data-driven model can help to 

better understand the process and therefore to design 

operation policies that contribute to improve the process 

performance and the quality of the final products. In 

contrast, Troup and Georgakis (2013) suggested that a 

data-driven model can be more useful than a 

knowledge-driven model because the former is often 

more suitable for a quick deployment in process 

optimization and on-line control tasks, particularly for 

the case of pharmaceutical processes. 

Batch and semi-batch processes are used in many 

industries because of their flexibility to manage several 

grades and types of products. In these processes, one of 

the requirements to achieve appropriate final quality 

specifications and adequate operation is to track 

reference signals that have been determined by an 

independent optimization stage. Proportional-integral-

derivative (PID) controllers are by far the most common 

approach used in industry. However, batch processes 

usually exhibit large time constants and time varying 

dynamics, and sometimes it is necessary to track 

complex set-point trajectories. Under these scenarios, 

standard PID controllers might render a poor 

performance. Conventional PID controllers have been 

modified to mitigate some of their classical deficiencies. 

For instance, some improved PID controllers are: PID-

feed forward controllers (Clarke-Pringle and 

MacGregor 1997), adaptive PID controllers (Lontra 

1991), and self-tuning PID controllers (Altintena, 

        i                          and Alpbaz 2008). 

In addition, advanced control approaches based on 

nonlinear theoretical models of the batch process have 

been proposed to improve PID performance, as for 

example globally linearizing control (Kravaris, Wright 

and Carrier 1989; Kravaris and Saroush 1990) and 

generic model control (Cott and Macchietto 1989; 

Wang, Pla and Corriou 1995; Aziz, Hussain and 

Mujtaba 2000). 

Another advanced control strategy used for complex 

multivariate processes is Model Predictive Control 

(MPC). Garcia (1984) implemented a MPC strategy for 

the temperature control of synthetic rubber production 

in a semi-batch process; Gattu and Zafiriou (1992) 

extended the work of Garcia (1984) by incorporating 

Kalman filter estimation. Multi-input multi-output 

(MIMO) MPC was addressed by Peterson, Hernandez, 

Arkun and Schork (1992) for the control of temperature 
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and average molecular weight in the solution 

polymerization of methyl methacrylate (MMA). The 

major advantage of MPC is its capability to fulfill 

general control objectives (including economic aspects), 

by simultaneously taking into account a dynamic 

simplified model of the plant, constraints, and stability 

requirements (Camacho and Bordons 2004; Rawlings 

and Mayne 2009). This is probably the main reason 

why MPC is one of the advanced control strategies 

often used in large-scale industries. 

First industrial applications of MPC have solved the 

dynamic and economic problems through a two-layer 

optimization approach. However, in the last years, there 

is a tendency to include the economic objectives in the 

MPC controller. Several economic formulations of 

MPC that get over the standard set-point-tracking 

formulation have been presented (Ferramosca, 

González, Limon, Bustos, Godoy and Marchetti 2014). 

These controllers integrate the economic cost function 

of the Real Time Optimization (RTO) as an additional 

stationary cost to the dynamic quadratic cost of a MPC 

for set-point tracking (Zanin, Tvrzska de Gouva and 

Odloak 2002). For this reason, the process control 

variables attempt to minimize the (possibly non-linear) 

economic cost. 

A main goal of most MPC software suppliers is to 

provide simple tuning algorithms and modest 

experimental design for process identification that 

facilitate the dissemination of their products. In this 

regard, the latent variable model predictive control (LV-

MPC) technique is emerging as a viable alternative to 

be implemented in industry. Troup and Georgakis 

(2013) highlighted the interest in LV-MPC, in particular 

for batch processes, because it is an alternative to 

Nonlinear Model Predictive Control (NMPC), with the 

advantage of not using non-linear functions. LV-MPC 

algorithms are based on Principal Component Analysis 

(PCA) models developed on batch data arrays 

(Nomikos and MacGregor 1994), where the prediction 

of the future trajectories is accomplished by using 

statistical latent variable missing data imputation 

methods (Nelson, Taylor and MacGregor 1996). Flores-

Cerrillo and MacGregor (2005) have developed a 

version of LV-MPC for batch processes using a PCA 

model and Yu and Flores-Cerrillo (2013) have proposed 

a design methodology to select the corresponding 

parameters. Another LV-MPC technique based on 

multiphase modeling of a Batch-Wise Unfolding 

(BWU) of data arrays has been proposed in MacGregor, 

Bruwer and Golshan (2009) and in Golshan, 

MacGregor, Bruwer and Mhaskar (2010), which 

involves an additional modeling step and furthermore it 

includes future set-points in the predictive model. The 

irregularity of the set-point trajectory improves the 

conditioning of the predictive model. Therefore, this 

technique is highly dependent on the used trajectory. 

The BWU modeling approach addresses the 

nonlinearity and time varying properties of the batch 

process. However, it needs a large number of batch runs 

in the training period. This has motivated the so-called 

Regularized Batch-Wise Unfolding (RBWU) to 

decrease the number of collected batches necessary to 

identify a model (Golshan, MacGregor and Mhaskar 

2011). This modeling alternative has been incorporated 

in the LV-MPC methodology proposed in this article. 

Another important point to be highlighted is related to 

the manipulated variables. Golshan, MacGregor, 

Bruwer and Mhaskar (2010) have shown that identical 

performances can be achieved through control strategies 

implemented in the latent variable space and in the 

manipulated variable space. However, the control in the 

manipulated variable space is preferable because the 

optimization variables can be directly constrained. For 

this reason, the formulation proposed in this paper 

presents explicit constraints in the space of the 

manipulated variables. 

Therefore, the main difference in the formulation 

presented in this work, compared to previous 

techniques, is that the predictive model does not include 

the set-point trajectory, making it more flexible. Also, 

another important contribution of the work is the 

proposal of a new LV-MPC formulation for tracking, 

which is offset-free and subject to constraints, where the 

prediction is done in a rather different manner from 

other authors (MacGregor, Bruwer and Golshan 2009; 

Golshan, MacGregor, Bruwer and Mhaskar 2010; and 

Golshan, MacGregor and Mhaskar 2011). 

The rest of the work is organized as follows. In the next 

section, the constrained LV-MPC for batch processes is 

presented. Section 3 is devoted to analyze the study 

cases. The method is tested on a simulated batch 

reactor, which serves as a benchmark because it has 

previously been used to evaluate LV-MPC techniques. 

The paper ends with some conclusions. 

 

2. CONSTRAINED LV-MPC FOR BATCH 

PROCESSES 

Consider first a PCA model of a batch process that has 

been developed on the basis of a batch dataset. Assume 

that a set-point trajectory has been defined for the 

process. Then, the main objective is to track the 

specified trajectory in a new batch run, which can 

additionally be affected by disturbances. In what 

follows, the model calibration and the controller design 

are described. 

 

2.1.   Rearrangement of the batch datasets 

Consider the i-th batch run. For the sample time k, the 

measurement vector is defined as follows: 

 

, , ,, (1 )i k i k i ki k n
      y u dx ,    (1) 

 

where , ( 1)i k nyy , , ( 1)i k nuu  and , ( 1)i k nd d  are the 

controlled, manipulated, and measured variables, 

respectively; and n ny nu nd   . Particularly, ,i kd  is 

a vector of on-line measurements (e.g., pressure, 

temperature, stirring rate, flow rates, etc.) that can be 

incorporated to give information on disturbances and 

process changes. The data collected from a batch 
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process are arranged in a 3-dimensional array (or cube) 

where for I batch runs ( 1, ,i I ), the trajectories of n 

variables are measured over K time intervals 

( 1, ,k K ). Latent variable modeling of these data 

involves unfolding the data array into a 2-dimensional 

matrix and then modeling the variation in this matrix. 

The main difference among the existing approaches 

(Golshan, MacGregor and Mhaskar 2011) stems from 

the strategies utilized to construct a 2-dimensional array 

(a matrix) from the 3-dimensional data array. Nomikos 

and MacGregor (1994) suggested that the BWU 

approach is the most logical way for modeling the 

differences among batches. In the BWU approach, all 

the variables at different sample times are put beside 

each other and each batch history constitutes one 

observation or row in the unfolded matrix, i.e. : 

 

 1 ( )B k K I Kn
X X X X ,  with  

1,

, ( )

k

k

I k I n

 
 

  
  

x

X

x

, (2) 

 

In BX , data on each variable at all time intervals are 

included in a row. Thus, a PCA model of BX  is capable 

of explaining the time varying and nonlinear 

characteristics of the batch. The calibration data set can 

be obtained from the previous batches run in normal 

conditions, augmented with additional batches that have 

designed according to identification experiments, in 

order to provide more information on the causal 

relationships at every time interval. 

In this work, RBWU is used to produce a regularized 

version of the PCA model of BX  from a reduced 

number of batch runs (Golshan, MacGregor and 

Mhaskar 2011). This approach unfolds batch-wise but 

also repeats each batch row L times, each time shifted 

by one additional sampling interval, as follows: 

 

1

1 2

2 3 1

1 2 ( ( ) ( ) )

K L

K L

L L K I L K L n



 

    

 
 
 
 
 
 

X X X

X X X
X

X X X

.     (3) 

 

The parameter L is the number of shifts in matrix X. If 

L = 0 (no shift), the unfolding is simply BWU (Eq. 2). 

But if a small number of shifts is used (e.g., L/K < 

0.05), this approach will retain most of the advantages 

of the BWU approach (by capturing the time varying 

non-linear behavior). However, at each time interval, 

the model will be averaged over L consecutive time 

periods thereby restoring some of the advantages of the 

Observation-Wise with Time-lag Unfolding (OWTU). 

This modeling strategy aims at capturing the major 

benefits of the two previously mentioned modeling 

approaches, while avoiding the problems related to each 

one. A PCA model based on the unfolded matrix X (Eq. 

3) that contains mean-centered and scaled data produces 

a reduced dimension latent model, as follows: 

 

ˆ X XPP ,     (4) 

 

where (( ) )K L n A P  is the loading matrix, with A 

being the number of retained latent variables (Godoy, 

Vega and Marchetti 2014). To produce an adequate 

model, the value of A must be smaller than or equal to 

the number of batches I that are available in the 

calibration dataset (i.e., A I ). The mean centering 

procedure automatically removes the average 

trajectories of all variables and hence also removes the 

main nonlinearities related to the absolute values of 

such variables. Then, the application of PCA on these 

deviated data provides different loadings at each time, 

thereby modeling the instantaneous covariance structure 

and its changes along the time. Therefore, it provides a 

locally linearized model of the covariance structure of 

the variables at every point. As a consequence, this 

PCA model captures the time-varying properties 

throughout the batch as a locally linear model at each 

point along the batch time. 

The covariance of the time-shifted matrix X is the 

average of the covariance matrix of batch-wise unfolded 

matrix BX  over (L+1) consecutive sample times 

(Golshan, MacGregor and Mhaskar 2011). Thus, the 

resulting covariance matrix is a regularized version of 

the original covariance matrix. Note that the loading 

matrix P of the PCA model built for the X matrix is a 

regularized version of the loading matrix for the BX  

matrix, where L is the moving average window length. 

The value of L should be chosen as the maximum value 

such that the process variability is maintained and L/K 

<0.05, while the variability by common causes is 

reduced (signal smoothing). 

 

2.2.    Identification 

The calibration data can be taken from batches that have 

been run under normal conditions, and augmented with 

additional batches carried out according to experiments 

properly designed for identification purposes. These 

experiments must provide information about the causal 

relationships between the manipulated and controlled 

variables, at every time interval. The direct 

identification approach based on closed-loop data is 

used in this study. Closed-loop identification is 

preferred over open-loop identification for batch 

processes in order to maintain the process close to its 

desired trajectories and to minimize the variations of the 

final product quality.  

A dither signal in the form of a Random Binary 

Sequence (RBS) is added to the manipulated variable 

trajectories coming from an existing proportional-

integral (PI) controller to provide some additional 

excitation to the process. The RBS signal is chosen to 

have its switching frequency in a suitable range (1/3 of 

the dominant time constant of the process). The closed-

loop design of the identification experiments for 
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identifying models relating time-varying batch 

trajectories have previously been used in Golshan, 

MacGregor, Bruwer and Mhaskar (2010). The designed 

RBS signals simply improve the causal relationships 

between the manipulated and controlled variables along 

their trajectories. The historical batch data are also 

important in providing models for the effects of inherent 

disturbances in the batch process and their influence on 

the behavior of the evolving trajectories. 

 

2.3.    Prediction of future trajectories 

Applying PCA to the unfolded matrix allows modeling 

the time-varying and nonlinear behavior of the batches 

as a local linear model at every sample time. We take 

this local characteristic of the model to propose the 

predictor described below. 

Suppose a multi-way PCA model is developed based on 

a regularized batch-wise unfolded dataset (Eq. 4). 

Therefore, each row x  of the unfolded X matrix (Eq. 

3) corresponds to the data from one complete batch, 

which can be modeled as: ˆ   x x PP . Assume that a 

new batch is currently at sample time k. Then, the 

variables in that batch, x , can be partitioned into four 

terms (distant past, recent past, near future, and distant 

future) as follows: 





1,2,

1, 2,

1 2 1 2 1

1 ,

p kp k

f k f k

k PH k PH k

k k PH k PH K L

   



   

 

    

   

xx

x x

x x x x x

x x x x
 

2, 1, 1, 2,, , , ,p k p k f k f k
       x x x xx     (5)  

 

where PH is the selected prediction horizon. The 

corresponding loading matrix P (see Eq. 4) can also be 

separated in the same way as the x  vector as follows: 

 

2, 1, 1, 2,p k p k f k f k
       P P P PP ,    (6) 

 

where coefficients in 1,p k
P  and 1,f k

P  account for the 

correlations between measurements, from k-2PH to 

k+PH-1. Then, the near future process variables 1,f kx  

can be estimated using missing data imputations, as 

follows:  

 

 
1

1, 1, 1, 1, 1, 1,
ˆ

f k f k p k p k p k p k


 x P P P P x ,   (7) 

 

where 1, 1,( ) ( )p k p krank rank A  P P P P . This 

prediction is based on the following latent relationship: 

1, 1, 1, 1,, ,f k p k k f k p k
          x x t P P , where the latent 

variables, kt , could be estimated by using the known 

part of the data, i.e.  
1

1, 1, 1, 1,
ˆ

k p k p k p k p k


 t P P P x ; and 

hence, 1, 1,
ˆˆ

f k f k kx P t  (Godoy, Vega and Marchetti 

2014). Therefore, we obtain the prediction of near 

future behavior 1,f kx  by using the recent past data 

1,p kx . The inclusion of kd  in the modeled 

measurements (Eq. 1) improves the consistency of the 

correlation model (Eq. 4) and therefore the predictive 

model (Eq. 7). 

The idea behind this partition is to create a (short) 

moving window for prediction, in order to avoid local 

linear model unreliability. This data influence window 

is determined (only) by a short portion of the complete 

batch vector x. That is, only the recent past will be used 

to predict the near future behavior, by means of a local 

dynamic model. Furthermore, given that a local 

dynamic model is used, both, the distant past and future 

behavior are not taken into account for prediction. The 

use of this partition (not the partition itself) constitutes a 

novelty in contrast to the formulation presented in 

Golshan, MacGregor, Bruwer and Mhaskar (2010), 

which considers the set-point trajectory, the recent past 

and the distant past for the near future prediction. This 

later formulation derives in a low sensitive prediction, 

given that too much past information is used. 

 

2.4.    Constrained LV-MPC for trajectory tracking 

The idea now is to propose a MPC strategy for 

trajectory tracking, taking advantage of the LV model 

presented before. The near future outputs, at time k, 

 1f k k PH 
  y y y , will be predicted by means of the 

recent past data, 1,p kx , and future control inputs, 

 1f k k PH 
  u u u , using missing data imputation 

(where fy  and fu  are included in 1,f kx ). To do that, 

the combined vector 1,,
,p k fp k

     x ux  is first defined, 

and then, the appropriate model partition corresponding 

to the this vector, 1, ,, p k u kp k
     P PP , is computed. 

Matrix ,u kP  (nu PH × A), in the later partition, contains 

the rows of 1,f kP  ( )PH n A  corresponding to fu . 

This way, the near future outputs can be predicted by:  

 

 
1 1,

, , , , ,
ˆ

p k

f y k p k p k p k p k k

f

  
    

 

x
y P P P P x C

u
,  (8) 

 

where ,y kP  is composed by the rows of 1,f kP  

corresponding to fy . Although this prediction model 

captures the main relationship between future outputs 

and recent past data together with future control inputs, 

both are normalized (i.e. centered by their means and 

scaled by their deviations). Thus, in order to obtain the 

future output prediction vector denormalized, it should 

be scaled back. This way, an output prediction in the 

original units is given by: 

 

 

 
1,

1
1, 1,

1, 2, 1
ˆ

p k

f

f

p k p k

k kf f

f f

D
D

D





 
    

  

x

y

u

x x
C Cy y

u u
, (9) 
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where 1, 2,k kk    C CC , and 
1,p k

Dx , 
f

Du , 
f

Dy  are the 

deviations diagonal matrices and 1,p kx , fu , fy  are the 

means vectors, both corresponding to the time interval 

1k k PH  . Finally, as usual in MPC closed-loop, a 

correction term is added to the prediction, to account for 

the feedback: 

 

 

 
1,

1
1, 1,

1, 2, 1
ˆ

ˆ( )

p k

f

f

p k p k

k kf f

f f

k k

D
D

D





 
      
 

 

x

y

u

x x
C Cy y

u u

K y y

    (10) 

 

where [ ] ( )ny ny PH ny ny K I I , ky  is the current 

output, and ˆ
ky  is the current prediction in original 

units; which can be estimated as follows: 

 

1,

1 1

1, 1, 1, 1, 1, 1,
ˆ ( ) ( )

p kk k p k p k p k p k p k kD D    y xy P P P P x x y ,(11) 

 

where 1,kP  is composed from rows of 1,f kP  

corresponding to ky ; and Dy  and ky  are the deviations 

diagonal matrix and the means vector, respectively.  

Now, the future input vector, fu , can be expressed in 

terms of the control moves, fu , which constitutes an 

appropriate practice in MPC to obtain an offset-free 

formulation (González, Adam and Marchetti 2008). 

Assuming a control horizon CH, fu  can be written as 

follows: 

 

1

1

( )

( )

1

,

,

f

n

k n

f k

n n

k CH n

n n
PH nu nu

PH nu CH nu

f f k



 







 
    

     
    
        

 

  

Φu

Π

I 0 0
u I

0
u u

I I
u I

I I

u Π u Φu

       (12) 

 

Next, the proposed MPC formulation is presented. 

According to usual practical formulation of MPC for 

tracking set-points (Zanin, Tvrzská de Gouvea and 

Odloak 2002), the proposed controller online 

determines the sequence of control moves 

1[ ]f k k CH 
     u u u  that minimizes a performance 

index -which penalizes the distance between prediction 

and references- subject to variable constraints. The 

optimization problem arising from this idea reads: 

 

 
2 2

,min ,max

,min ,max

ˆmin

. .

f
f f f

f f f

f f f

s t


  

    

 

y u
u

W y r W u

u u u

u u u

              (13) 

where 1[ ]f k k PH 
  r r r  is the desired near trajectory 

portion, Wy and Wu are the weighting diagonal matrices 

penalizing the output deviation from the trajectory and 

the input move, respectively. As a receding horizon 

policy is applied, only the first element of fu  (i.e., 

ku ) is injected to the plant and, at the next sample 

time, the same optimization problem is solved again. 

The input constraint vectors are composed as follows: 

 

 ,max maxf nu nu nu CHnu
   u u I I , 

 ,min minf nu nu nu CHnu
   u u I I , 

 ,max maxf nu nu nu PHnu
 u u I I , 

 ,min minf nu nu nu PHnu
 u u I I .  

 

Now, the optimization problem will be put in a 

quadratic programming (QP) form. Using the prediction 

model (Eq. 10) and Eq. (12), and reorganizing the cost 

function and the constraints, the optimization problem 

(Eq. 13) can be written as follows: 

 

min 2

. .

f
f k f k f

s t


    

u
u H u f u

 

,max

,min

,max 1

,min 1

,

k

f

f

f

f k

f k





  
        
   
  
      

A b

uI

uI
u

u ΦuΠ

u ΦuΠ

             (14) 

 

where 

 
1 2 1 2

2, 2,f f f fk k kD D D D   u y y y u uH Π C W C Π W ,   

1,

1 1

1, 1, 1, 2, 1[ ( ) ( )
f p k f fk k p k p k k k fD D D D 


    y x y uf C x x C Φu u           

         
2 1

2,
ˆ( ) ]

f ff k k f kD D   
y y u

y K y y r W C Π , 

 

where 1,p kx  and fu  are in their original units. Notice 

that this optimization problem can be solved with any 

existing QP solver included in commercial MPC 

controllers (Qin and Badgwell 2003). In all cases, it 

should be verified that  , ,p k p krank A P P , for all k 

(see Eq. 8), before implementing the proposed 

controller. 

In order to tune the controller, the number of latent 

variables retained in the PCA model, A, (see Eq. 7) is 

firstly determined and coincides with the degrees of 

freedom of the process. Since a correlation model (with 

rank A) is used for prediction, then the problem in Eq. 

(13) will be well-conditioned provided that the numbers 

of independent sources propagated by the model is 

lower than or equal to A. Then, the control horizon is set 

to CH A n  in order for the number of independent 

sources (composed by the consecutive control moves, 
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CH, times the measurement vector dimension, n) to be 

equal to the degrees of freedom A (i.e., CH n A ). 

Furthermore, the prediction horizon is set 

to ( )PH A nuCH ny  , in such a way that the sum of 

the control and prediction horizons are equal to A (i.e., 

nuCH ny PH A  ). 

Note that Eq. (8) represents a dynamic model with time-

varying coefficients kC , i.e., Eq. (8) is an autoregressive 

with exogenous variables (ARX) model for each time k. 

This non-parsimonious model structure is better 

identified using latent variable methods (Duchesne and 

MacGregor 2001), but the identified model reliability 

depends of the selection of L and A. In process control, 

the objective of PCA model identification is not just to 

obtain a model which give good predictions of the 

controlled variables (outputs), but to obtain a good 

approximation to the true underlying dynamic behavior 

of the process so that the controller design (involving 

inversion of the model structure) results in good control 

of the controlled variables. In the last mentioned paper, 

it was stated that the sum of squares of the model 

residuals (SSE) for each retained latent variable should 

not be used alone to select the appropriate dynamic 

model. They proposed to complement the SSE profile 

with a model parameters uncertainty (or stability) 

profile which would reveal when the model is over-

fitting the data. A jackknife criterion was used for 

measure this model parameters uncertainty for each 

retained latent variables. However, this criterion is not 

directly applicable to our case, because in this work a 

dynamic model (for each time) is extracted from a 

multi-way PCA model. Hence, in order to adapt this 

technique to our case, it is necessary to calibrate a PCA 

model for each piece of data around each time k, 

(1 ( 1), 2 1)p

k I L k PH k PH    X X , which are 

associated to each dynamic model kC  (with 

2 1k PH K L PH    ). However, this requires 

further analysis that is beyond the scope of this paper, 

and so, only the SSE is used in this work to determine 

A.  

Finally, it should be noted that opposite to other 

existing LV-MPC formulations (Golshan, MacGregor, 

Bruwer and Mhaskar 2010), the proposed strategy 

explicitly includes input and input move constraints. 

This fact, not only allow us to fulfill the variable limits 

(which can be done by any saturation device) but to 

predict, and then to anticipate, the possible saturation of 

the variable. This results, as will be shown later, in a 

better use of the control inputs. 

 
Figure 1: Schematic of the reactor with its LV-MPC 

instrumentation given by 
kr , 

ky , 
kd  and 

ku . The 

instrumentation of the PI control (SISO) comprises only 

kr , ky  and ku . 

 

3. CONSTRAINED LV-MPC FOR BATCH 

REACTOR TRACKING CONTROL  

In this section, a batch reactor is used to illustrate the 

trajectory tracking capabilities and properties of the 

proposed algorithm. Aziz, Hussain and Mujtaba (2000) 

presented a nonlinear model of this batch reactor. This 

process model was originally proposed by Cott and 

Macchieto (1989) as a case study for a temperature 

control problem on a batch reactor. A complete 

description of the model equations is found in Appendix 

A, which details how the quantities of products CM , 

DM  are dynamically produced from the quantities of 

raw materials AM , BM . Values for the model 

parameters, under nominal conditions, are the same as 

those reported in Aziz, Hussain and Mujtaba (2000) 

(see Table A.1). Fig. 1 shows the schematic of the batch 

reactor system. The reactor temperature ( rT ) is used as 

the controlled variable ( ky ), which is bounded between 

20 and 100°C. The jacket temperature set-point ( ,j inT ) 

is used as manipulated variable ( ku ) and is bounded 

between 20 and 120°C. The control objective is to track 

the reactor temperature set-point ( kr ) by adjusting the 

inlet jacket temperature. The set-point trajectory is 

arbitrarily complex and it was used in Yu and Flores-

Cerrillo (2013). On-line reactor temperatures, 

considered to be available every 0.2 min, are corrupted 

by normally distributed random error with standard 

deviation =0.15°C. The total batch time is 150 min 

and the initial values of [ ]A B C D j rM M M M T T  are 

[12 12 0 0 25 25] , respectively. Control action for 

both PI and LV-MPC (see Fig. 1) is taken every 0.2 

min. 16 batch runs were collected under the same PI 

controller (Kc=15 and Ti =10) (Aziz, Hussain and 

Mujtaba 2000) with similar level of RBS excitation (1 

nominal batch run and 15 batch runs with RBS 

excitation). A RBS dither signal is added to the 

manipulated variable with a normalized frequency 0.15, 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2016 
ISBN 978-88-97999-82-9; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.   

54



i.e., that the signal remains constant over 6-7 sample 

times on average which is suitable with respect to the 

process time constant. The dither magnitude around the 

input (12 °C  15% of the trajectory mean) was small 

enough to have little noticeable effect on the 

temperature trajectories. The mean absolute error for the 

controlled variable is only about 30% higher with the 

added RBS than without added RBS signal (i.e. when 

the system is controlled only by the PI). In order to test 

the consistency of the proposed design methodology, 

the following measurements vector is considered, 

,[ ] [ ]k r j in C D j k k k kT T M M T y u   x d , where n=5. A 

regularization parameter L=5 was adopted to construct 

the data matrix X. Wold's R criterion is used to select 

the number of principal components (A) retained in the 

PCA model (see Eq. 4), which is given by: 

( 1) ( 1) ( )R a MSE a MSE a   , where 

(( ) ( ) ( )(1 ) )IMSE a S nSE a L K L   is the Mean 

Sq             si g “a”           i    s. Th  i c  si   

of new latent variables into the model finishes when the 

ratio ( 1)R a   exceeds a predefined threshold of 0.9 in 

this case and hence A=a. Figure 2 shows the selection 

criterion used to set A=15, the standard error 

( )RMSE a , and the explained variance given by 

2 ˆ ˆ( ) ( ( ) ( )) ( )XR a tr a a tr  X X X X , where ˆ ( )aX  is the 

    ic i    si g “a”   tent variables. Conceptually, this 

criterion states that an additional latent variable will not 

be included in the model unless it provides a 

meaningful prediction improvement, and consequently, 

it gives the maximum number of latent variables to be 

included in the model. The control horizon is set to 

CH=3, because A=15 and n=5. Then, the prediction 

horizon is set to PH=12. The limits of the rate of change 

are: max 15u  , min 15u   . The following weights 

are used: 
0.5

(1 )Tr PHE PH
y

W I  and 

max min( ) CHs u u  uW I , where  0.35TrE C   is 

the allowable mean error and 3.6s   is the move 

suppression factor.  

In order to evaluate the constrained LV-MPC algorithm, 

several studies are performed to investigate the effect of 

the information content of the data available for model 

building, the type of model (adaptive vs. fix), and the 

performance under different conditions.  

Figure 3a shows the trajectory tracking of the PI 

controller during a nominal batch run, in order to 

benchmark the proposed LV-MPC methodology against 

the commonly used controller. The PI controller is 

tightly tuned, in contrast to the PI controller that was 

used in Golshan, MacGregor, Bruwer and Mhaskar 

(2010) (evidenced by its poor performance in the 

simulations). Figure 4 shows the trajectory tracking of 

the constrained LV-MPC during a nominal batch run. 

 
Figure 2: Selection of the number of latent variables by 

using the criterion R0.9. a) Pareto of explained 

variability and percentage of standard error. b) 

Successive errors rate together with its threshold for 

selection of the model order (A=15).  

 

 

 
Figure 3: Implementation of a tightly tuned PI 

controller for the temperature control problem.  

 

In Golshan, MacGregor, Bruwer and Mhaskar (2010), 

the desired set-point trajectory is included in the 

modeled data and in the prediction model. If this 

trajectory varies continuously (as it was in their case 

study), the numerical conditioning (rank of P) is 

increased by improving the predictive power. In this 
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paper, the trajectory is not included in the modeled data. 

Even so, a very good control is obtained (see Fig. 4).  

 

 

 
Figure 4: Implementation of constrained LV-MPC 

using a PCA model based on RBWU dataset.  

 

The proposed tuning methodology produces a LV-MPC 

with tighter tracking using a more parsimonious model, 

which was calibrated using less batch runs than in 

Golshan, MacGregor and Mhaskar (2011). It is also 

important to check the power of offset elimination and 

disturbance rejection for the proposed control 

methodology, in particular, the ability of the controller 

to incorporate integral action to reject the effect of non-

stationary disturbances. The set-point tracking study 

shows no evident offsets even when the set-point 

trajectories are a sequence of ramps (see Fig. 4). This is 

because the models are based on the variable deviations 

about the mean trajectories and the control moves ku  

-calculated by the LV-MPC- are then added to 1k u  to 

get the final ku  setting. In the LV-MPC methodology 

proposed here, offset is handled automatically by the 

offset correction (see Eq. 10) and by the information on 

the non-stationary effects of the disturbances (that are 

built into the PCA model developed from the training 

data). In Golshan, MacGregor, Bruwer and Mhaskar 

(2010) and Golshan, MacGregor and Mhaskar (2011), 

the manipulated variable takes negative values (i.e., 

they are physically unrealizable). In contrast, the 

proposed controller effectively manages the constraints 

of value and rate of change in the manipulated variable. 

To provide a severe test of the disturbance rejection 

ability of the batch constrained LV-MPC, a large 

additional random walk disturbance was added to the 

measured reactor temperature (i.e., the controlled 

variable) for several simulation runs and the ability of 

the LV-MPC to eliminate the large offsets coming from 

this disturbance was investigated. The study is intended 

only as a severe test of the ability of the LV-MPC to 

eliminate offset due to non-stationary disturbances. 

Figure 5 shows the random walk disturbance that was 

added directly to the controlled variable. If there was no 

offset elimination (integral action) then the 10–20°C 

 ffs  s w            i   h  c         ’s    cki g  f  h  

set-point trajectory.  

 

 

 

Figure 5. Performance of LV-MPC for both tracking the 

set-point trajectory and rejecting a random walk 

disturbance occurring on top of the output (Tr). 

 

However, the proposed control methodology is clearly 

able to reject the non-stationary disturbances. The input 

moves in Fig. 5 are more aggressive than in Fig 4, 
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mainly due to the severity of the test disturbance, 

although the input constraints are still satisfied. 

In summary, the results of the simulations show that the 

proposed technique is highly efficient. A tighter 

tracking with a smoother input (fulfilling constraints), 

along with a high performance disturbance rejection 

promote the industrial application of the proposed 

technique.  

 

4. CONCLUSIONS  

This paper presents a constrained LV-MPC technique 

for trajectory tracking in batch process. Our approach 

consists in building a MPCA model applicable to every 

time point based on a moving window along the batch-

wise unfolded dataset. The proposed control and tuning 

technique is quite simple and robust, which makes it 

attractive to the biotechnology and pharmaceutical 

industries where the cost of data collection is very 

important. Furthermore, most commercial MPC 

software has QP solvers, and hence, the offset-free LV-

MPC formulation could be easily implemented. A case 

study has been presented to illustrate the proposed 

technique and to show the good performance of the 

controller.  

In a future work it is intended to study the following 

points: (i) the development of a reliable method to 

compute the number of shifts in matrix X, L, and the 

number of latent variables retained in the model, A; (ii) 

the need to change the local correlation model at each 

sample time along the batch; and (iii) the extension of 

the current LV-MPC formulation to include economic 

objectives. 
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APPENDIX A.  PROCESS MODEL FOR THE 

CASE STUDY 

The model equations for the batch reactor are as 

follows: 

 
2

1 1

1 1exp
273.15r

k
k k

T

 
  

 
             (A.1) 

2

1 2

2 2exp
273.15r

k
k k

T

 
  

 
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2 2 A CR k M M                (A.4) 
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pA A pB B pC C pD D

pr
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C M C M C M C M
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M
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( )j j rQ UA T T                 (A.8) 

1 2
AdM

R R
dt

                  (A.9) 
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BdM

R
dt

                (A.10) 

1 2

CdM
R R

dt
                (A.11) 
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DdM

R
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                (A.12) 

( )r jr

r pr

Q QdT

dt M C


              (A.13) 

( )SP

j j j j

j j j pj

dT T T Q

dt V C 


             (A.14) 

 

The above model parameters are given in Table A.1. 

 

Table A.1. Constant parameter in the reactor model. 

Parameter Value 

CpA 18.0 kcal/kmol °C 

CpB 40.0 kcal/kmol °C 

CpC 52.0 kcal/kmol °C 

CpD 80.0 kcal/kmol °C 

ΔH1 -10000.0 kcal/kmol 

ΔH2 -6000.0 kcal/kmol 

Cpj 0.45 kcal/kg °C 

U 9.76 kcal/min m
2
 °C 

ρj 1000.0 kg/m
3
 

A 6.24 m
2
 

Vj 0.6921 m
3
 

1

1k  20.9057 

2

1k  10000 

1

2k  38.9057 

2

2k  17000 

Δt 0.2 min 

j 3 min 
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