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ABSTRACT 

The work presented in this paper focuses on the use of multi-
controller approach to control a robot wrist (STÄUBLI robot 
RX 90). A description and a nonlinear Mathematical model 
of process have been presented along with the local 
parametric models around operating points.  Due  to  the 
advantage  of  fractional order PID control compared to 
conventional PID, a   Fractional order PID controller   has 
been  developed   around  each  selected  operating points 
for   each   local   parametric   models   with   the   Oustaloup 
recursive  approximation  method  (ORA)  method  are 
presented.  at the end we present the results obtained in the 
different simulations with 3D simulation robot model 
developed in CAO solid Works software and some 
perspectives for future work. 

Keywords: Modeling, Local Control, Multi-controller 
control, Fractional PID controller, Approximation Oustaloup 
method. 

1. INTRODUCTION

Invariant linear model for a physical process can only be an 
approximation. Indeed, a physical process generally has 
non-linearities (Slotine 1991) that are not taken into account 
in the modeling process. For some operating points of the 
physical process a local linear model can be determined. 
Two ways can be used to derive these linear models the first 
is based on the priori knowledge of the process and the 
second using identification. We may then seek to enslave 
the whole process in operational space using the local 
information (Balakrishnan 1994), (Chebassier, 1999). The 
objectives of this work are to develop a control structure in 
which control law is deduced from a set of controllers that 
are working together. The controllers parameters are 
deduced from the local models of the process. The purpose 
of the multi-controller command (Balakrishnan 1997) is to 
control the output of any process in space operation using 

controls developed by different local controllers. The 
diagram block of the multi-controllers control approach is 
represented as follows: 

Figure 1: Multi-controller structure approach. 

The multi-controller command is used to specify: 
• The controller’s structures.
• The switching type (Pagès 2000; Duchamp 1998).

Different solutions are proposed such as: 
• Fractional order PID controllers (Bensafia 2011).
• Digital RST controller and Adaptive controllers

(Karimi  1998) (Toscano 1997).
• Frank or fuzzy switching (Pagès 2000; Foulloy

1998). 
• Direct or indirect approach to collaboration control

law (Pagès 2000; Foulloy 1998).

In our work we have choose the use of an indirect approach 
based on local fractional order PID controllers and frank 
switching for robot wrist control. 

2. PROCESS MODELING
The geometric series structure model of STÄUBLI Robot 
Rx-90 is give by the figure 2 (Khalil 2009): 
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Figure 2: RX-90 Robot model. 
 

This robot has coupling between axis 5 and 6. The actuators 
are brushless motors and the engine control uses the rotor 
position to magnetic flux rotate to achieve desired torque 
value and generally this motor as a DC motor behave 
(Sabatier 2010). Our process corresponds to a robot wrist 
(axis 6) can be represented by the following figure: 

Figure 3: Process model. 
 

Mathematic dynamic process model is given by the 
following equations (ZENNIR 2013): 

 Γ� − Γ� = �J� + �	
�∙�
�� � ∙ θ�� + �γ� + �	

��� ∙ θ��            (1) 

 
With: 

                                       J� = �J� + �	
�∙�
�� �                      (2) 

 
Where:  

Jm: inertia moment applied in the motor shaft. 
Js: inertia moment applied in the output shaft (output shaft 
with mass). 

                            γ� = γ� + γ	
��                                           (3) 

 

γm: Viscous friction applied to the motor shaft. 

γs: Viscous friction applied to the output shaft. 

The motor torque is given by: 

                                Γ� = K� ∙ u�t�                                    (4) 
 
Where: Ke is the torque constant and u(t) control voltage. 

Then the nonlinear model is given by: 

           X� = θ��t�;	X = θ���t�   ;     X = !X�X "                (5) 

 

           X� = # 0 1�∙&∙
�∙�' − γ'

�'
( ∙ #sin �,-� �X ( + # 0./

�'
( ∙ u�t�             (6) 

 

                                    Y = θ��t� = 2− �
� 03 ∙ X              (7) 

 
Which is the state space representation for the nonlinear 
model? To find the structure of local parametric models, we 
applied the tangent linearization and hence the linear local 
model is as follows (zennir 2013): 

                           4�5� = 6.7
8�
97-∙8
97�                               (8) 

 

 Where:  

 K8 = ./
�∙�' , a8� =

γ'
�' 	and	a8 = �∙&∙

��∙�' ∙ COS �,-@� �              (9) 

 

After identification of the linear local model near each 
operating point (zennir 2013). The corresponding 
continuous linear model is as follows: 

• operating points, θs0=0 : 

                4�5� = 6���.B
C�
��. B∙C
DE.�F			                    (10) 

 
• operating points, θs0=π/3 and θs0=2π/3 

respectively: 

      G�p� = 6���.B
8�
��. B∙8
IE.BD ;    4�p� = 6���.B

8�
��. B∙86IE.BD    (11) 

 
3. LOCAL CONTROLLERS STRUCTURES 
The structure of the local controllers is of type Fractional 
PIλDµ. The applications of the fractional calculus takes the 
order of integrals and derivatives have been defind in 
literatures, such as control theory (Yuquan, 2011), (Bagley 
1991), (Makroglou 1994), and electro-analytical chemistry 
(Oldham  1976) , (Goto 1975). In control theory, the general 
conclusion about fractional control system is that it could 
enlarge the stability region (Podlubny 1994) moreover it 
gives performance at least as good as its integer counterpart. 
In the other hand another important advantage is that 
fractional integrals or derivatives are hereditary functional 
while the ordinary ones are point functional. Here we should 
mention that for Fractional order PID controllers, many 
contributions and studies are presented  in the past years 
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particularly in the tuning rules (Luo 2009), (Xue  2006), 
approximation and stability conditions (Sabatier, 2010). In 
generally Fractional-order calculus is an area of 
mathematics that deals with derivatives and integrals from 
non-integer orders. In other words, it is a generalization of 
the traditional calculus that leads to similar concepts and 
tools, but with a much wider applicability. In recent years, 
according to the advances in the field of fractional calculus, 
there had been a great interest to develop a new generation 
of PID controllers, which is commonly known as the 
Fractional-order PID (FOPID) or PIλDµ  controller. The 
transfer function of FOPID controller, which was initially 
proposed by Podlubny (Vinagre 1997), is given by:  

4J�5� = K�C�
L�C� = MC + MN �

CO + MP5Q , �R, S > 0�         (12) 

Where Kp,KI, KD ∈ R and λ,µ ∈ R+ are the tuning 
parameters and the controller design problem is to 
determine the suitable value of these unknown parameters 
such that a predetermined set of control objectives is met 
(Vinagre 1997). Note that in (12) the fractional Laplace 
variable “p” powers are commonly interpreted in the time 
domain using either the Grunwald-Letnikov, Riemann-
Liouville or the Caputo definition (Bettou, 2011). It should 
be noted that any conventional PID controller is a particular 
case of the FOPID controller (12) with λ=1 and µ=1. 
Assuming λ=1 and µ=0, or λ=0 and µ=1 respectively 
corresponds conventional PI or PD controllers are the 
special cases of the fractional PIλDµ controller given by 
(12).  Functional diagram of local FOPID controller is 
represented by the following figure: 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4: Structure of FOPID local controller. 
 

Many methods in literature have been proposed to FOPID 
approximation (Vinagre 1997). In this step of our work we 
used the Oustaloup recursive approximation method (ORA) 
(Oustaloup  1995), (Djouambi 2007, Djouambi 2006). With 
this FOPID we have using the approximation of Oustaloup. 
This method is based on the approximation of a function of 
the form: 

U�5� = 5V			,µ ∈ X
                                                  (13) 

By a following rational function: 

                    UY�5� = Z ∏ �
 \
]^

�
 \
]́^
	àb6`                            (14) 

With:               ćd = e6d.BcV; 	cd = ed.BcV;	 
                         

f́^g-
f́^ = f^g-

f^ = eh > 1                            (15) 

       
f́^g-
f́^ = h > 0;f^

f́^ = e > 0; 	i = jk&�]l]@�
jk&�mn� ;                 (16) 

                       µ = jk&m
jk&�mn�                                                  (17) 

With cV	being the unit gain frequency and the central 
frequency of a band of frequencies geometrically distributed 
around it .That is,	cV = ocpcq, where cp, cqare the high 
and the low transitional frequencies. The parameters used in 
the Oustaloup approximation are:  

• G(p) : Transfer function of local model of process. 
• N=5: Approximation order. 
• r1=-0.2 & r2=0.2: Integration & derivative order 

respectively. 
• wl=10^-2; low transitional frequency 
• wh=10^3; high transitional frequency 
• wu=10;      Cutoff frequency 

The transfer function of reference model is given by the 
following function: 

   rs�5� = t�
�C
t�� ∙ X�5� = 4s�5� ∙ X�5�                       (18) 

With  :                  4s�5� = t�
C�
λ-∙C
λ@                            (19) 

 
With: R (p) is the set of the loop closes.  

4. SIMULATION 

The synthesis of the controllers is continuous. The 
simulation is done in continuous time around the following 
operating points θs0=0rad, θs0=π/3rad and θs0=2π/3rad 

chosen with two stable position and unstable. The parameter 
values of the reference model λ0 and λ1 are: 
 
                u = 30	;	λd = 900;	λ� = 60                         (20) 
 
The PID controllers parameters determined with λ=1 and 
µ=1 (Traditional PID) around the operating points are: 

TABLE 1: PARAMETERS OF THE LOCAL CONTROLLER 

parameters MC My Mz 

Controller (θs=0) -2 -5 -0.7 

Controller  (θs=π/3) -2 -0.4 -0.4 

Controller (θs=2π/3) -3 0.1 -0.4 
 
Two simulations have been performed for each operating 
point in order to verify the role of the integrator, the stability 
of the closed loop and the proper functioning of the 
controllers around the operating points. The block diagram 
of simulation for each operating points is illustrated by the 
following figure: 
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Figure 5: Closed loop control around operating point. 

• The simulation around the operating point θs0=0 rad 

With controller parameters around θs0=0rad and reference 
signal r (t) is equal to: 
                      

            r�t� = 0.1 ∙ sin�5 ∙ t�                         (21) 
 

 The simulation results are illustrated in the followings 
figures: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.a: Control error ec (t). 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.b: Output of the model and the reference model. 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 

Figure 6.c: Pole Zero map for closed loop. 

• Approximation FOPID Transfer function around θs0=0 
rad 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The simulation around the operating point θs0=π/3 rad 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7.a: Control error ec (t). 

C1 = 
-6.5059 (s^2 + 0.004757s + 5.66e-06) (s^2 + 0.02047s + 

0.0001048) (s^2 + 0.08798s + 0.001937) (s^2 + 0.3773s + 
0.03564) (s^2 + 1.612s + 0.6516) (s^2 + 6.864s + 11.82) 

(s^2 + 29.09s + 212.6) (s^2 + 122.7s + 3789) (s^2 + 516.3s 
+ 6.709e04) (s^2 + 2168s + 1.183e06) (s^2 + 9080s + 

2.072e07) 
------------------------------------------------------------------------ 

(s+5565) (s+4151) (s+1286) (s+959) (s+297) (s+221.5) 
(s+68.61) (s+51.18) (s+15.85) (s+11.82) (s+3.661) 

(s+2.731) (s+0.8458) (s+0.631) (s+0.1954) (s+0.1458) 
(s+0.04514) (s+0.03367) (s+0.01043) (s+0.007779) 

(s+0.002409) (s+0.001797) 
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Figure 7.b: Output of the model and the reference model. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7.c: Pole Zero map for closed loop. 

 

• Approximation FOPID Transfer function around θs0=π/3 
rad 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The simulation around the operating point θs0=2*π/3 rad 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8.a: Control error ec (t). 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8.b: Output of the model and the reference model. 
 

. 

 

 
 
 
 
 
 
 
 

 
Figure 8.c: Pole Zero map for closed loop. 

• Approximation FOPID Transfer function around 
θs0=2*π/3 rad 

 
 
 
 
 
 
 
 
 
 
 
 

C2= 
-4.0846 (s+4803) (s+4201) (s+1141) (s+975.4) (s+269.4) 

(s+226.6) (s+63.39) (s+52.72) (s+14.88) (s+12.29) 
(s+3.484) (s+2.87) (s+0.8138) (s+0.672) (s+0.1897) 

(s+0.1577) (s+0.04413) (s+0.03712) (s+0.01025) 
(s+0.008762) (s+0.00238) (s+0.002082) 

---------------------------------------------------------------------- 
(s+5565) (s+4151) (s+1286) (s+959) (s+297) (s+221.5) 

(s+68.61) (s+51.18) (s+15.85) (s+11.82) (s+3.661)   
(s+2.731) (s+0.8458) (s+0.631) (s+0.1954) (s+0.1458) 

(s+0.04514) (s+0.03367) (s+0.01043) (s+0.007779) 
(s+0.002409) (s+0.001797) 

 

 
 

 

 

 

C3= 
-4.9848  (s+4964)   (s+4143)  (s+1177)  (s+956.2)  

(s+276.8)  (s+220.7) (s+64.91) (s+50.91) (s+15.18) 
(s+11.74)  (s+3.541) (s+2.705) (s+0.8244) (s+0.6228) 

(s+0.1916) (s+0.1432) (s+0.04448)  (s+0.03286)   
(s+0.01031) (s+0.007516) (s+  .00239) (s+0.001701) 

---------------------------------------------------------------------- 
(s+5565) (s+4151) (s+1286) (s+959) (s+297) (s+221.5) 

(s+68.61) (s+51.18) (s+15.85) (s+11.82) (s+3.661) 
(s+2.731) (s+0.8458) (s+0.631) (s+0.1954) (s+0.1458) 

(s+0.04514) (s+0.03367) (s+0.01043) (s+0.007779) 
(s+0.002409) (s+0.001797) 
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Figure 9: Frequency response of each local FOPID control. 

 

 
 
 
 
 
 
 
 
 
 
Figure 10: Frequency response of each closed local model. 

 

3D simulation of the robot is constructed in Malab-Simulink 
with SimMechanics block library. The System (robot) is 
represented by the following blocks: the body, joints, 
constraints, and force. The SimMechanics block library 
provided us the tools to formulate and solve motion 
equations of complete mechanical system. We used a bridge 
between solidworks_matlab with same adaptations 
(SimMechanics 2 2007), (MATLAB 2010) to operate the 
robot model that we designed with solidworks. The 
Simulink modeling then appears (figure 11, figure 12 and 
figure 13) : 
 

 

 

 

 
 
 
 
 
 
 
 

 
 
 
Figure 11: Block diagram of robot Rx-90 model.  

 

To simplify the simulation we have block all robot joints 
except the terminal element and after we applied a simple 
control signal. A block diagram of the robot with the actuator 
and the sensor is illustrated in the following figure: 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 12: Control diagram block 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: CAO (with Solid Works) 3D robot model. 
 
With the obtained results we can observe that: 

• All poles and zeros in the left of complex plan 
(figure 6.c, figure 7.c and figure 8.c) . 

• Each local system is stable (figure.6.c, figure.7.c 
and figure.8.c) and error control given by closed 
loop system around θs0=0 is very small compared 
other local linear model (figure.6.a, figure.7.a, 
figure.8.a). 

• The closed output loop of the local system around 
θs0=0 has the same curve although the reference 
output model   compared   other local   system   
(figure.6.b,   figure.7.b, figure.8.b). 

• The local controller around θs0=0 is more robust 
compared with other local controller figure.9 and 
more stable figure 10. 
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• In the figure.11, figure 12 and figure 13 we have 
developed RX90 Robot CAO Solid works software 
for simulation with Matla-Simulink. 

• We  can  observed  too  the  order  of local  
controller  after approximation its high for 
realization 

 
5. CONCLUSION 
In this work, we have presented the modeling of nonlinear 
process (Wrist of Rx-90 Stäubli Robot). After that the local 
linear model near each considered operating points has been 
developed. We have described FOPID controller principal 
with Oustaloup Recursive Approximation method (ORA).  

Based in Simulation results we noted that the application of 
CRON structure control is very interesting in this case of 
system but we need more optimal approximation for order 
minimization and chose of FOPID parameters. The results 
obtained allow concluding that the local controllers give good 
results around the operating points. But the results are local. 
Therefore, we must seek a collaborative approach these local 
control laws to obtain good results in all operating space.  

Finally we will study at the future work  another  interesting 
approximation Fractional-order controller method of Charef 
(singularity  function  method) (Djouambi 2007) and  frank  
switching  with  the indirect approach (collaboration between 
controller), then the same category with other type of 
controller as example  Digital Fractional -order PID controller 
or RST controller. 
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