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Abstract— The disturbance rejection problem is classical in
many practical controlled systems. It is often solved with a state
feedback control law for instance, but this approach doesn’t
always offer a good solution and in the control of mechanical
systems using accelerometers as sensors, it is easier to obtain
the state-derivative signals than the state signals. This paper
proposes a simple new solution to the disturbance rejection
problem with a derivative state feedback with a structural
analysis of the model properties.
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1. INTRODUCTION

The disturbance rejection problem by state feedback has
received a great deal of attention during the last decades.
Solutions of this problem with stability conditions, first
proposed in [10], [25] are often defined in terms of the
infinite zero structure and in terms of the unstable zero
structure through algebraic treatments [24], [13] or geometric
approach [1]. The structural invariants play a fundamental
role in this problem. They been extensively studied in many
papers and books [15]. [3], [17], [11].

Nevertheless, the disturbance rejection problem is not
always solvable by a static state feedback control law.
Moreover, even if most of the control algorithms developed
for state space systems are related to full state feedback or
output feedback, in many applications, the sensors directly
measure state derivatives rather than states. For instance,
acceleration signals can only be modeled as state derivatives
(use of accelerometers in many electromechanical systems)
with application to control of car wheel suspension systems,
and also in aeronautical engineering and civil engineering. In
that case, a derivative state feedback control law is proposed
[23] and it is also shown in some papers that one advantage
over the conventional state feedback is that it results in
smaller gains. A geometric theory of derivative state feed-
back is given in [12] and an application to stabilizability
and Disturbance Rejection with Derivative State Feedback
(DRDSF) is proposed in [14], but for a particular case.

With the bond graph approach [16], it has been proved
that these concepts can be simultaneously used in a unified
way, due to the information contained at the same time in
the graphical representation and due to the mathematical
information contained in the structure of the model. State
feedback control law have been used for the disturbance
rejection and input-output decoupling problems [2].

The objective of this paper is the development of a new
derivative state feedback control law when the classical
disturbance rejection problem is not solvable with a static

state feedback. A new solution is proposed thanks to the
bond graph model with a derivative causality assignment.
The properties of the controlled model are studied, with
a graphical (structural) approach. The second section gives
some properties of a linear state model related to the infi-
nite and finite structures and the condition for disturbance
rejection. In the third part, the new derivative state feedback
for disturbance rejection is proposed in the SISO case.
The properties of the controlled system are studied with a
structural approach. Simulations on a the torsion bar system
are presented with a brief conclusion.

2. DISTURBANCE REJECTION WITH STATE FEEDBACK

Consider a linear system X(C,A,B,E) described by the
classical state space representation written in (1), with x € R"
is the state vector, u € R™ represents the input vector, y € R?
is the vector of output variables to be controlled and d € RY is
the vector of unknown input variables, disturbance variables
in this study.

X(t) = Ax(t) + Bu(t) + Ed(¢)
_ ey
{ y(1) = Cx(t)

In order to study the disturbance rejection problem, the
structure of the model £(C,A, B, E) must be highlighted. The
different transfer functions are Ty,(s) = C(sI —A)~'B and
Tya(s) = C(sI—A)'E.

2.1. Structures of state space models

Infinite structure The infinite structure of an unperturbed
multi-variable linear model X(C,A,B) is characterized by
different integer sets: the set of infinite zero orders of the
global model £(C,A, B) and the set of row infinite zero orders
of the row sub-systems X(c;,A, B), denoted {n;}, c; is the i""
row of matrix C. The infinite structure is well defined in
case of LTI models [6] with a transfer matrix representation
or with a graphical representation (structured approach), [7],
or with a bond graph approach [19].

The row infinite zero order (relative degree) for the proper
row sub-system X(c;,A,B) is the integer n;, which verifies
condition n; = min k|c,~A(k_1)B #£0
number of derivations of the output variable y;(¢) necessary
for at least one of the input variables to appear explicitly.

Finite structure The invariant zeros (transmission zeros
for controllable/observable models) of model £(C,A,B) are
the zeros of the system matrix defined in equation (2).

} . n; is equal to the
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System X£(C,A, B) is state controllable iff matrix [s]—A —
B] doesn’t contain any zero, and observable iff matrix [s/ —
A" C')' doesn’t contain any zero. Otherwise, zeros are called
input (output) decoupling zeros (respectively) [17].

2.2. Disturbance rejection with state feedback

The disturbance rejection problem for the system de-
scribed by equation (1) has a solution by a state feed-
back control law (without measurement of the disturbance
variables) u(t) = Fx(t) 4+ Gv(r) iff the infinite structure of
matrix 517y, (s) is equal to the infinite structure of matrix
[s7'Ty(s) Tya(s)]. With the measurement of the distur-
bance variables, the condition is on matrices 7,(s) and
Tuls)  Tals)].

At most, the disturbance rejection problem for the system
described by equation (1) has a solution with stability iff
the zeros of model X(C,A,B) which are not zeros of model
X(C,A,B,E) are strictly stable [13].

2.3. Bond graph approach

Bond graph with integral causality assignment: BGI

The state space equation (1) can be directly written from
the BGI and the infinite structure of the model X(C,A,B,E)
can be highlighted from a graphical approach, as well as the
finite structure.

The determination of the row infinite structure of a bond
graph model is based on the concept of causal path length.
If all the dynamical elements have an integral causality
assignment, the causal path length between an input source
and an output detector in the bond graph model is equal
to the number of dynamical elements met in the path. n; is
equal to the shortest causal path length between the i output
detector associated to the output variable y; and the set of
input sources.

Bond graph with derivative causality assignment: BGD

A different expression of the state space equation is
proposed, which is equivalent to draw the bond graph model
with a derivative causality assignment. Consider the new
state space representation as proposed in equation (3).

{ x(t) =A"%(t) — A7 'Bu(t) — A" Ed(t) 3)

y(t) =CA i(t) — CA~'Bu(t) —CA'Ed(t)

With the definition of causal paths and causal path length
in the BGD, some zeros can be studied, such as input (output)
decoupling zeros (non controllable/observable modes) and
also the null invariant zeros. As an example, for a bond graph
model the state matrix is invertible if it is possible to assign a
derivative causality to each dynamical element, and the state
model is controllable if it is possible to assign a derivative
causality with dualisation of input sources, if necessary [18].
In that case, non controllable poles are equal to 0. For a
mono-variable system, if CA~'B =0, thus we can deduce
that the causal path length in the BGD between the output

detector and the input source is at least equal to 1 and that
system X(C,A, B) contains at least one null invariant zero.

3. DISTURBANCE REJECTION WITH DERIVATIVE STATE
FEEDBACK DRDSF: SISO CASE

In order to simplify the presentation, the mono-variable
case is studied, m = p = g = 1. The infinite zero order of
the system X(C,A,B) is the integer denoted here r, which
verifies condition » = min {k|CA®~VB#£0¢, and the row
infinite zero order of the system X(C,A, E) is the integer r ;.

Assumptions

e System X(C,A,B) is state controllable/observable and
the state matrix A is invertible (non-restrictive assump-
tion for bond graph models)

e CA~'B #0, model £(C,A,B) doesn’t contain any in-
variant zero equal to O

e The disturbance variable is measured or estimated, (UIO
approach proposed in [21]), with also the knowledge of
the derivative of the state vector

® rui¢ < r, which means that the classical disturbance re-
jection problem with static state feedback is not solvable

e The invariant zeros of £(C,A,B) are stable

3.1. DSF: Derivative state feedback

Consider the linear system X(C,A, B, E) described by the
classical state space representation written in (1), and the
DSF control law with disturbance defined in (4). v(¢) is the
new input variable (new control).

u(t) =Fx(t)+Gv(t) + End(t) 4)

The controlled system can be written as (5).

{ (I —BF)x(t) = Ax(t) + BGv(t) + (E + BE,,)d(t) 5)

y(t) = Cx(1)

The properties of this new model are not easy to be
highlighted. Moreover, if matrix (I — BF) is not invertible,

the state equation in (5) is designed under the names of

generalized state space form or descriptor (singular) form and
in that case the controlled model contains poles at infinity.

The characteristic equation of the closed loop system (5)
is defined as (6).

det(sI —sBF —A) =0 . (6)

The degree 7y of the characteristic polynomial in equation
(6) is the number of system’s finite eigenvalues, while n—7y
is the number of system’s eigenvalues at infinity [8]. If matrix
(I—BF) is not invertible, the system has thus poles at infinity
and properties such as controllability/observability properties
must be studied in a new way [4], [5] and [26].

In order to provide new algorithms, the “reciprocal state
space” (RSS) is provided in [23] for the vibration control of
piezoelectric smart plate. In this approach, if the state matrix
is invertible, every state variable can be expressed in terms
of state derivative variables and control inputs in order to
simplify the design of the state feedback matrix.
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From a bond graph approach, it is equivalent to apply a
derivative causality assigment, and this approach has been
extensively used for the UIO (Unknown Input Observer)
design [20], [22] and [21]. This concept is used in the
following.

3.2. DRDSF without pole placement

With the control law defined in (4), the equations (3) can
now be written as equations (7).

x(t)=(A"'—A"'BF)i(t)+ (—A"'BE,, —A"'E)d(t)
—A"'BGv(1)
y(t) = (CA™' —CA~'BF)x(t) + -
---(~CA™'BE,, —CA7'E)d(t) — CA~'BGv(¢)
(N
If (~CA™'BE,,—CA™'E)=0and (CA™' ~CA~'BF) =0
then y(t) = —~CA~'BGv(t) and the disturbance is rejected.
With this simple solution, there is a direct transmission
between the new input variable v(¢) and the output variable
¥(t). The matrices F, G and E,,, solution of the disturbance
rejection problem are defined in equation (8), with condition
CA™'B#0.

F=(CA™'B)"'cA™!
E,=—(CA'B)"'CA~'E (8)
G=—(CA™'B)™!

The input-output relation is now y(¢) = v(r). Remark that
if CAT'E =0 (system X(C,A,E) contains at least one
invariant zero equal to 0), it is not necessary to measure
(or estimate) the disturbance variable.

3.3. Controlled model without pole placement: properties

With the control law defined in equation (4), the invariant
zeros of the controlled system (without disturbance) are the
zeros of matrix Scz(s) defined in equation (9).

sI—A—sBF —B ) ©)

Scr(s) = ( C 0

Property 1: The invariant zeros of the model X(C,A,B)
are the same as the one of the controlled model with a DSF
(Derivative State Feedback). Proof appendix 1.

Property 2: The controlled system X(C,A,B) with a DSF
control law defined in (4) and (8) is an implicit model [17],
of the type EXx = Ax+ Bu, with matrix E non invertible.

Proof: consider the new state space model with
the DSF control defined in (4). Consider matrix (I —
BF) = I — B(CA™'B)"!CA™! with a pre-multiplication
by matrix CA~!, it comes CA~!(I — BF) = (CA™! —
CA™'B(CA~'B)~'CA~') = 0, thus the rank of matrix (I —
BF) is not maximal, which proves the property.

Property 3: The degree Y of the characteristic polynomial
det(sI —sBF — A) of the controlled system X(C,A,B) with a
DSF control law defined in equations (4) and (8) is equal
to the number of invariant zeros of £(C,A,B), i.e. y=n—r.
The new model contains only n — r finite modes (invariant
zeros of X(C,A,B))

Proof: Consider the determinant of matrix Scr(s).
detScy (s) =det(sI — A — sBF).det(C(sI — A — sBF)~'B). The
new transfer function between the new input variable V(s)
and the output variable Y (s) is equal to 1 and thus detScy(s)
= det(s] —A —sBF).

The input decoupling zeros (non controllable modes) of
system X(C,A,B) are the zeros of matrix [sf—A — B]. For
a controllable model, this matrix doesn’t contain any zero.
With the DSF control law, it can be easily proved that the
new matrix [sI —A—sBF — B] is equivalent to the previous
one (same product as in equation (13)), and thus this matrix
doesn’t contain any zero.

The output decoupling zeros (non observable modes) are
the zeros of matrix [s/ —A" C’]". For an observable model,
this matrix doesn’t contain any zero, but with the DSF
control law, the new model can become non observable. It
is a classical property when applying a static state feedback
control for the disturbance rejection problem, as well as in
the case of the input-output decoupling problem. It is well
known that the non observable modes are all or one part
of the invariant zeros. Since the new model is an implicit
(singular) state model, a must precise analysis should be
performed, for the infinite non observable modes, but it is
not proposed here. Only finite zeros are studied.

Property 4: The zeros of matrix [s] —s(BF)' —A" (']
of the controlled system X(C,A,B) with a DSF control law
defined in equations (4) and (8) are the invariant zeros of the
model £(C,A,B). Proof appendix 2.

3.4. DRDSF with pole placement

In this section, the solution for the DRDSF with pole
placement is obtained with matrices E, and G defined
in equation (8) and with the new matrix F defined in
equation (10). The set {ct, 00, -, 0, } is a set of ry;y free
parameters used for pole placement.

F=(CAT'B)'[CA' + iC+ CA+ - - + @, CA™@ist 1]

(10)

Property 5: The differential equation verified by the out-

put variable y(¢) with a derivative state feedback control law

defined in equations (4) and (8) and matrix F in (10) is
written in equation (11). Proof: appendix 3.

(1)

Note that relation CA*~1B = CA*"1E = 0 with k < ry;y is
used in this proof, and thus the maximal number of poles
which can be placed is equal to ry;s.

Property 6: The degree of the characteristic polynomial
det(sI — sBF —A) of the controlled system X(C,A,B) with a
DSF control law defined in equations (4), (8) (G and E,,;) and
matrix F in (10) is equal to (n—r) +ry;s (number of invariant
zeros of X(C,A,B) + infinite zero order of X(C,A,E)).

Proof: Since Matrices S(s) and Scp(s) are equivalent,
detS(s) = detScr(s), which is a polynomial of degree
n—r, (number of invariant zeros). Moreover, detScy(s) =

Y4y + i+ -+ ardixry(rdixr) = (1)
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det(s] — A — sBF).det(C(sI — A — sBF)~'B), and since the
new transfer function det(C(sl —A —sBF)~'B) is of order
Faiss With a constant numerator, det(s/ —A — sBF) is a
polynomial of degree (n—r)+ ryisz.0

3.5. Some concluding remarks

Note that for a SISO system X(C,A,B,E), when the
disturbance rejection problem has a solution with a classical
state feedback law (i.e. r < rgy), only r modes can be
assigned and model X(C,A,B) contains n — r invariant zeros
which becomes non observable modes. With this approach,
the new model is an implicit model with (n—r) + ry; finite
modes, whose ry;; can be assigned. The properties of the
controlled model must be specified, particularly properties
of the infinite poles. The study is not proposed in this paper
due to the lack of space.

In many practical application, with a state feedback ap-
proach, the state vector must be estimated. In this approach,
the derivative of the state vector must be estimated, as well
as the disturbance variable. From a bond graph approach,
as proposed in [21] for the UIO design, the derivative of
the state vector is directly obtained from the observer (bond
graph model) and the disturbance can be estimated in the
same way. Note that this approach can be easily extended to
multi-variable systems.

4. CASE STUDY: TORSION BAR

The experimental mechanical system is presented in Fig.
1. This system is composed of an amplifier, a DC motor,
three inertias (one for the motor), two of them are linked
with a torsion bar.

DC motor

Load Disk

Motor Disk Flexible shaft

Fig. 1. Experimental torsion bar

The functional schematic model of the torsion bar is drawn
in Fig. 2. The system consists of the following components:
an amplifier A, a classical DC motor with an electrical part
(inductance L, and resistance R,) and a mechanical part
without friction and with inertia Jm (supposed negligible
in the present study), a transmission element that transfers
rotation from the motor to the motor disk with transmission
ratio kps, a first rotational disk with an inertial parameter J;
and a friction coefficient Disk = R, a flexible shaft modeled
as a spring damper element (coefficient C and Rgu,f), a
second rotational disk with an inertial value J, and a friction
coefficient R;. The numerical values of system parameters
are given in Table L

Amplifier JMotorDisk JLoadDisk

%ITDH.

Jmotar LoadDiskBearing

EncoderMotor

Fig. 2. Schematic model of the torsion bar system

4.1. BGI model and state space model

The simplified bond graph model of the system (drawn
with 20Sim®) is shown in Fig. 3. MSe : u the control input,
is an effort source modulated by the control signal u(r).
MSe : d(t), the disturbance variable (supposed to be known
in this paper), is a torque. There are three output variables
associated to output detectors which can be used to estimate
the derivatives of the state variables and the disturbance
which can be considered as an unknown input [22]. These
output variables are considered here as output variables to
be controlled. y3 is a current variable associated to a current
output detector (amperemeter), y; and y, are speed rotational
variables associated to the two flow output detectors.

/S NS

uMSe——11 ’—JGYﬁH —ATF——

. / /‘ " \W

Dfy3 Dfy2 Cc R Rshatt

Fig. 3. Simplified BG model of the torsion bar

The state equations (12) are directly obtained from the
bond graph model of Fig. 3. The state vector is x =
(x1,x2,x3,x4)", with energy variables: x; = gc = qc,, P
(which represents the displacement), x, = py,, x3 = py, (rep-
resenting the momentums), and x4 = pr,. Output variables.
The output matrix C can be written as C = [, ¢}, c5]". Poles
of the model are equal to —925.66, —7.9+ j55.4 and —10.23.

e ) + 7,%3 . .
. R |
e A A
. Shaft Shaft
B=- x1+ x+( 1 )3 +Lakblt4
- __k _ Ra
M= T T3 T L +u(r)
3=z X4 2= x3 = xz
12)

The model has three output variables. The study is pro-
posed for each row model X(c;,A,B,E).

4.2. Structural analysis

The Bond graph model is controllable/observable and
the state matrix in invertible, a derivative causality can be
assigned to each dynamical element, Fig. 4.

The infinite zero orders for each output variable y;, denoted
n;, are equal to the shortest causal path length between the
input source MSe : u(t) and the output detector Df : y;. The
causal paths are Df :y; —1:J2 = R: Rgpapy — 1:J1 —
TF :kpeyy — GY :k—1: L, — MSe : u, the second one Df :
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uMSe——1——=GY—1
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Rf\ lut RR2 li2

TF: 1/ 0 /\1'/ Sed
Boit / % \

24

o2 oryz Cc  RRshart ot

Fig. 4. BG model with derivative causality assignment

yo—=>1:J1 = TF :kpeyy — GY :k—1:L; — MSe : u and the
last one Df : y3 — 1 : L, — MSe : u with respective length
ny =3, np =2 and n3 = 1. The infinite zero order for row
subsystems X(c;, A, E) are ryg; With ryig1 = 1, rgigo =2 and
Fraiss3 = 3 with causal paths Df :y; — 1 :J, — Se: d(t), the
second one Df :yp = 1:Ji = R: Rspape —1:Jo — Se:d(t)
and Df :y3 = 1:L;, - GY : k= TF :kpeyy = 1:J1 = R:
Rspape —1:J2 — Se: d(1).

The classical disturbance rejection with state feedback is
possible for output y3(¢) because nz = 1 and ry;3 = 3, with
a classical state feedback with measurement (or estimation)
of the disturbance for the second output y,(f) since n, =
Faisr2 = 2. Tt is not possible for the first output variable y (¢)
since n1 =3 and ryiy; = 1.

A DSF control law is proposed for the disturbance rejec-
tion in case of the output variable y;(z). Some properties
of the controlled model are derived from a causal analysis.
From the BGD, the causal path lengths between the output
detector associated to y; and the input source (control and
disturbance) are equal to 0, thus c;A~'B# 0 and c;A~'E #0.

Model X(c;,A,B) has one invariant zero since r; = 3,
its value is z; = —1/(C.Rgpafs). Some coefficients can be
derived from a causal analysis (causal path gains), but
here they are directly obtained from formal calculus with
Maple. E,, = —(ciA~'B)"'ciA™'E = — (R, kperr) /k and G =
(k3 -R1-Ra+ k> + ki R2.Ra) [ (Kpets ).

Without pole placement, Y;(s) = V(s) and det(sl — A —
SBF) = keonst-(1 4 C Rspafis) Where keops is a constant.

With pole placement, matrix F is defined in equation (10)
and Y (s) = %WV(S) (only one pole can be chosen because
ny = 1). In that case, det(s] —A —sBF) = keopst-(1+015)(1+
CRshafis) where keons is @ constant.

4.3. DRDSF: simulations

Simulations are proposed in case of DRDSF with place-
ment of one pole. In that case, E, = —8.42798, G =
0.18815, the invariant zero is s = —3494.54850 and F =
[0.188;8.428 — 134.3960x;;8.428; 1] and det(s —A — sBF) =
2.969.107(1+ ays)(142.861.107%s).

The disturbance variable is a step function with value
0.1Nm in the interval time [1 2] and the new control
variable v(t) is also a step function with value 20rads~!
in the interval time [3 4]. The output variable y(z) and
the control variable u(r) are studied in the two cases: with
and without disturbance rejection, respectively represented
in Figures 5 and 6. The simulations prove the accuracy of
the proposed methodology, which has been test with other
kind of disturbances. The results, as well accurate are not
proposed here due to the lack of space.

= Disturbance d()
Nm i
01

4 = Controlu®y

o
Rad/s
0 = Outputyl ()

Fig. 5. Output variable y; (z) and control u(r) without disturbance rejection

= Control u()
1%

Rad/s = Outputy1 )

time {s}

Fig. 6. Output variable y;(r) and control u(r) with disturbance rejection

5. CONCLUSION

A derivative state feedback control law is proposed for the
disturbance rejection problem with analysis of the structural
properties of the controlled system. It is proved to be
accurate with classical restrictive conditions based on the
infinite and finite structure requirements. The application
of this new scheme is straight and the approach is similar
to the classical disturbance problem with state feedback.
As application, simulations are proposed on a torsional bar
system. A comparison of the performances of this control
will be made with the flat control one on the real system.
Theoretical developments will be proposed in a future work
for multivariable linear and nonlinear systems.
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APPENDIX

Appendix 1: Invariant zeros of the model X(C,A,B)
With an elementary right matrix multiplication on matrix
S(s) defined in equation (2), matrix Scy(s) is written as:

sa)= ("t 7 ) (V)

Since in equation (13), the matrix in the right position is
unimodular, matrices S(s) and Scy(s) are equivalent, which
proves that the invariant zeros are the same for the initial

13)

TABLE I
NUMERICAL VALUES OF SYSTEM PARAMETERS

Inductance L, 0.0013 H

Inertia disk 1 Ji 9.0662 - 10~% kg - m?
Inertia disk 2 Jo 0.0014 kg - m?
Spring compliance C 0.56 m/N
Generator k 0.1458
Transmission ratio kpeir 1

Resistance R, 1.2288 Q

Fist disk friction I3 0.005 Nms/rad

2.548-107> Nms/rad
5.11-107* N/rad

Second disk friction R,
Damping spring

Rsha ft

model £(C,A,B) as for the model with the DSF control law.

Appendix 2: Zeros of matrix [s/ —s(BF)'—A" C']

Consider the DSF with F = (CA~'B)"!CA~!. An elemen-
tary left multiplication (with unimodular matrix) is applied
on matrix [s/ —s(BF)' —A" C']', in equation (14).

1 0 sl —A — sBF
ca—l 1) C

B I 0 sI —A—sB[(CA~'B)"'cA™!] —-B
“\cat 1) Cc 0
(15)

(14)

A —1p\—1/p—1 N
_<s1 A sB[(COA B)~lcA™1] —CAB'B) (16)

Matrix [s] — s(BF)' — A"  C']' is thus equivalent
to matrix defined in equation (16). This elementary
calculus proves that with the state (derivative) feedback
matrix F = (CA~'B)~'CA~!, the finite zeros of matrix
[s] —s(BF) —A" (') are the invariant zeros of £(C,A,B).

Appendix 3: DRDSF with pole placement
From equation (7), with matrices G and E,, defined in
equation (8), the output variable can be written as:

y=[CA™' —CA~'BFIx(t) +v 17)

Thus, with matrix F defined in equation (10), the output
variable y(¢) is now:

y(t) ={CA™' —CA'B(CA"'B)"'[CA" + oyC+ axCA + - --
s Oy CATE 1) 4 v(1)
(18)
After a first simplification, it comes:

y(t) = —{a1C+ mCA+ -+ a, CA™s 1} (1) +v(t)
(19)
But Cx(t) = y(t) and CAx(t) = CA(A~' —A~'BF)x(t) +
CA(-A"'BE,,—A"'E)d(t) = C(I — BF)x(t) — CBE,d(t) —
CEd(t). Since CB = CE = 0 because r > rgiy, it comes
CAx(t) = Cx(t) and thus CAx(t) = Cy(¢). With a similar
calculus, it comes CA®~Dx(r) = y® for k < ryiy and thus
relation (11).
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