
HIGHLY NON LINEAR RIGID FLEXIBLE MANIPULATOR STATE ESTIMATION 
USING THE EXTENDED AND THE UNSCENTED KALMAN FILTERS 

Mohammed BAKHTI(a), Badr BOUOULID IDRISSI(b) 

(a),(b) Moulay Ismail University, Ecole Nationale Supérieure d’Arts et Métiers, 
BP 4024, Marjane II, Beni Hamed, 50000, Meknes, Morocco.

(a) mdbakhti@yahoo.fr, (b) badr.bououlid@gmail.com 

ABSTRACT 
This paper focuses on the highly non linear rigid-
flexible manipulator state estimation using the Extended 
Kalman Filter and the Unscented Kalman Filter. The 
Hamilton’s principle is used to derive the manipulator 
equations, the Euler-Bernoulli assumption is considered 
to model the flexible link, and the elastic movement is 
approximated using the assumed modes method. The 
simulation study compares the efficiency of the state 
estimation quantified by the estimation mean squared 
error and the time required by the filters to converge. 

Keywords: nonlinear filtering extended Kalman filter, 
unscented Kalman filter, rigid-flexible manipulator. 

1. INTRODUCTION
Rigid-flexible manipulators are a promising alternative 
to rigid-rigid ones due to their greater payload to 
manipulator weight ratio, higher operation speed, larger 
work space, lower energy consumption and safer 
operability. However, they exhibit disadvantages of 
deflection associated with structural flexibility and 
vibration problem (Shitole and Sumathi 2015). Their 
modeling approaches and their control/observation 
strategies must consider both the rigid body and the 
flexible degrees of freedom (Dwivedy and Eberhard 
2006). 
The Hamilton’s principle is one of the most used 
approaches when modeling the flexible manipulators. 
The deformation model of the flexible links is usually 
based on the Euler – Bernoulli beam theory, and the 
elastic degrees of freedom are approximated using 
either the assumed mode method or the finite element 
method. In general, only first few vibration modes play 
a significant role in the dynamic equations formulation. 
As actuators, usually DC motors are used at the 
manipulator joints due to their simple control scheme. 
Most of the active vibration control strategies require 
the state feedback, and many non linear observer 
formulations have been addressed for the flexible 
manipulators. To estimate the elastic degrees of 
freedom and their time derivatives, a non linear high 
gain observer has been developed by (Mosayebi, 
Ghayour, and Sadigh 2012), and the sliding mode 
theory has been investigated by (Kurode and Merchant 
2013) to design both a controller and an observer for the 

tip positioning problem. Distributed observers have 
been presented by (Yang, Liu, and Lan 2015; Jiang, 
Liu, and He 2015) to estimate infinite dimensional 
states requiring only the boundary values measured by 
sensors. An extended state observer was proposed for 
the trajectory tracking control of a flexible-joint robotic 
system by (Talole, Kolhe, and Phadke 2010), and the 
Extended Kalman Filter has been used by (Atashzar, 
Talebi, Towhidkhah, and Shahbazi 2010) to give an 
estimate of the environmental forces. 
Using the Taylor series expansion, the optimal way a 
linear Kalman filter provide the mean and covariance of 
a linear system state can be extended to nonlinear ones. 
The Extended Kalman Filter (EKF) is based on 
linearizing the nonlinear system around the state 
nominal trajectory (Simon 2006). The optimal solution 
to the nonlinear filtering requires the filter to give an 
accurate estimate for all the probability distribution 
function (pdf) moments, and, thus, the problem is 
infinite dimensional (Kushner 1967). However, when 
the noises corrupting the system are assumed to be 
Gaussian, the mean and covariance are sufficiently 
describing the state pdf (Walpole, Myers, Myers, and 
Ye 2012). Unfortunately, the EKF requires the non 
linear prediction and measurement function jacobians to 
be evaluated repeatedly at each time step (Chui and 
Chen 2009), and this may cause the results to be 
unreliable and the implementation to be difficult. 
A diversion from evaluating the jacobians is allowed by 
the Unscented Kalman Filter (UKF) (Julier and 
Uhlmann 2004). As an alternative, a small set of points, 
called the sigma-points, are carefully chosen to capture 
the mean and covariance of the state before they 
undergo the system nonlinearities. Once transformed, 
those points are used to evaluate the mean and 
covariance of the state to be estimated. Contrarily to the 
Monte Carlo method, the samples are not drawn at 
random, yet they are deterministically selected so that 
they capture the essential information about the state 
pdf. 
The main contribution of this paper is to compare the 
EKF and the UKF algorithms when used to estimate the 
state of a highly nonlinear rigid-flexible manipulator. 
The analyzed motion of the manipulator is fully 
described by the rigid body motion, and the vibration 
motion. Thus the state vector consists of the shoulder 
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joint angle, the elbow joint angle, the first modal 
coordinate and their respective time derivatives. The 
flexible link deformation is described using the Euler-
Bernoulli theory, the elastic degree of freedom is 
approximated using the assumed mode method, and the 
system equations are derived using Hamilton’s 
principle. 
In the next section, the mathematical model for the 
rigid-flexible manipulator is derived, while in section 3, 
the EKF and the UKF principles and algorithms are 
detailed. Simulation results are displayed and discussed 
in section 4, and conclusion are outlined in section 5. 
 
2. MATHEMATICAL MODELING OF THE 

RIGID-FLEXIBLE MANIPULATOR 
The two-link rigid-flexible manipulator geometry and 
coordinates are shown in Figure 1.  
 

 
Figure 1: The Two-link Rigid-Flexible Manipulator 
Geometry and Coordinates 
 
The shoulder and elbow joint angular positions, driven 
by servo motors, are respectively ��and ��, and  �� 
denotes the length of the rigid link. The radius of the 
rigid hub is � and the elastic displacement is ��	, ��, 
where 	 is the non deformed point location on the 
flexible link. 
Two reference systems are defined: 
 

1. An inertial system: �
, �, �� with its �-axis aligned 
with the shoulder servomotor shaft, and the 
-axis 
aligned with the home position of the rigid 
manipulator. 

2. A rotating system: (x, y, Z�, as local coordinate 
system, attached to the rigid hub and its  	 -axis 
tangent to the flexible link at the shaft of the elbow 
servomotor. 

The gravity is not considered since the manipulator 
moves in the horizontal plane, and the flexible link is 

assumed to be an Euler–Bernoulli beam where the 
longitudinal deformation is neglected. 
Kinematics of the system, relative to the inertial system, 
may be described by the following position vector: 
 � � ������ � 

��� ������� � �	 � �� ������ � ��� � � ������ � ����� ������� � �	 � �� ������ � ��� � � ������ � ���� �1� 
Thus: 

�! � � �"��"� "��"� � #"��"�"��"� $ 

� ����!�� � %�� � 	�&�!� � �!�' � �! (�
     � 2���!� *%�� � 	�&�!� � �!�' � �! (+ cos����     � %�&�!� � �!�'(� � 2���!�&�!� � �!�'��������       �2� 

 
Including the rigid link and the shoulder servomotor 
and hub inertia /� and /0, with respect to the shoulder 
joint axis, the total kinetic energy of the system can be 
written as: 
 1 � 12 /��!�� � 12 /0 %�!�� � �!��( � 12 20����!��

 

       � 12 3 45�! �"	67
8                                                           �3� 

 
Where 4, 5 and  20 are, respectively, the mass density 
of the flexible link, its cross section area and the elbow 
hub mass. 
According to the Euler-Bernoulli assumption, the 
potential energy of the system is given by (Tokhi and 
Azad 2008): 
 : � 12 3 ;/� <=��=	� >� "	67

8  

         � 12 3 ?�	, �� *=�=	+� "	67
8                                        �4� 

 
Where ; and / are the flexible link Young’s modulus 
and its moment of inertia.  ?�	, �� is given for a uniform 
beam by (Yigit, Scott, and Ulsoy 1988): 
 ?A�	, �� � 12 4�!��&��� � 	�' � 4�!������ � 	�          �5� 

 
Once the kinetic and potential energies of the system 
are explicited, the system equations are derived using 
Hamilton’s principle (Dym and Shames 2013): 
 3 �C1 � C: � CD�"�EF

EG � 0                                            �6� 

 
Where CD is the virtual work done by the joint 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2016 
ISBN 978-88-97999-82-9; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.   

2



torques J� and J�, at the shoulder and the elbow joints 
respectively. 
The Hamilton’s principle results on the following 
equations in which a dot denotes the derivative with 
respect to time, and a prime denotes the derivative with 
respect to the spatial variable 	: 

 �/� � 20�����K� � /0&�K� � �K�' � 12 3 45 <�� � 	��&�K� � �K�' � �K �� � 	� � ���K�67
8 � 2��! &�!� � �!�' � ��&�K� � �K�'� 2���� � 	��K� cos����� 2���� � 	��!��!� sin����� 2���K�� sin����� ���� � 	��!�� sin����� 2���! &�!� � �!�' sin����� 2����!��!� cos����� ���!�� cos���� � 12 ���� � 	�� 2��� � 2�	��N�&�K� � �K�'� ���� � 	� � 2��� � 2�	��N�! N&�!�� �!��> "	 � J�                                  �7� 

 /0&�K� � �K�' � 3 45 <�� � 	��&�K� � �K�' � �K �� � 	�67
8 � 2��! &�!� � �!�' � ��&�K� � �K�'� ���� � 	��K� cos����� ���K�� sin����� ���!���� � 	� sin����� ���!��� cos����� 12 ���� � 	� � 2��� � 2�	��N�&�K�� �K�'� ���� � 	� � 2��� � 2�	��N�! N&�!�� �!��> "	 � J�                                  �8� 

 
 45�� � 	�&�K� � �K�' � 4�K � 4��&�K� � �K�' cos����� 4�&�!� � �!�'� � 4���!�� sin����� ;/��QQQQ— <12 4&�!� � �!�'�����

� 	�� � 4&�!� � �!�'����� � 	�> �QQ
� 4&�!� � �!�'��	 � ���Q � 0         �9� 

 
The assumed modes method is used to 
approximate ��	, ��. The relative motion of the flexible 
link with respect to the rotating reference �	, T, �� 
system will be written in terms of the first modal 
coordinate U���� and the clamped-free beam’s first 
mode shape V��	� : 
 ��	, �� � U����V��	�                                                     �10� 

Where : 
 V��	� � ����W	� � X ����W	�                 ���� Y�W	�    � ��� Y�W	�                           �11� 
 W � √3.5160��                                                                     �12� 

 
And 
 X � ����W��� � ��� Y�W�������W��� � ��� Y�W���                                        �13� 
 
Applying the above mentioned equations of motion 
yelds the following non-linear coupled set of ordinnary 
differential equations: 
 \�U�UK � Y�U, U! � � ]�U� � ^���                                �14� 
 
Where U is the vector of generalised cordinates 
representing the rigid-body and the elastic degrees of 
freedom, and ^��� is the vector of external forces. 
 U � _�� �� U�`a                                                         �15� 
 ^��� � _J� J� 0`a                                                      �16� 
 
Matrices \�U� and ]�U� are respectively the mass and 
the stiffness ones, and the vector Y�U, U! � regroups the 
non linear centrifugal and Coriolis terms.  
In addition, the shoulder servomotor viscous friction 
coefficient bc and the flexible link structural damping 
can form a modal damping matrix de as (Hassan, 
Dubay, Li, and Wang 2007): 

 de � �bc 00 2f�2��g��                                                �17� 

 
Where  g�is the first elastic mode natural frequency, 
and  f� its respective modal damping coefficient. 
Coefficient  2�� is the corresponding element of the 
mass matrix \�U�. All the matrices and vectors, with 
their numerical values used for simulation, are 
presented in the appendix. 
 
3. EXTENDED AND UNSCENTED KALMAN 

FILTERS 
The Extended Kalman Filter (EKF) and the Unscented 
Kalman Filter (UKF) evaluate the probability 
distribution function (pdf) of a random variable as it 
undergoes a nonlinear transformation. 
This section deals with the EKF and UKF principles 
and algorithms. It summarizes the prediction/correction 
estimation steps given the additive process and 
measurements noises assumption. 
 
3.1. The Extended Kalman Filter Principle and 

Algorithm 
At each discrete time step, the EKF propagates the pdf 
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of a random vector using a linear approximation of the 
non linear system around the operating point. The 
Taylor series expansion is used, and the jacobians 
required make the filter prohibitively difficult to 
implement especially when the system is of higher 
order. 
The design of the EKF is based on the following 
continuous-time, nonlinear stochastic system: 

 h	! � i�	, ^� � jT � Y�	� � k l                                                               �18� 

 
where 	 m no is the system state, ^ m np the input, T mnc the output and j m no and k m nc the process and 
observation noise functions respectively. 
The noises are assumed to be continuous-time, white, 
zero-mean, uncorrelated and have covariance 
matrices q m noro and s m ncrc respectively. 

  t;u&j���'&j�J�' v � qC�� � J�;u&k���'&k�J�'v � sC�� � J�                                   �19�l   
 
Where ;_. ` and C�. � are, respectively, the expected 
value and the continuous-time impulse function. 
To identify the operating point, the state nominal 
trajectory is the state estimate 	8 � 	w, while the 
nominal trajectories of the process and measurment 
noises are equal to zero as they are assumed to be zero-
mean signals. The control signal is deterministic, and its 
nominal trajectory is assumed to be the control signal 
itself  ^8��� � ^���.  
Linearizing both the prediction and the output 
functions, i�	, ^� and Y�	�, around the nominal 
trajectories yields: 
 i�	, ^� � i�	8, ^, j8� � l=i=	x8 �	 � 	8�                � i�	8, ^, �8� � y?��	 � 	8�                       �20� 
 Y�	� � Y�	8� � l=Y=	x8 �	 � 	8�           � Y�	8, k8� � yd��	 � 	8�                                �21� 
 
The EKF equations are then given by (Simon 2006): 

 	w�0� � ;_	�0�`                                                                �22� :�0� � ; z&	�0� � 	w�0�'&	�0� � 	w�0�'a{               �23� 	w! � i�	w, ^, j8� � ]&T � Y�	w, j8�'                              �24� ] � : yd�as|�                                                              �25� :! � y?�: � :y?�a � q � :yd�as|�yd�:           �26� 
 

Where P is the covariance of the estimation error. 
 
3.2. The Unscented Kalman Filter Principle and 

Algorithm 
The Unscented Kalman Filter (UKF) uses a statistical 
linearization as an alternative to the analytical one used 
in the EKF algorithm. The unscented transform 

propagates the pdf in a simple and effective way and it 
is accurate up to second order in estimating mean and 
covariance (Julier and Uhlmann 2004). This 
transformation uses �2� � 1� selected points, called the 
sigma-points that are deterministically chosen to 
completely capture the true mean and covariance of the 
states. Those points are then propagated through the 
nonlinear prediction and output functions. The 
transformed points are then used to calculate a weighted 
sample mean and covariance. 
We consider the same nonlinear system described by 
(18). The standard UKF state estimation algorithm 
initialise the state, the initial error covariance, the 
process noise and the measurement noise covariance 
matrices as for the EKF. 
At each discrete time ~, the sigma-points are generated, 
using the covariance matrix square root &√P', usually 
using the Cholesky method, as follows: 

 

��|� � ���
� 	w�|�	w�|� � ��� � ���:�|����	w�|� � ��� � ���:�|�������

�a
                        �27� 

 
Where �:�|���� is the i�� row of the covariance matrix 

square root defined as √:a√: � : (Julier, Uhlmann, 
and Durrant-Whyte 2000). 
Once, the sigma-points are propagated through the 
prediction nonlinear function, the mean and covariance 
of the predicted state are calculated as follows (Julier, 
Uhlmann, and Durrant-Whyte 2000): 

 �!�/�|���� � i���|�, ^�|��   � � 0 � 2��                       �28� 

	w�/�|� � � ��
�o

��8 ��/�|����                                                   �29� 

:�/�|� � q�|� 

     � � ��
�o

��8 &��/�|���� � 	w�/�|�'&��/�|���� � 	w�/�|�'a �30� 

 
Where the weight coefficients �� are given by: 

 

��8 � �� � �                                
�� � 12�� � ��     � � 1 � 2� l                                     �31� 

 
The parameter � is used to reduce the overall estimation 
error, yet its value must garantee the covariance matrix 
to remain positive definite. It’s recommanded value 
is 3 � � if the system is of lower order. Otherwise, it’s 
set to zero. 
The sigma-points are also propagated through the 
nonlinear outut function: 

 ��/�|���� � Y���/�|���� , ^��   � � 0 � 2�                          �32� 
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And the mean and covariance of predicted output are 
then calculated: 
 

Tw�/�|� � � ��
�o

��8 ��/�|����                                                   �33� 

:��� � s� 

    � � ��
�o

��8 ���/�|���� � Tw�/�|�����/�|���� � Tw�/�|��a  �34� 

 
The cross-covariance of state and output is calculated 
as: 
 

:��� � � ��
�o

��8 ���/�|����
� 	w�/�|�����/�|���� � Tw�/�|��a     �35� 

 
Finally, the state and covariance are updated for the 
next discrete time after the Kalman gain is evaluated. 

 ]� � :���&:���'|�                                                          �36� 	w� � 	w�/�|� � ]�&T� � Tw�/�|�'                                 �37� :� � :�/�|� � ]�:���]�a                                             �38� 
 
4. SIMULATION RESULTS 
The state variables to estimate are the shoulder 
angle �����, the elbow angle �����, the first modal 
coordinate U���� and their respective time derivatives.  
 

Table 1. Numerical parameters of the system 

Rigid link 
Mass m� � 1  ]� 

Length ��  �  0.5 2 
Inertia /�  � 0.0834 ]�. 2² 

Flexible 
link 

Length ��  �  0.5 2 
Mass 

density per 
unit length 

45 �  0.15 ]�. 2|� 

Flexural 
rigidity ;/�  �  1 �. 2� 

Quadratic 
moment / �  1.45  10|� 2� 

First mode 
damping 

coefficient  
f�  � 0.01 2 

First mode 
damping 

coefficient 
ω� � 36.3131 ��"/� 

Elbow hub 
Radius � � 0.04 2 
Mass 20  � 0.5 ]�. 2² 

Shoulder 
servomotor 

and hub 
Inertia /0  � 0.002 ]�. 2² 

Elbow 
servomotor 

Viscous 
friction 

coefficient 

bc� 0.95 �2. �"|�. �|� 

 

 
Figure 2: Shoulder and Elbow Control Torques 

 

 
Figure 3: Nominal and Noisy measurements for the 
Small Noise Case  

 
Figure 4: Nominal and Noisy measurements for the 
Small Noise Case  
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The system has two inputs which are the mechanical 
shoulder and elbow torques J���� and J����, and three 
accessible noisy outputs �����, �����, and U����. 
The EKF and UKF numerical algorithms were 
implemented in Matlab environment, while the model 
simplifying and the jacobians derivation was carried out 
using the Mathematica packages. The nonlinearities of 
the process model requires a relatively small time steps 
for numerical integration. It’s been set to 0.001 s, and 
the measurement update frequency of the filters 
coincides with the system discretization sampling 
frequency. 
Table 1 shows the links, hubs and servomotors 
parameters needed for the numerical simulation, and 
Figure 2 to Figure 4 show respectively the control 
torques used for the simulation and the noisy 
measurment used for the state estimate update for the 
small noise case and for the large noise case. 
For the two cases, the simulations have been conducted 
given the following assumptions: 

 
• Both the process noise and the measurement noise are 

Gaussian, zero-mean, white and with known 
covariance matrices. 
 

• The EKF and the UKF models used for estimation are 
always the same, and they are perfectly equal to the 
truth model. 

 
• The initial state and process/measurement noise 

covariances are the same for both the EKF and UKF. 
 

• The truth model initial state is chosen as : 	8 � _��8 ��8 U�8 �!�8 �!�8 U!�8`a � _0`�r� 
While both filters algorithms suppose the following 
initial state: 	w8 � u��8 ��8 Uw�8 ��!8 ��!8 Uw!�8va

      �   _4 4 0.1 2 2 0.2`a 

• For the UKF algorithm, the weight coefficients are:  

� �8 � 0                          �� � 12�     � � 1 � 2�l 
The parameter κ was set to zero. 

• The initial error covariance is assumed to be: :�0� �  	w8	w8a for the EKF. :�0� �  10 /�r�  for the UKF. 
 

• The process noise and measurement noise covariance 
matrices are respectiveley given by: q � 0.1 /�r�for the samll noise case. q � /�r�  for the large nois case. s � 0.5 �����r��1,1, 10|�� for the samll noise case. s � �����r��1,1, 10|�� for the large noise case. 
 

• The update period of the simulation is 0.001 �, and 
the simulation time is 2s. 

 

 
Figure 5: Shoulder Angle Estimation for the Small 
Noise Case Using the EKF 
 
 

 
Figure 6: Elbow Angle Estimation for the Small Noise 
Case Using the EKF 
 

 
Figure 7: Modal Coordinate Estimation for the Small 
Noise Case Using the EKF 
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Figure 8: Shoulder Angle Estimation for the Small 
Noise Case Using the UKF 

 

 
Figure 9: Elbow Angle Estimation for the Small Noise 
Case Using the UKF 

 

 
Figure 10: Modal Coordinate Estimation for the Small 
Noise Case Using the UKF 

 

 
Figure 11: Shoulder Angle Estimation for the Large 
Noise Case Using the EKF 
 

 
Figure 12: Elbow Angle Estimation for the Large Noise 
Case Using the EKF 
 

 
Figure 13: Modal Coordinate Estimation for the Large 
Noise Case Using the EKF 

 
 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2016 
ISBN 978-88-97999-82-9; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.   

7



 
Figure 14: Shoulder Angle Estimation for the Large 
Noise Case Using the UKF 

 

 
Figure 15: Elbow Angle Estimation for the Large Noise 
Case Using the UKF 

 

 
Figure 16: Modal Coordinate Estimation for the Large 
Noise Case Using the UKF 

 
One can notice from the displayed results that both the 
EKF and the UKF state estimates converge to the true 
state. According to Figures 5 to 10, the UKF slightly 
outperforms the EKF in terms of convergence speed 

when the process and measurments are small. However, 
when the noises are large, Figures 11 to 16, the EKF 
estimate is much accurate. 
In order to quantify the filters performance, the root 
mean square error (RMSE) is calculated for each state 
variable 	� as follows: 
 

s\�;�	�� � � 1�� ��	w� � 	��� ¡
���                                 �55� 

Where �� is the number of samples.  
According to the results, displayed by Table 2 and 
Table 3, a clear performance advantage is demonstrated 
for the UKF when estimating the shoulder angle, the 
elbow angle and the modal coordinate, while the EKF is 
more accurate when estimating their respective time 
derivatives. 
 
Table 2: Root Mean Square Error for Small 
Measurements noise 

 EKF UKF ����� 0,02512 ¢, ¢¢£¤¥ ����� 0,01877 ¢, ¢¢£¦§ U����  9,08194  10|� ¨, §©£¥ª  ¥¢|¨ �!� ��� 0,01050 ¢, ¢¥¢¤© �!���� ¢, ¢¢£§© 0,016215 U!����  ¢, ¢¢¤¢¦ 0,01344 

 
Table 3: Root Mean Square Error for Large 
Measurements noise 

 EKF UKF ����� 0,13043 ¢, ¢¢£©© ����� 0,08667 ¢, ¢¥¢ªª U����  2,95858 10|« ¤, ªª¤¤§ ¥¢|© �!� ��� ¢, ¢¨¤¨¬ 0,22809 �!���� ¢, ¢¬¬§¢ 0,06881 U!����  ¢, ¢¥¤§¢ 0,81582 

 
 
5. CONCLUSION 

 
This paper considers the problem of nonlinear filtering 
for the Rigid-flexibe manipulator state estimation. The 
manipulator was modeled using the Hamilton’s 
principle and the assumed modes method considering 
the first elastic mode. The state space representation 
obtained was used to conduct simulation and to discuss 
the ability of the extended and unscented Kalman filters 
to give an accurate estimate based on the shoulder 
angle, the elbow angle and the modal coordinate noisy 
measurements. 
The estimation convergence time is lower for the UKF 
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when the process/measurements noise are assumed to 
be small. While, the the EKF is better facing large 
noises. 
Based on the RMSE criteria, the UKF outperforms the 
EKF when estimating the shoulder angle, the elbow 
angle and the modal coordinate, while the EKF is more 
accurate when estimating their respective time 
derivatives. 
 
APPENDIX 

MODEL MATRICES AND VECTORS 
EXPRESSIONS AND NUMERICAL VALUES 

The elements of the symmetric mass matrix: 
  \�U� � u2�­v�r� 

2�� � /0 � 3 45�	 � ���"	67
8 � 45�����

� 2 *12 45����� � 45�����+ �������� /� � 20���� 2��������� <3 45V��	�"	67
8 > U� 2�� �  0.2370® � 0.0218 cos���� � 0.08U� sin���� 2�� � /0 � 3 45�	 � ���"	67

8 � *12 45����� � 45�����+ �������
� ��������� <3 45V��	�"	67

8 > U� 2�� � 0.0099® � 0.0109 cos���� � 0.04U� sin���� 2�� � 3 45�	 � ��V��	�"	67
8 � �� <3 45V��	�"	67

8 > ������� 2�� � 0.0323 � 0.04 cos���� 2�� � /0 � 3 45�	 � ���"	67
8  2�� � 0.0099 2�� � 3 45�	 � ��V��	�"	67

8  2�� � 0.0323 2�� � 3 45&V��	�'�"	67
8  2�� � 0.1392 

 
The elements of the diagonal stiffness matrix: 
 ]�U� � u~�­v�r� ~�� � ~�� � 0 ~�� � 3 ;/� <=�k=	�>� "	67

8  ~�� � 183.52 
 
The elements of vector: Y�U, U! � � _Y�`�r� 
 

Y�� � ¯*12 45����� � 45�����+ sin����
� ��������� <3 45V��	�"	67

8 > U�° �!��
� <2 *12 45����� � 45�����+ �������
� 2��������� <3 45V��	�"	67

8 > U�> �!��!�
� 2��������� ¯<3 45V��	�"	67

8 > U!�° &�!� � �!�' 

Y� � �!����0.04U� cos���� � 0.0109 sin������ �!��!��U� cos����� 0.0218 sin������ 0.08&�!� � �!�' sin���� 
 Y�� ¯*12 45����� � 45�����+ sin����
� ��������� <3 45V��	�"	67

8 > U�° �!�� 

 Y� � �!���0.04 U� ������� � 0.0109 �������� 
 Y�� <3 <45�	 � ��V�Q���V��	�67

8� 12 45���� � 	� � 2��� � 2�	�V�QQ�	�V��	�> "	 � /0
� 3 45�	 � ���"	67

8 � 45�����
� 2 *12 45����� � 45�����+ ������� � /� � 20���
� 2��������� <3 45V��	�"	67

8 > U�> U�&�!� � �!�'�
� <3 45V��	�"	67

8 > U��� sin�θ�� θ�� Y� � 0.0444 U���!� � �!��� � 0.04�!�� sin���� 
 
The elements of the diagonal damping matrix: 
 de�U� � uY"�­v�r� Y"�� � Y"�� � 0.95 Y"�� � 0.1010 
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