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ABSTRACT
In this paper a bond graph methodology described in
a previous contribution (Baliño et al., 2006) is used
to model compressible one-dimensional pipe flows with
rigid walls. Physical effects compatible with the one-
dimensional approximation such as shear wall and nor-
mal stresses, wall and axial heat conduction and flow pas-
sage area changes can be modeled naturally. Nodal vec-
tors of mass, velocity and entropy are defined as bond
graph state variables. The state equations and the cou-
pling between the inertial and entropy ports are modeled
with true bond graph elements.
Keywords: compressible fluid flow, true bond graphs, nu-
merical methods, Finite Elements, CFD

1. INTRODUCTION

The bond graph (BG) formalism allows for a sys-
tematic approach for representing and analyzing dynamic
lumped parameter systems (Borutzky, 2010; Karnopp
et al., 2012). Dynamic systems of concentrated parame-
ters belonging to different fields of knowledge like Elec-
trodynamics, Solid Mechanics or Fluid Mechanics can be
described in terms of a finite number of variables and ba-
sic elements.

Fluid Dynamics is a challenging area for bondgra-
phers, because these systems are rigorously described by
non-linear partial differential equations (PDEs) with im-
portant spatial effects and exhibit couplings between dif-
ferent energy domains.

In order to solve multidimensional problems with the
aid of computer programs, it is important that these mod-
els can be implemented numerically. This task, main
concern of the area of Computational Fluid Dynamics
(CFD), is performed by systematically discretizing the
continuum, that is, by replacing the continuous variables
by a combination of a finite set of nodal values and inter-
polating functions.

The first attempt to apply BG in fluid dynamic sys-
tems with a systematic spatial discretization of flow
fields, typical of CFD problems, appeared in Fahren-
thold & Venkataraman (1996). A one-dimensional com-
pressible flow was considered, although the formulation
was restricted to prescribed shape functions and nodaliza-
tion. Besides, heat conduction (which leads to advection-
diffusion problems) was not modeled.

In Baliño et al. (2001, 2006) a theoretical develop-
ment of a general BG approach for CFD was presented.
Density, entropy per unit volume and velocity were used

as discretized variables for single-phase, single compo-
nent flows. Time-dependent nodal values and interpola-
tion functions were introduced to represent the flow field.
Nodal vectors of mass, entropy and velocity were defined
as BG state variables. It was shown that the system total
energy can be represented as a three-port IC-field. The
conservation of linear momentum for the nodal velocity
is represented at the inertial port, while mass and thermal
energy conservation equations are represented at the ca-
pacitive ports. All kind of boundary conditions are han-
dled consistently and can be represented as generalized
modulated sources.

In Baliño (2009) the methodology was applied to
model multidimensional incompressible flows. The dis-
tinctive characteristic of these flows is the role of pres-
sure, which does not behave as a state variable but as a
function that ensures that the resulting velocity field has
divergence zero. The system of equations for the momen-
tum equation and for the incompressibility restriction is
coincident with the one obtained using the Galerkin for-
mulation of the problem in the Finite Element Method,
while for the thermal energy equation a Petrov-Galerkin
formulation is used. The integral incompressibility re-
striction was derived based on the integral conservation
of mechanical energy. All kind of boundary conditions
are handled consistently and can be represented as gener-
alized effort or flow sources for the velocity and entropy
balance equations. A procedure for causality assignment
was derived for the resulting graph, satisfying the Second
Principle of Thermodynamics.

The methodology presented in Baliño et al. (2006);
Baliño (2009) has the following characteristics, briefly
described as follows:

a) The total energy rate per unit volume is represented
at the continuum level by a summation of products of
generalized efforts times flow per unit volume vari-
ables.

b) The balance equations, corresponding to each one of
the terms appearing in the total energy rate per unit
volume, are derived based on the PDEs representing
the conservation laws; in this way, all physical effects
can naturally be taken into account.

c) The balance equations show the power structure of
the system at the continuum level; coupling between
the different energy domains appears naturally as
terms with opposite signs in the corresponding bal-
ance equations.
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d) The discretization is made in terms of nodal values
and interpolation and weight functions; in this way, all
the properties are kept at the discretized level, result-
ing generalized effort and flow variables characteristic
of true BG.

Consequently, the formulation links two areas,
namely the BG methodology and CFD. It is interesting
to see that, although temperature and entropy rate are
the natural BG variables in thermal problems, bondg-
raphers resort to pseudo-BG or other non-BG elements
when modeling thermofluid flow problems, as if there
were some intrinsic difficulty in incorporating naturally
all the relevant physical effects.

The calculation of pressure and flow distributions
is very important for the design of pipeline networks.
For engineering purposes, pipe flows are studied using
the one-dimensional approximation, in which the non-
uniformity of any flow parameter across the flow passage
area can be neglected. In this case, suitable average val-
ues of all flow parameters are functions of time and the
coordinate along the length of the pipe. Small changes
in pipe direction and cross sectional area are allowed, as
long as they do not create flow separation or secondary
flows. In order to reintroduce the information lost in the
averaging process, closure laws for wall momentum and
heat transfer, as well as suitable profile correction factors,
must be defined. The behavior of pipe flow is governed
mainly by the Reynolds number, measuring the relative
influence of inertial and viscous forces.

Incompressible pipe flow is a classic branch of Hy-
draulics which addresses liquid and low velocity gas
flows within a closed conduit, without a free surface.
The methodology presented in Baliño et al. (2006) was
applied to incompressible one-dimensional pipe flows
in Baliño (2006b); transient advective and advective-
diffusive problems were successfully simulated in Pelle-
grini & Baliño (2014).

When the fluid velocity is comparable to the speed
of sound, compressibility effects become important
(Schapiro, 1953). Mass, momentum and energy conser-
vation equations are coupled and an equation of state is
needed to close the problem. As this condition is fre-
quently encountered in gas systems (usually the fluid is
considered as an ideal gas), the object of study is known
as gas dynamics. Basic studies of compressible pipe
flows assume that viscous and heat transfer effects are
negligible, leading to isentropic flows; performance of
converging and converging-diverging nozzles are typi-
cal examples studied with this approximation. More so-
phisticated studies take into account wall shear stresses
(Fanno flows) and heating/cooling (Rayleigh flows). Dis-
tinctive effects in compressible flows are the limitation
of the mass flow rate when the local velocity equals
the sound of speed (choking) and existence of very thin
discontinuities in the flow properties, associated to irre-
versibilities (normal shock waves).

The motivation of this paper is the application of the
methodology presented in Baliño et al. (2006) to model

compressible one-dimensional pipe flows; as this flow
is very rich in specific applications, numerical bench-
marks are left for a separate contribution. Results for
the shock tube problem were presented in Gandolfo Raso
et al. (2001); this paper extends the methodology to one-
dimensional flows with area changes, wall heat transfer
and wall shear stress dissipation.

The paper is organized as follows: the formulation
at the continuum level, presenting the independent vari-
ables, associated potentials, conservation and balance
equations is presented in Section 2. ; the formulation at
the discrete level, presenting the nodal vectors of the state
variables, associated nodal vectors of potentials and state
equations is presented in Section 3. ; finally the system
BG, showing the power couplings between the different
ports and the different sources, is presented in Section 4..

2. CONTINUUM LEVEL FORMULATION

Let us consider the geometry of Fig. 1. For the
one-dimensional approximation, the independent vari-
ables are functions of position x and time t, whereas the
flow passage area A is a slowly varying function of posi-
tion. 

dx

x ( )txV ,

( )dxxA +
( )xA

g( )txsv ,

( )tx,ρ

Figure 1: Control volume for one-dimensional compress-
ible duct flow.

2.1 Total energy

The total energy per unit volume ev (ev = ρ ê, where
ρ is the density and ê is the total energy per unit mass)
is defined as the sum of the internal energy per unit vol-
ume uv (uv = ρ û, where û is the internal energy per unit
mass) and the kinetic coenergy per unit volume t∗v:

ev = uv (ρ, sv) + t∗v (1)

It is assumed that the internal energy per unit volume
is a function of density and entropy per unit volume sv
(sv = ρ ŝ, where ŝ is the entropy per unit mass). The
kinetic coenergy per unit volume is defined as:

t∗v =
1

2
ρ V 2 (2)

where V is the velocity. The following potentials are
defined:

pv =

(
∂t∗v
∂V

)
ρ

= ρ V (3)
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κ =

(
∂t∗v
∂ρ

)
V

=
1

2
V 2 (4)

θ =

(
∂uv
∂sv

)
ρ

(5)

ψ =

(
∂uv
∂ρ

)
sv

=
1

ρ
(uv + P − θ sv) (6)

where pv , κ, θ, ψ and P are respectively the linear
momentum per unit volume, the kinetic coenergy per unit
mass, the absolute temperature, the Gibbs free energy per
unit mass and the absolute pressure. The time derivative
of the total energy per unit volume can be written as:

∂ev
∂t

= (ψ + κ)
∂ρ

∂t
+ pv

∂V

∂t
+ θ

∂sv
∂t

(7)

It can be shown (Baliño et al., 2006) that the constitu-
tive relationsψ+κ, pv and θ satisfy the Maxwell relations
(Callen, 1960).

For the particular case of an ideal gas, the internal en-
ergy per unit volume and thermodynamic potentials re-
sult:

uv = ρ cv θ (8)

P = ρ cv (γ − 1) θ (9)

ψ =

(
γ cv −

sv
ρ

)
θ (10)

θ = θR

(
ρ

ρR

)γ−1

exp

(
sv
ρ cv

)
(11)

where cv is the constant volume specific heat, γ is the
heat capacity ratio and ρR and θR are respectively the
reference density and temperature for which the entropy
per unit volume is zero.

2.2 Conservation and balance equations

Neglecting property changes across the flow passage
area, the mass, linear momentum in the flow direction co-
ordinate x and thermal energy conservation equations can
be integrated over the flow passage area, resulting:

∂ρ

∂t
= − 1

A

∂

∂x
(ρ V A) (12)

ρ
∂V

∂t
=

1

A

∂

∂x
(τxxA)−ρ V ∂V

∂x
− ∂P
∂x
−τwx

Pw
A

+ρ gx

(13)

ρ
∂û

∂t
=− 1

A

∂

∂x
(qxA)− qw

Ph
A
− ρ V ∂û

∂x
+ τxx

∂V

∂x

+ τwx V
Pw
A
− P 1

A

∂

∂x
(V A) + ρΦ

(14)

where τwx and τxx are respectively the viscous wall shear
stress and the viscous normal stress, Pw and Ph are re-
spectively the wetted and heated perimeters, gx is the
gravity acceleration component in the flow direction, qw
and qx are respectively the wall and axial heat flux and Φ
is the heat source per unit mass. The wall shear stress and
wall heat flux can be modeled as:

τwx =
1

8
f ρ V |V | (15)

qw = −H (θw − θ) (16)

where f is the Darcy friction factor, H is the heat trans-
fer coefficient, being these two parameters obtained from
suitable correlations, and θw is the wall temperature. Rig-
orously, the friction factor and heat transfer coefficient
should be determined from the three dimensional solution
or from experimental correlations; in practice, values cor-
responding to hydrodynamic and thermal fully developed
conditions are used, neglecting entry length and transient
effects. According to Fourier’s law and newtonian fluid
(with Stoke’s hypothesis) constitutive law, respectively
the axial heat flux and normal stress can be written as:

qx = −λ ∂θ
∂x

(17)

τxx =
4

3
µ
∂V

∂x
(18)

where λ and µ are respectively the thermal conductiv-
ity and fluid viscosity. After some manipulation of the
conservation equations, the following equations can be
obtained:

(ψ + κ)
∂ρ

∂t
=− 1

A

∂

∂x
[ρ V (ψ + κ) A]

+ ρ V
∂ψ

∂x
+ ρ V

∂κ

∂x

(19)

pv
∂V

∂t
=

1

A

∂

∂x
(V τxxA)− ρ V ∂κ

∂x
− V ∂P

∂x

− τxx
∂V

∂x
− τwx V

Pw
A

+ ρ V gx

(20)

θ
∂sv
∂t

=− 1

A

∂

∂x
(θ sv V A)− 1

A

∂

∂x
(qxA)

+ τxx
∂V

∂x
+ τwx V

Pw
A

+ V
∂P

∂x

− ρ V ∂ψ

∂x
− qw

Ph
A

+ ρΦ

(21)

The balance equations (19) to (21) are power equa-
tions (per unit volume) corresponding to each one of the
terms that contributes to the time derivative of the total
energy per unit volume, namely Eq. (7). The balance
equations show the power structure of the system. In
the balance equations there can be identified three type
of terms: divergence, source and coupling terms. The di-
vergence terms take into account the power introduced in
the system through the boundary conditions. The source
terms constitute the different power sources, external to
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the system. Finally, the coupling terms represent power
transfer between the velocity, mass and entropy equa-
tions; these coupling terms appear, with opposite signs,
in pairs of balance equations.

It is important to notice that, as we started from the
PDEs describing the dynamics, all the effects compatible
with the one-dimensional approximation are modeled.

The conservation and balance equations obtained in
this section can be used for laminar as well as turbulent
flows considering the independent variables as mean val-
ues; flow regime effects are introduced through the fric-
tion factor and the heat transfer coefficient.

3. DISCRETE LEVEL FORMULATION

In this Section the BG-CFD metodology is outlined,
in order to present the equations needed to solve any
one-dimensional compressible duct flow. Details of the
derivations for the general three-dimensional problem
can be found in Baliño et al. (2006). The description
of the flow fields in the domain Ω (see Fig. 2) is made
in terms of a finite set of nodal values and interpolation
functions, as in the Finite Element Method (Zienkiewicz
et al., 2005):

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

L  
x  0  

Ω  

Figure 2: Domain Ω with boundaries.

ρ (x, t) =

nρ∑
k=1

ρk (t) ϕρk (x) = ρT . ϕρ (22)

V (x, t) =

nV∑
m=1

Vm (t) ϕVm (x) = V T . ϕV (23)

sv (x, t) =

nS∑
l=1

svl (t) ϕS l (x) = sv
T . ϕS (24)

where ρ (size nρ), V (size nV ) and sv (size nS) are time-
dependent nodal vectors, while ϕρ , ϕV and ϕS are the
corresponding position dependent nodal interpolation or
shape functions. The interpolation functions have the
usual properties: the sum of them is equal to one for any
position, they are equal to one at the reference node and
are equal to zero at the rest of the nodes. Nodal vectors
of integrated values are defined, related to the discretized
ones as:

m = Ωρ . ρ (25)

S = ΩS . sv (26)

The diagonal volume matrices Ωρ and ΩS , respec-
tively associated to the density and entropy per unit vol-
ume, are defined as:

(Ωρ)kn = Ωρk δkn (27)

(ΩS)ln = ΩSl δln (28)

where:

Ωρk =

∫ L

0

Aϕρk dx (29)

ΩSl =

∫ L

0

AϕSl dx (30)

The system mass m and entropy S are related to the
integrated variables as follows:

m =

∫ L

0

Aρdx =

nρ∑
k=1

mk (31)

S =

∫ L

0

Asv dx =

nS∑
l=1

Sl (32)

3.1 Total energy

The system total energyE is defined as the sum of the
system internal energyU and the system kinetic coenergy
T ∗:

E = U (m, S) + T ∗ (m, V ) (33)

where:

E =

∫ L

0

Aev dx (34)

U =

∫ L

0

Auv dx (35)

T ∗ =

∫ L

0

A t∗v dx (36)

From Eq. (23) and (36), it can be easily shown that
the system kinetic coenergy can be expressed as the fol-
lowing bilinear form:

T ∗ =
1

2
V T .M . V (37)

where M is the system inertia matrix (size nV , symmet-
ric and regular):

(M)mn =

∫ L

0

AρϕVm ϕV n dx (38)

The following potentials are defined:

p =

(
∂T ∗

∂V

)
m

= M .V =

∫ L

0

Apv ϕV dx (39)

K (V ) =

(
∂T ∗

∂m

)
V

= Ωρ
−1 .

(∫ L

0

Aκϕρ dx

)
(40)

Θ (S, m) =

(
∂U

∂S

)
m

= ΩS
−1 .

(∫ L

0

Aθ ϕS dx

)
(41)

Ψ (S, m) =

(
∂U

∂m

)
S

= Ωρ
−1 .

(∫ L

0

Aψϕρ dx

)
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(42)

where p , K , Θ and Ψ are respectively nodal vectors of
linear momentum, kinetic coenergy per unit mass, tem-
perature and Gibbs free energy per unit mass. The system
linear momentum can be readily obtained as:

p =

∫ L

0

Apv dx =

nV∑
m=1

pm (43)

The time derivative of the system total energy can be
written as:

Ė = (Ψ +K)
T
. ṁ+ p. V̇ + ΘT . Ṡ (44)

It can be shown (Baliño et al., 2006) that the consti-
tutive relations Ψ +K, p and Θ also satisfy the Maxwell
relations.

3.2 State equations

3.2.1 Mass port

Nodal density weight functions wρk (x, t) are intro-
duced. As it is done in the Petrov-Galerkin method
(Zienkiewicz et al., 2005), each term of Eq. (19) is mul-
tiplied by the weight function; then, the resulting terms
are integrated over the domain Ω and Green’s theorem is
applied in the divergence term, obtaining:

ṁ = ṁ
(Γ)
W + ṁW + ṁU + ṁK (45)

where the different mass rate nodal vectors are:

ṁ
(Γ)
W =−

(
Ψ +K

)−1
.
[
AL ρL (ψ + κ)L VL δk nρ

−A0 ρ0 (ψ + κ)0 V0 δk 1

]
(46)

ṁW =
(
Ψ +K

)−1
.

[∫ L

0

Aρ (ψ + κ)V
∂wρ

∂x
dx

]
(47)

ṁU =
(
Ψ +K

)−1
.

(∫ L

0

AρV
∂ψ

∂x
wρ dx

)
(48)

ṁK =
(
Ψ +K

)−1

(∫ L

0

AρV
∂κ

∂x
wρ dx

)
(49)

The square matrices Ψ andK (size nρ) are defined as:

(Ψ)kj =
1

Ωρj

∫ L

0

Aψwρk ϕρj dx (50)

(K)kj =
1

Ωρj

∫ L

0

Aκwρk ϕρj dx (51)

The nodal vectors Ψ and K are related to the corre-
sponding matrices as:

Ψj =

nρ∑
k=1

(Ψ)kj (52)

Kj =

nρ∑
k=1

(K)kj (53)

3.2.2 Velocity port

As it is done in the Galerkin method (Zienkiewicz
et al., 2005), each term of Eq. (13) is multiplied by the
test function ϕVm and integrated over the domain Ω. Ap-
plying Green’s theorem in the divergence term, it can be
obtained:

M . V̇ = FV
((Γ) − FK − FP − FV − FVW + FG (54)

where the different nodal force vectors are:

F
(Γ)
V = AL τxxL δmnV −A0 τxx 0 δm 1 (55)

FK =

∫ L

0

Aρ
∂κ

∂x
ϕV dx (56)

FP =

∫ L

0

A
∂P

∂x
ϕV dx (57)

FV =

∫ L

0

Aτxx
∂ϕV

∂x
dx (58)

FVW =

∫ L

0

τwx Pw ϕV dx (59)

FG =

∫ L

0

Aρgx ϕV dx (60)

3.2.3 Entropy port

Nodal entropy weight functions wSl (x, t) are intro-
duced. As it is done in the Petrov-Galerkin method
(Zienkiewicz et al., 2005), each term of Eq. (21) is mul-
tiplied by the weight function; then, the resulting terms
are integrated over the domain Ω and Green’s theorem is
applied in the divergence terms, obtaining:

Ṡ =Ṡ
(Γ)
Q + Ṡ

(Γ)
C + ṠQ + ṠC + ṠQW

− ṠU + ṠP + ṠV + ṠVW + ṠF
(61)

where the different entropy rate nodal vectors are:

Ṡ
(Γ)
Q = −Θ−1.

(
AL qxL δl n −A0 qx 0 δl 1

)
(62)

Ṡ
(Γ)
C = −Θ−1.

(
AL VL θL sv L δl n −A0 V0 θ0 sv 0 δl 1

)
(63)

ṠQ = Θ−1.

[∫ L

0

Aqx
∂wS

∂x
dx

]
(64)

ṠC = Θ−1.

[∫ L

0

AV θ sv
∂wS

∂x
dx

]
(65)

ṠQW = −Θ−1.

[∫ L

0

qw Ph wS dx

]
(66)
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ṠU = Θ−1.

[∫ L

0

AρV
∂ψ

∂x
wS dx

]
(67)

ṠP = Θ−1.

[∫ L

0

AV
∂P

∂x
wS dx

]
(68)

ṠV = Θ−1.

[∫ L

0

Aτxx
∂V

∂x
wS dx

]
(69)

ṠVW = Θ−1.

[∫ L

0

V τwx Pw wS dx

]
(70)

ṠF = Θ−1.

[∫ L

0

AρΦwS dx

]
(71)

In Eq. (62) to (71) the temperature matrix Θ results:

(Θ)lj =
1

ΩSj

∫ L

0

AθwSl ϕSj dx (72)

The nodal vector of temperature is related to the tem-
perature matrix as:

Θj =

nS∑
l=1

(Θ)lj (73)

4. SYSTEM BOND GRAPH

The system bond graph is shown in Fig. 3. Energy
storage (kinetic and potential) are represented by an IC-
field. A modulated transformer with the inertia matrixM
is connected to the inertial port of the IC-field, in order to
bring the nodal velocities as generalized flow variables.

At the 1-junction with common V all the nodal vector
forces are added; the effort balance represents the linear
momentum conservation equation for the nodal velocity
values. At the 0-junction with common (Ψ +K) all the
nodal mass rates are added; the flow balance represents
the mass conservation equations for the nodal mass val-
ues. At the 0-junction with common Θ all the nodal en-
tropy rates are added; the flow balance represents the en-
tropy conservation equation for the nodal entropy values.

The modulated transformers and the modulated gyra-
tor between the junction elements connect power terms
that appear in the balance equations corresponding to
pairs of multiports. As the corresponding terms in the
balance equations are always positive, the modulated
resistance-entropy fields represent the irreversible me-
chanical energy losses due to viscosity. These elements
represent the power coupling terms appearing in Eq. (19)
to (21) at a discretized level.

The associated coupling matrix between the velocity
and mass port is:

ṁK =
[(

Ψ +K
)−1

.MK

]
. V (74)

FK =
[(

Ψ +K
)−1

.MK

]T
. (Ψ +K) (75)

where MK is a rectangular matrix (nρ rows and nV
columns) defined as:

(MK)km =

∫ L

0

Aρ
∂κ

∂x
wρk ϕVm dx (76)

The associated coupling matrix between the entropy
and mass port is:

ṁU =
[(

Ψ +K
)−1

.MU .
(
Θ−1

)T ]
.Θ (77)

ṠU =
[(

Ψ +K
)−1

.MU .
(
Θ−1

)T ]T
. (Ψ +K) (78)

where MU is a rectangular matrix (nρ rows and nS
columns) defined as:

(MU )kl =

∫ L

0

AρV
∂ψ

∂x
wρk wSl dx (79)

Finally, the associated coupling matrices between the
velocity and entropy port are:

FP =
(

Θ−1.MP

)T
.Θ (80)

ṠP =
(

Θ−1.MP

)
. V (81)

FV =
(

Θ−1.MV

)T
.Θ (82)

ṠV =
(

Θ−1.MV

)
. V (83)

FVW =
(

Θ−1.MVW

)T
.Θ (84)

ṠVW =
(

Θ−1.MVW

)
. V (85)

where MP , MV and MVW are rectangular matrices
(nV rows and nS columns) defined as:

(MP )ml =

∫ L

0

A
∂P

∂x
ϕVm wS l dx (86)

(MV )ml =

∫ L

0

Aτxx
∂ϕVm
∂x

wSl dx (87)

(MVW )ml =

∫ L

0

τwx Pw ϕVm wSl dx (88)

As the coupling matrices are rectangular, restrictions
in the allowable causalities are set.

The source elements connected to the bonds with
ṁ

(Γ)
W , F (Γ)

T , Ṡ(Γ)
Q and Ṡ

(Γ)
C behave as effort or flow

sources, depending on the boundary conditions. The
rest of the sources represent volumetric power terms;
the determination of causality for these sources and for
other bonds shown in the graph results from the standard
causality extension procedure (Karnopp et al., 2012).

As at any location the sum of the weight functions is
equal to one, the net power input (sum over the bonds)
corresponding to the multibonds with ṁW , ṠQ and ṠC
are zero.
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Figure 3: System bond graph for one-dimensional compressible duct flow.

5. CONCLUSIONS

In this paper a Bond Graph methodology described
in a previous contribution was used to model compress-
ible one-dimensional duct flows with rigid walls. All
physical effects, namely shear wall and normal stresses,
wall and axial heat conduction and flow passage area
changes can be modeled naturally. Energy storage (ki-
netic plus internal) can be represented by an IC-field. The
state equations and the coupling with the inertial and en-
tropy ports were modeled with true bond graph elements.
This contribution shows that starting from the governing
PDEs equations and using discretization techniques com-
ing from CFD is the right strategy for producing general
models, framed within the Bond Graph theory, for Fluid
Dynamic Systems.
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