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ABSTRACT 
This paper presents the application of a technique called 
Bond-Graph Prototyping (BGP) to the design of a 
robust controller globally stabilizing an arbitrary 
equilibrium point of the DC-DC Buck converter. The 
method qualifies as an energy- and power-based design, 
as it proceeds entirely in the BG domain. The nonlinear 
averaged BG of the converter is used as the plant 
model. The first design step is to construct a so-called 
Target BG (TBG) specifying the desired closed-loop 
behaviour. Then, via BGP, a Virtual BG emulating the 
internal behaviour of the modulated source providing 
the control action is constructed which, coupled to the 
plant BG yields an equivalent to the TBG. Finally, 
integral action is applied to the closed-loop in order to 
provide robustness against parameter uncertainty and 
external disturbances. The design is performed for a 
generic dissipative load and then particularized for a 
linear resistance, for which the numerical validation via 
simulation is provided. 

Keywords: Buck converter, bond graphs, energy-based 
controller design, robust integral control, structure-
preserving control. 

1. INTRODUCTION
Due to their versatility, high efficiency, controllable 
behaviour, fast dynamics and wide-range of power 
management, Power Electronic Converters (PEC) are 
ubiquitous and pervade most of the cutting-edge 
engineering application areas. Indeed, they can be found 
in electrical drives, switched-mode power supplies, 
battery chargers, uninterrupted power supplies, all type 
of mobile devices, distributed generation and renewable 
energy conversion systems, embedded in electric/hybrid 
vehicles (cars, trains and airplanes), etc. (F. Dong Tan 
2013). 
Closed-loop control of PEC is mandatory when their 
mission is the conditioning of the processed or the 
output power subject to hard application specifications 
and under the effect of significant disturbances. Model-
based control system synthesis methods are required for 
high-performance behaviour, see for instance (Bacha, 
Munteanu and Bratcu 2014). Through its application to 

the control of a buck converter, this paper presents a 
method to address these kind of problems in the Bond 
Graph domain (Karnopp, Margolis & Rosenberg, 2012). 
From a modelling perspective, PEC are hybrid, non 
linear systems composed of continuous elements like 
inductors, capacitors, resistors, sources, etc., and 
switching devices allowing for the control actions, like 
transistors, diodes, etc. Considering the controller 
outputs as logic variables determining directly the on-
off states of the switches, or as continuous variables 
acting on them through PWM stages, establishes a 
major divide between the design strategies. To the first 
case belongs, for instance, the sliding-mode approach 
(Tan, Lai, Tse and Cheung 2006), to the second, the 
vast majority of techniques, which develop on a 
averaged continuous model. Aiming at its 
implementation on a digital processor, the control 
algorithm can be obtained as a continuous-time law that 
needs further discretization or directly as a discrete-time 
law on a discretized average model (Choudhury 2005). 
A further division concerns the direct use of nonlinear 
averaged models or their versions linearized around a 
desired equilibrium point (Bacha, Munteanu and Bratcu 
2014). Linear controllers are tuned for specific 
operating points and, unless complemented with 
adaptation mechanisms –what adds complexity to the 
controller–,the closed-loop performance degrades when 
the operating point changes. Nonlinear controllers with 
a unique parameterization valid for the whole operating 
range are thus preferable. Exact feedback-linearization, 
passivity-based control and Lyapunov-like stabilization 
count among the continuous time control techniques 
derived on nonlinear averaged continuous converter 
models (Sira-Ramírez and Silva-Ortigoza 2006).  
This paper presents the Bond Graph Prototyping 
technique (Junco 2004) as applied to the nonlinear 
averaged Bond Graph model of a buck converter. In this 
context, BGP means constructing a Virtual BG (VBG) 
that, when coupled to the plant at the place of the 
actuator, produces a desired closed-loop behaviour 
having been pre-specified in the form of a Target BG 
(TBG) whose storage function qualifies as a Lyapunov 
function, so that the closed-loop stability is assured. In 
the case of the averaged model of the buck converter the 
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actuator is a voltage source modulated by the duty-cycle 
of the switching control signal, that can be also 
modelled as a MTF supplied by the a source, as done 
here in Figure 1. The resultant controller is a nonlinear 
static feedback law dependent on the plant parameters. 
As such it is strongly sensitive to parameter deviations 
and external disturbances, what calls for a secondary 
robustifying control loop, which is designed adding 
integral action in such a way that the closed-loop 
stability is guaranteed. 
The purpose of the paper is twofold: on the one hand, to 
present the BG-based control system design 
methodology as applied to PEC applications and, 
collaterally, to contribute a new result specific for the 
buck converter. As it proceeds entirely in the BG 
domain, the method qualifies as an energy- and power-
based design. For this reason there is an intrinsic 
correspondence with the energy-shaping and 
interconnection-and-damping assignment techniques 
(ES and IDA) developed on Port-Hamiltonian models 
(PHS), particularly with the SIDA-PBC (Simultaneous 
Energy Shaping and Damping Assignment) approach 
(Batlle, Dòria-Cerezo, Espinosa-Pérez and Ortega, 
2009), as shown in the paper. Furthermore, as the TBG 
is chosen to be linear, the result is equivalent to 
designing with the feedback-linearization technique 
(Khalil 2002). It is however important to remark that 
this is not inherent to the method but a consequence of 
having made the particular choice of a linear closed-
loop behaviour. 
The remainder of the paper is organized as follows: 
Section 2 presents the averaged BG-model of the buck 
converter, develops the basic control law via BG-
prototyping assuming perfect model knowledge, 
establishes the closed-loop properties and shows via 
simulation the shortcomings of the controller under the 
presence of model uncertainties. Also the 
correspondence of the result with controllers obtained 
via IDA-PBC and feedback-linearization is shown in 
this section. Section 3 deals with the BG-based design 
of an additional integral control action that preserves the 
closed-loop PHS-structure and rejects internal and 
external disturbances. The behaviour of the robustified 
overall control law is demonstrated in this section with 
the help of simulation results. The paper ends with 
Section 4 presenting the conclusions. 
 
2. FULL STATE-FEEDBACK CONTROLLER 

FOR EXACT MODEL KNOWLEDGE 
This section presents the averaged BG model of the 
buck converter, formulates the control problem in terms 
of equivalent closed-loop stored energy and power 
dissipation by means of the TBG, and solves it with 
resource to the BGP method. Furthermore, the 
performance of the controller by exact model 
knowledge is shown by simulations, as well as its 
degradation under the presence of disturbances. 

 

2.1. Buck converter averaged model 
Figure 1a shows the equivalent circuit of a buck 
converter with a generic load specified by a nonlinear 
law �� � ���� satisfying �	. ���� 
 0 for 	�	 
 0 and 
���� � 0	 for � � 0, i.e., entirely contained in the first 
and third quadrant thus being truly dissipative. Figure 
1b shows the averaged BG of the equivalent circuit 
where the commutation cell constituted by the switch (a 
MOSFET or IGBT in the practice) and the diode has 
been replaced by the source-supplied MTF driven by 
���, the continuously varying duty cycle of the 
commutation signal controlling the switch, see Mohan, 
Undeland, and Robbins (1995) for background on 
averaged models. In the calculations to follow � � �	�, 
the averaged voltage across the diode, will be treated as 
the control input. 
 

 
Figure 1: Buck converter: (a) Equivalent circuit. (b) 
Averaged BG model. 
 
The averaged state equations are: 
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  (1) 

 
Here, instead of the inductance magnetic flux and 
capacitor electric charge, the � and � energy variables 
usually chosen as state variables in the BG domain, 
their power co-variables � and � have been selected. 
This is because they are more frequently used in the 
power electronics literature. 
With the duty cycle taken values in the interval [0, 1] 
and assuming the converter operating in continuous 
conduction mode (CCM), the following mathematical 
restrictions apply: 
 
� 
 0

� � 0
   (2) 

 
A generic equilibrium point (EP) is defined by ��̅, ��̅ �

��,  �, where � is a desired constant output voltage on 
the load and   is the corresponding current given by 
 � ����. 
  
2.2. BG-prototyping the control law 
The control problem is to render a desired EP ��,  � 
globally asymptotically stable (GAS), i.e., to find a 
controller that forces all the trajectories starting in the 
first quadrant –recall restriction (2)– to remain there, be 
bounded and to converge to the EP. 
 
2.2.1. Target Bond Graph 
The first step in the control system synthesis procedure 
consists in expressing the desired closed-loop behaviour 
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in the form of a BG, what originates the concept of 
Target Bond Graph. This TBG is conveniently defined 
or chosen as an autonomous system having its origin as 
a GAS EP in a one-to-one correspondence with the 
desired EP of the converter. The chosen TGB is given 
in Figure 2 along with its electric circuit equivalent. It is 
an inputless system with two linear storage components 
(their parameters have been chosen equal to the original 
! and " parameters, but it could have been done 
differently) and two linear dissipators (whose 
parameters are the resistance # and conductance $) 
each one being driven by a state variable. Thus, the 
TBG has the state space origin as its only EP which, 
clearly, is GAS. In fact, more than that, due to the TBG 
linearity and invariance, the EP is GES, globally 
exponentially stable. This can be seen directly by 
inspection of the TBG (Junco 2001a, Proposition 2.3) or 
noticing that the stored energy % is a positive definite 
function (written 
 0) with negative definite (& 0) 
orbital derivative %'  thus qualifying as a Lyapunov 
function for the origin, see equations (3) and (4). 
 

 
Figure 2: (a) Target BG. (b) Equivalent Circuit. 

 

%�(, )� �
*

+
"(+ �

*

+
!)+ 
 0   (3) 

 
%' �(, )� � �$(+ � #)+ & 0    (4) 
 
The capacitor " in the TBG is taken as being the 
original one but with its voltage ( referred to the desired 
value �, so that the following relationships hold 
 
( � � � �    (5) 
)� � ��    (6) 

 
where )� and �� are the currents flowing into the 
capacitors of the TBG and the Plant-BG, respectively. 
On the other hand, the currents �� in the Plant-BG and ) 
in the TBG do satisfy 
 
�� � � � ����    (7) 
) � )� � $	(    (8) 
 
Putting all together yields the next correspondences 
between the variables of the Plant-BG and the TGB: 
 
� � ( � �	

� � ) � ��( � �� � $(
  (9) 

 
The change of variables (9) clearly shows the following 
correspondence between the EPs: 
 
��̅, ��̅ � ��,  � ⇔ -( � 0	 ⋀ 	) � 0/ (10) 
 

Proposition 1: The EP ��,  � of the converter in closed-
loop with a (well-defined) control law enforcing the 
change of variables (9) is GAS. 
Proof. The GES-property of �( � 0, ) � 0� determined 
by (3) and (4) implies that the trajectories �(��	, )��� 
are bounded and converge to the origin. Then, because 
of (9) the trajectories ����	, ���� are also bounded and 
converge asymptotically to ��,  �. 
What remains left to solve the problem is to find the 
control law enforcing a closed-loop behaviour 
equivalent to the behaviour of the TBG, i.e., enforcing 
the satisfaction of the change of variables (9) and the 
GES of the EP �( � 0, ) � 0�. This is done in the 
sequel via BG-Prototyping. 
 
2.2.2. Virtual Bond Graph 
The BGP technique consists basically in constructing a 
Virtual BG (Junco 2004) that, replacing the ensemble 
{effort-source + MTF} in Figure 1b, and exchanging 
power with the rest of the system, will produce the 
necessary control signal � in order for the 
interconnected system to exactly emulate the behaviour 
of the TBG. This procedure is illustrated following four 
steps with the help of Figure 3. 
 

 
Figure 3: Construction of Virtual BG. Step 1 (a), step 2 
(b), step 3 (c) and step 4 (d). 
 
In the TBG there is a linear dissipator (conductance G) 
instead of the original nonlinear load (NLL) in parallel 
with the C-element. Achieving this demands first 
cancelling the NLL (inserting a R-element with its flow 
being the opposite of the NLL-flow, i.e. )012 �

�	���� and then assigning the linear dissipator to a 0-
junction with a common effort (, that has to be created. 
Finally, the aggregate of the I and R elements appearing 
in the TBG as sharing the common flow ) must be 
added. 
To do this in the VBG it is necessary first to gain access 
(meaning to reproduce inside it) the 0-junction where 
the {C+NLL} parallel is connected. This is done in the 
first prototyping step (Figure 3a) adding the element 
I ∶ 	�!  that cancels the (effect of the) inductance L. 
Note that derivative causality have been assigned on 
purpose to both inertias in order to easily show the 
reproduction of the effort � in the 0-junction of the 
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VBG. The second step (Figure 3b) cancels the original 
NLL. The construction of the 0-junction with the effort 
( and the assignment of the linear dissipation is shown 
in the third step (Figure 3c). The fourth and final step, 
shown in Figure 3d, completes the prototyping of the 
control law via the addition of the series-connected I 
and R. 
Remark that the presence of the resistance R in the TBG 
is not necessary in order to achieve exponential 
stability. In fact, (3) and (4) with R = 0 in (4) allow to 
conclude the Lyapunov stability of the EP which, 
complemented with Lasalle’s Invariance Theorem 
proves the exponential stability. However it is 
convenient to include this resistence as its parameter 
provides one more degree of freedom to the controller 
(the other being the value G of the conductance) to 
impose a desired closed-loop performance. 
Some elementary algebra on the junctions of Figure 3d 
immediately shows that the part of the BG framed by a 
rectangular box is equivalent to a capacitor working at a 
voltage ( and draining a current ��, i.e., satisfying (5), 
(6), and exactly equivalent to the C-element of the 
TBG. 
The state feedback control law given in (11) is easily 
calculated starting on the BG of Figure 3d as follows: 
first, read the control variable � on the Plant BG via the 
standard equation formulation procedure and, second, 
use the change of variables (9) to put the resulting 
expression in terms of the system state variables. Notice 
the appearance of ℎ7��� ≔  �����

�� , the incremental 
conductance associated to the NLL, through the time 
derivative of the inductance current. 

� = −#$ � + � �1 + #$� + �� − ℎ���� :�
� ℎ7��� −

# − �
� $; (11) 

 
The duty cycle �, the true control input, can be 
immediately calculated as � = �/�. 
Using the change of variables (9) it can be easily 
checked that replacing (11) in (1) yields a closed-loop 
dynamics equivalent to the dynamics of the TBG of 
Figure 2. The above properties are summarized next.  
 
2.3. Properties of the control law 
The control law (11) in closed-loop with system (1): 

1. Globally asymptotically stabilizes its EP ��̅, ��̅ =
��,  �. “Globally” refers here to the domain of 
definition of the problem, see restrictions (2). 

2. Establishes the relationships (9) among the 
variables of the closed-loop system and the TBG, 
which in turn determines the equivalence between 
both of them with the following properties: 

i) The following one-to-one correspondence 
between the EP of both systems holds: 

=(̅, )>̅ = �0,0� ↔ ��̅, ��̅ = ��,  � 
ii)  The mathematical restrictions (2) on ��, �� 

imply the following restrictions on �(, )�: 

( ≥ −�
) > $( − ℎ�( + ��  (12) 

Remark. The state-space origin =(̅, )̅> = �0,0� of 
the TBG per se is GES, with the complete state space 
(the =(̅, )>̅-plane) being is domain of attraction. But the 
TBG being tied to system (1) by (9) determines the 
reduction of this domain to (12). 
 
2.4. Equivalence with other control methods 
Having specified the closed-loop behaviour as a TBG, 
which is clearly equivalent to a PHS, this method is 
inherently comparable to the ES-and-IDA technique of 
the PBC approach to control of nonlinear physical 
systems. As the TBG simultaneously specifies the 
closed-loop storage and dissipation functions, it 
corresponds to the particular method called SPBC, 
where S stands for Simultaneous (Batlle, Dòria-Cerezo, 
Espinosa-Pérez and Ortega, 2009). On the other hand, 
as the TBG is a LTI-system, deriving the controller with 
the BG-Prototyping method must be equivalent to doing 
it applying the exact-feedback linearization technique 
(Khalil 2002). This is not inherent to the method but 
just a consequence of the particular choice of a LTI-
TBG to represent the closed-loop system. The details of 
both equivalences are given next. 

2.4.1. Energy Shaping and IDA-PBC 
The IDA-PBC method assigns both a storage and a 
dissipation function to the closed-loop. In this specific 
case, the Hamiltonians (storage functions) in closed-
loop @��, �� and open-loop @A���, �� are related by: 
 
@��, �� = @A���, �� + @B��, �� (13) 
 
Where @B is the energy added by the controller in order 
for @��, �� to have its minimum at the EP ��,  � and, in 
certain cases (as in this one), being a Lyapunov function 
of ��, ��; for a rigorous formulation of this method see, 
for instance, (Ortega, van der Schaft, Maschke, and 
Escobar 2002).  
The Hamiltonians @ and @B induced by the method 
developed in the previous section are calculated next. 
Due to the equivalence between the TBG and the 
closed-loop system, the function @ equals the storage 
function (3) associated to the TBG but written in terms 
of the original variables ��, ��, as shown below: 
 

%�(, )� = *
+ "(+ + *

+ !)+  (3) 

 

@��, �� = %=(���, )��, ��> = �C �
+ + ��C

+ + �C��� �
+ −

ℎ���� ! − $ℎ���! � + $�!� + *
+ $+!�+ + $ℎ���!� −

$�!� − "�� − $+!�� + �DC

+ + *
+ $+!�+ (14) 

 
The sum of the first two terms on the right side of (14) 
equals the open-loop Hamiltonian: 
 

@A���, �� = *
+  ! �+ + *

+  " �+  (15) 
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It is concluded then that the energy @B��, �� added by 
the controller is: 

@B��, �� = �C��� �
+ − ℎ���� ! − $ℎ���! � + $�!� +

*
+ $+!�+ + $ℎ���!� − $�!� − "�� − $+!�� + �DC

+ +
*
+ $+!�+   (16) 

The control parameters R and G have the physical 
interpretation of a resistance in series with the 
inductance and a conductance in parallel with the 
capacitor. Thus, they are equivalent to a closed-loop 
damping that can be characterized by the rate at which 
they diminish the stored energy, which is simply stated 
in (4). The damping added by the controller can be 
calculated writing the right hand side of (4) in terms of 
� and � and substracting from this expression the open 
loop damping, i.e., the product �. ℎ���. 
 
2.4.2. Exact-feedback linearization 
Following the standard design procedure for I/O exact 
feedback linearization (Khalil 2002) leads to the 
following control law, with the capacitor voltage � 
being chosen as output: 
 

� = !" E *
�� � + *

�C �ℎ7��� − *
�C ℎ���ℎ7��� − F*�' −

F+�� − ��G  (17) 

 
The parameters F* and F+ are positive free gains. The 
following choice of them makes the control law (17) 
equivalent to the one specified in (11): 
 

F* = H
� + I

� 
F+ = *

�� �1 + #$�
  (18) 

 
2.5. Analysis of the ideal control law via simulation 
In this subsection some simulations results are 
presented to show the performance of the control law 
(11) with a linear resistive load i.e. ℎ��� = �/#�. First 
the control law is tested under perfect knowledge of the 
model parameters and secondly with parameter 
dispersion in some key electrical components, as the 
voltage source and the load resistance.  
The parameters used in the simulations are: ! =
500K@, " = 1000KL, #� = 20N, � = 22.2�, # =
 1.5Ω and $ =  0.05 NP*. This set of parameters is used 
in (Kwasinski and Krein 2007) for a constant power 
load, here a linear load resistance is used. 
 
2.5.1. Complete knowledge of parameters and load 
Figures 4 (a) and (b) show the phase portraits of the 
closed loop system with voltage references � = 13,5� 
and � = 18�, respectively, for different initial 
conditions. 
The next experiment, whose time responses are used to 
evaluate the performance of the closed loop system, is 
designed as follows: 

Experiment 1: the system starts with zero initial 
conditions and the voltage reference is set at � = 18�. 
Later, at time  = 20ST the voltage reference changes 
to � = 16.7�. 
Figure 5 shows the time response of the current (�), duty 
cycle ���, output voltage ��� and voltage error �(�. 
Notice that the closed loop system works as a linear 
system, since the duty cycle is less than one and the 
circuit is always in CCM. 

Figure 6 show the state space response of Experiment 1, 
where the red stars represent the equilibrium points for 
each reference voltage. 

 
Figure 4: Phase portrait with linear resistive load for 
reference voltage (a) � = 13,5� and (b) � = 18�. 
 

 

Figure 5: Time responses of Experiment 1. 
 

 
Figure 6: State space trajectory for Experiment 1. 

 
2.5.2. Performance degradation under parameter 

uncertainties 
Figures 7 and 8 show the simulation results of 
Experiment 1 with plant parameters #� = 24Ω and 
� = 19.98�. Recall that the controller uses the values 
#� = 20Ω and � = 22.2�.  
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Figure 7: Simulation response with #� � 24N 
 

 

Figure 8: Simulation response with � � 19.98� 
 
Looking at the zoomed-in inserts in the figures of the 
voltage and its error it can be noticed that in both cases, 
the output voltage � does not reach its reference value. 
This is due to the fact that the procedure used to obtain 
(11) is based on the complete knowledge of the system 
parameters and load. Figure 7 shows that a slight 
variation in the load resistance (#�) implies that 
applying (11) in (1) no longer yields the desired target 
circuit. This results in a steady state error ( ≠  0. In 
Figure 8, recalling � = �/�, if the DC link voltage is 
not measured (and supposed constant) then the duty 
cycle is miscalculated, resulting again in a steady state 
error and ( ≠  0. 
 
3. ROBUSTIFICATION OF THE CONTROL 

LAW 
Involving multiple cancellations, the procedure 
developed in the previous section produces a control 
law dependent on the plant parameters !, " and �, and 
the load-related functions ℎ��� and ℎ7��� (the 
dependence of both reduced to #� in the simulation 
example). As shown by the simulation outcomes of the 
last subsection, the lack of exact knowledge of these 
data results in the degradation of the closed-loop 
performance. In a real application it is necessary to 

robustify the control law (11) against parameter 
dispersions and some external disturbances in order to 
fulfill the control objectives, i.e., regulation of the 
output voltage, even under their presence. This task is 
carried out next by adding an outer control loop. Thus, 
the control input is defined as: 
 
� = �� + �[,   �19� 
 
Where �� is the control law (11) and �[ will be 
designed to reject the disturbances. Consider the 
perturbed plant: 
 
��
��  =  − �

� + �
� + \*

��
�� = �

� − ����
� + \+   

  �20� 

 
Where \* and \+ can be state dependent disturbances, 
due to parameter dispersion, unmodelled dynamics, or 
external disturbances. Replacing (19) and (11) into (20) 
and using (9) yields the perturbed closed-loop system: 
 
�]
�� =  − I

� ) − *
� ( + *

� �[ + \̂*
�_
�� = *

� ) − H
� ( + \̂+   

  �21� 

 

Where \̂* = \*/! + *
� \+=$ − ℎ7���> and \̂+ = \+/". 

Notice that the perturbed closed-loop equations are 
expressed in the states variables of the TBG. The 
perturbed TBG is shown on the right side on Fig. 9. 
 
3.1. Integral control action  
The traditional technique to robustify a control law 
against parameter dispersion and to simultaneously 
reject disturbances is to provide integral action (IA) 
through an additional control loop (Khalil 2002). To the 
extent of our knowledge, the first ideas to solve these 
problems on BGs have been presented in (Junco 2001a). 
Later on, the ideas of TBG and VBG, formally 
presented in (Junco 2004), were used in (Donaire and 
Junco 2009a) to enhance a controller designed in the 
BG-domain with a structure-preserving IA, and further 
generalized in (Donaire and Junco 2009b) to the 
framework of passivity-based control on PHS-models in 
order to add IA on non-passive outputs, i.e., outputs 
with relative degree equal to or greater than two with 
respect to the control input. It is stressed that the 
method for adding integral action on the passive outputs 
of PHS models was first presented in (Ortega and 
García-Canseco 2004). 
Applying again the BGP-technique, the VBG of Figure 
9 is constructed, where the control input, i.e., the IA on 
the variable (, is obtained next via the same procedure 
detailed in Section 2. It can be seen that the 0-junction 
with associated effort ( is reproduced in the VBG via 
BGP, and that an I-element is attached to it. Precisely 
this element performs the disturbance-rejecting IA: any 
deviation from zero of the capacitor voltage ( generates 
a current )̀ a (which is chosen as the state variable) in 
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the inertia that is fed into the capacitor until the voltage 
falls again to zero.  
 

 Figure 9: BG of the perturbed CL (right) and VBG. 
 

Notice that to access the effort (, the effect of \̂*, acting 
on the 1-junction with common flow equal to ), has 
been cancelled in the VBG of Figure 9. This action does 
not imply the knowledge of the disturbance \̂* – which 
in general cannot be measured – to define the control 
law �[ because its effect has been compensated in the 
new 1-junction with common flow )b_c. This result in a 
control law �[ that depends only on the variable (. 
Thus, at the level of the outer control signal �[, the 
effect of adding this I-element translates into the PI-law 
given in (22): 
 

�[ �
�

de
( �

I

de
 f (    �22� 

 
This control action generates the new closed-loop BG 
model shown in Figure 10. Notice that the IA implies a 
dynamic extension of the controller that increases the 
order of the closed-loop system to 3 through the new 
state variable )̀ a. Also notice that the new TBG of 
Figure 10 features the flow )b_c instead of ). As it can 
be verified on the VBG, both are related by the simple 
change of variables ) = )b_c − )̀ a.  
 

 
Figure 10: Closed-loop with IA and perturbations. 

 
The addition of the integral action on ( modifies the 
desired dynamics proposed in the original TBG of 
Figure 2b. This will have an impact in the dynamic 
response of the closed-loop system as shown by the 
simulations results of the next subsection. However, the 
asymptotic stability is conserved, what is demonstrated 
next. 
 
Stability Analysis of the closed loop with IA: The EP of 
the new closed-loop system can be computed directly 
from the BG of Figure 10 by following the procedure 
detailed in (Breedveld 1984), see also (Junco 1993), i.e. 
making zero the incoming power variables of the 
storage elements in integral causality and reading 
through the causal paths and the constitutive 

relationships of the elements. For constant \̂* and \̂+ the 
EP is ( = 0, )b_c = \̂*/# and )̀ a = \̂*/# + \̂+. 
The stability of the EP can be analyzed from Figure 10 
ignoring the sources (as all the elements are linear, this 
is the incremental BG around the EP). The rationale is 
roughly sketched next, for details about the procedure 
see the propositions stated in Junco (2001a). The total 
energy � in the storage elements is a positive definite 
function of the states: ��(, ∆)b_c, ∆)̀ a� > 0, where ∆ 
denotes the deviation of the corresponding variable off 
the EP. Then, it can be naturally chosen as a candidate 
Lyapunov function. Its orbital derivative �'  is just the 
power into the storages, which equals minus the power 
into the dissipators. With all the storage elements in 
integral causality (thus, each of them providing a state 
variable) and all the R elements being strictly 
dissipative, �'  is a negative function of the states 
appearing in its argument, but not a negative-definite 
function of the states, as it does not depend on the three 
states but only on two of them: the BG of Figure 10 
shows that the storage element that performs the IA 
does not impose causality on any R element, so that )̀ a 
does not appear as an argument in �' . This implies that 
�'  is just a negative semi-definite function of the states, a 
property enough to assure the Lyapunov-stability of the 
EP. But a simple application of La Salle principle 
allows to conclude on the asymptotic stability of the EP. 
 
3.2. Simulation results with integral action. 
The experiment used in this section to compare the 
performance of the control laws with and without 
integral action is the following: 
Experiment 2: the system starts with zero initial 
conditions and the voltage reference set in � = 18�, 
later, at time  = 0.1T the voltage reference changes to 
� = 16.7�, then at time  = 0.2T a constant current 
perturbation \̂+ = −0.4h at the load is applied. The 
parameter associated to the integral action is set at 
F` = 50. Figures 11 and 12 show the simulation 
responses of Experiment 2 with #� = 24Ω and � =
19.98� respectively. 
 

 
Figure 11: Simulation response with #� = 24Ω. In red 
with integral action, in blue without integral action. 
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Figure 12: Simulation response with � � 19.98� . In 
red with integral action, in blue without integral action. 
 
The simulations show that the integral action 
asymptotically rejects in both cases the perturbations 
induced by the parameter dispersion and the external 
disturbance. 
 

4. CONCLUSIONS  
This paper presented the synthesis, fully performed in 
the Bond Graph domain, of a nonlinear static-feedback 
controller globally stabilizing an arbitrary equilibrium 
point of a buck converter. The method has two steps: 
first, designing an exact model knowledge controller 
and, second, robustifying it with a disturbance rejecting 
outer control loop based on the addition of integral 
action. The whole design process has been discussed in 
detail in order to provide a methodological paradigm for 
its possible extension to other power electronic 
converters, or to any other kind of physical plant 
described by a Bond Graph or PHS model. 
Starting from a Bond Graph and designing a controller 
forcing the closed-loop behaviour to emulate another 
Bond Graph, the first step is shown to be comparable to 
the Simultaneous Energy Shaping and Damping 
Assignment Passivity Based Control technique 
developed on Port-Hamiltonian Systems. The second 
step was executed with a method designed on purpose 
to conserve the PHS structure under the integral action 
addition. This kind of robustification however is prone 
to distort the type of evolution set as an objective when 
designing the exact model controller. This gives rise to 
the interest in investigating other ways of providing 
robustness against parameter uncertainty, unmodelled 
dynamics and external disturbances, among them the 
exploitation of the Diagnostic Bond Graph technique 
for control system design purposes. 
Further work includes extending the results to other 
kind of loads of interest, possibly dynamic and/or non 
passive loads, as well as applying the methodology to 
other topologies of power electronic DC-DC converter. 
In view of the controller practical implementation, 
testing and tuning the closed-loop performance on a 
hybrid model where the control input is provided by a 
switch driven by a PWM-modulated continuous duty 

cycle is also planned, as well as performing the 
experimental validation of the controllers on a 
laboratory facility. 
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