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ABSTRACT 

The knowledge of the dynamic behavior of batteries is 

essential for their correct operation and management, to 

which aim mathematical models are invaluable tools. 

This paper presents an improvement of an already 

existing, commonly used dynamic battery model. The 

modification allows a better reproduction of the battery 

output voltage during charge and discharge processes 

without increasing the model complexity. Three 

parameter estimation methods are presented for both 

models. Also results of experimental tests are presented, 

which were performed in order to provide data for these 

three estimation methods and for validation purposes.  

 

Keywords: Battery modeling, parameter estimation, 

battery testing. 

 

1. INTRODUCTION 

Nowadays energy storage systems are key elements in 

electrical systems. They allow for increased integration 

of renewable energy sources connected to the grid as 

well as to increase reliability and stability of various 

systems (Du and Lu 2015) like, for instance, in electric 

vehicles (Tie and Tan 2013).  

Electrochemical batteries are the most widely used 

(Tie and Tan 2013) and special attention is paid to 

model them. There are several battery models of diverse 

complexity and accuracy (Dumbs 1999).  A commonly 

used model was proposed by Tremblay-Dessaint 

(Tremblay and Dessaint 2009) which allows accurately 

representing the dynamic behavior of the battery with 

an easy parameterization method. 

This model, implemented in the Matlab-Simulink 

SimPowerSystems library, takes the charge drain over 

time and battery current to represent the voltage 

behavior with an error typically lower than 5%. Its main 

shortcoming is its performance deterioration when 

reaching the end of discharge zone and for high current 

demands. 

The objective of this paper is to propose a 

modification of Tremblay-Dessaint’s battery Model 

(TDM) which overcomes the above mentioned 

shortcomings. The new model features a better 

reproduction of the battery dynamic performance. This 

modification, here designated as Expanded Battery 

Model (EBM), does not increase the model complexity 

nor the parameter estimation process.  

An estimation method, which preserves the 

simplicity of parameter estimation, extended from the 

method contributed by Tremblay and Dessaint (2009) is 

presented. In addition, two other new parameterization 

methods are addressed. The first two are based on the 

typical constant-current discharge characteristic or 

“Typical discharge characteristic”, usually provided by 

manufacturers; in that case, no battery testing is needed. 

If more accuracy is required and if battery testing is 

possible, a final estimation method is proposed. 

We had focused our work on Li-Ion batteries but 

the results should be applicable to electrochemical 

batteries based on other technologies. 

The rest of this paper is organized as follows: In 

section 2, the battery models are described. Section 3 

presents the estimation methods. In section 4, the tests 

performed over the battery in order to estimate the 

model parameters are addressed and, in section 5, the 

validation of the EBM as well as the parameters 

estimations methods are shown.  Finally, section 6, 

presents the conclusions. 

 

2. BATTERY MODELS 

An electrochemical battery is an element capable of 

transforming electrical energy into chemical energy 

(charging) and vice versa (discharging) through 

electrochemical reactions. For simulating them, several 

application-dependent models of varying complexity 

can be used. The following models use the State of 

Charge (   ) and the filtered output current    as state 

variables. 

 

2.1. Tremblay-Dessaint’s Model 

The Tremblay-Dessaint’s Model (TDM) is a semi-

empirical battery model based on Shepherd's work 

(Shepherd 1965) and consisting in two voltage 

equations (discharge and charge) as a function of the 

charge drain over time it (Ah), the actual current i,  and 

the filtered current     
 A Li-Ion cell will be utilized along this work. For 

this type of cell, the battery voltage given by Tremblay 

and Dessaint (2009) is: 
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Charge:  

 

               
          

 

    
     

 

       
 

       
 

 

(2) 

 

where the variables are the battery voltage       (V), the 

charge drain over time form full charge state     

∫     (Ah), the output current   (A), and the filtered 

current    (A); and the parameters are the battery 

constant voltage    (V), the polarization constant or 

polarization resistance   (V/Ah or Ω), exponential zone 

amplitude   (V), the exponential zone time constant 

inverse   (Ah
-1

), the internal resistance   (Ω) and the 

battery capacity   (Ah).  

 To complete the model the filtered current equation 

is needed: 

 

  
 

  
        (3) 

 

where    is the filter time constant. 

 

 The State of Charge,    , is a widely used variable 

of battery systems (Zhang and Lee 2011). It is used as 

an indicator of battery charge left and also to calculate 

other variables for more complex models such as ageing 

effect. The SoC can be calculated as: 

 

         
∫    

 
 (4) 

 

Where      is the State of Charge initial.  

 

 Equations 1 and 2 could be expressed as functions 

of the    , remembering that the      is 1, resulting in 

the Equation 5. 
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where the variables       and      values were 

introduced to capture both battery voltage equations in 

only one expression.        is 1 when the battery is 

discharging and 0 otherwise and       is 1 when the 

battery is charging and 0 otherwise.  

 

2.2. Expanded Battery Model. 

Analyzing the TDM's voltage Equation 5, two types of 

terms can be identified. Those depending solely on the 

    and those depending also on the actual current. The 

three first terms represent the Open Circuit Voltage 

(   ). Special attention is given to the third term 

modeling the abrupt fall of the voltage for low 

   which contains the parameter  . 

 The fourth and fifth terms represent the battery 

resistance. The last term, polarization-resistance voltage 

drop, models the abrupt increase of the internal 

resistance at low     while discharging and at high 

    while charging. The parameter   appears also  as  

a multiplying factor.  

 Even though both effects which involve the K 

parameter (    voltage drop and polarization 

resistance) during discharge could likely be due to the 

active material current density (Shepherd 1965), the fact 

that both parameters have different units leads to the 

idea of distinguishing them. This separation, which is 

proposed in the Expanded Battery Model (EBM), does 

not increase the parameter estimation complexity and 

provides better dynamic model performance especially 

for low    . 

 The voltage state with the EBM is expressed as: 
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(6) 

 

 This Expanded Battery Model differentiates K1 and 

K2 parameters. 

3. PARAMETER ESTIMATION METHODS 

One of the main advantages of TDM is its easy 

parameterization needing only one “Typical discharge 

characteristic”, normally given by manufacturers. This 

estimation method will be reviewed and a first 

modification will be proposed in order to estimate    

and    without increasing its complexity.  

 Next, a second method for estimating parameters 

for both models is presented. In this case, 3 complete 

constant-current discharge characteristics are used. 

These characteristics are also normally given by the 

manufacturer. 

 Finally, a third method based on the Hybrid Pulse 

Power Characterization test (HPPC) will be introduced, 

where all model parameters are estimated. This 

characterization test excites the frequency spectrum of 

electrochemical batteries in order to achieve a correct 

parameter fitting. 

 Independently of the selected parameterization 

method the number of parameters to be estimated are 7 

for the TDM and 8 for the EBM:   ,   ,  ,  ,  ,   ,   

and    where the constraint         is applied for 

the TDM. 
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3.1. Method of the Minimal Equation System 

(M1) 

This method, fully described in Tremblay and Dessaint 

(2009), can be summarized as follows. From the 

datasheet provided by manufacturer, the maximum 

capacity  , and the internal resistance  , are directly 

obtained.  

 A “Typical discharge characteristic” at a constant 

discharge current (generally          ) is also 

provided and three points are extracted. The Full 

voltage (       ), the End of exponential zone 

(         ) and the Nominal (         ) when the 

voltage begins to fall abruptly (see Figure 1).  

 The parameter   could be approximated to        

which is the end of the exponential term. 

 The steady state of the discharge test (constant 

current) allows considering           at the two 

points (         ) and (         ). And for (       ) 

the initial as well as the filtered currents, are zero.  

 These leads to the following equation system: 
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where 
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(8) 

 Considering   as known, the previous equation 

could be easily solved and the parameters   ,   and   

can be obtained.  

 Finally the time constant    is not given by the 

manufacturer but experimental tests have shown that it 

can be approximated to 30s (Tremblay and Dessaint 

2009).  

 This completes the 7 parameter estimation method 

for the TDM.  

  

 When relaxing the constraint of equality between 

the   parameters, the system of equations became 

under-determined. This is easily solved by adding a new 

equation through selecting another point. By choosing a 

point from a “Typical discharge characteristic” at a 

higher current (e.g. 1C) and at a low     the influence 

of non-linear resistance is augmented. The point 

(             ) is selected resulting in Eq. (9), 

           
 

          (      )     (      )  

          (           ) 
 

          (      )     (      )  

          (           ) 
 

            (        )     (        )  

            (               ) 
 

(9) 

This complete the 8 parameter estimation method for 

the EBM extended from the TDM estimation method.  

 

3.2. Method of Over-determined Equation 

System (M2) 

The previous method is strongly dependent of the 

selected discharge characteristic curve and the selected 

points, especially the nominal point. Moreover, only 3 

points (4 in the EBM) are used from several complete 

discharge characteristic curves. 

 This second estimation method proposes to use the 

complete discharge characteristic curve to create an 

over-determined equation system while estimating the 

parameters  ,   and    as for the previous method. 

 

The system of equations for the TDM is 

 

The system of equations for the EBM is 

 

 For both equation systems, the method of ordinary 

least squares was used to find an approximate solution. 

This method states that for a system      the least 

squares formula for solving: 

 

   
 
‖    ‖ 

is 

  (   )      

 

3.3. Optimization Method for Estimation of the 

Complete Parameter Set (M3) 

Both previous methods are easily processed from 

experiments or from data sheets but several assumptions 

were made in order to simplify the estimation problem. 

If more precise models were needed and if the 

necessary tests could be performed, the following 

method could be used for parametric estimation. 

  

[
  
 
  

]  [
 
 
 

 (    )
 

 (    )

  (    )   (       )
 

  (    )   (       )

   
 
   

] [

  
 
 
 

] (10) 

[
  
 
  

]  [
 
 
 

 (    )
 

 (    )

  (    )
 

  (    )

   
 
   

  (       )
 

  (       )
]

[
 
 
 
 
  
 
  
 
  ]
 
 
 
 

 (11) 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2015 
ISBN 978-88-97999-63-8; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.   

65



 Given voltage measures from data testing, the 

problem can be formulated as: 

 

   
 
‖        (           ) ‖

 

 
 

 

(12) 

where x is the parameters vector (  ,  ,  ,  ,  ,  ,    

for the TDM, and replace   for    and    for EBM),    

is the measured voltage vector and    the measured 

current vector.      is calculated according to Equation 

4,   
  according to Equation 3 and       according to 

Equation 5 or Equation 6 for TDM and EBM 

respectively.  

 In order to solve the previous minimization 

problem, a Trust Region Reflective Method (Coleman 

and Li 1996) is used. This method needs a suitable 

starting point to converge. One solution of the previous 

estimation method is used to initialize the process. 

 The HPPC test provides a full scope in terms of 

    span and input current.  

 Based on the constant current discharge 

characteristics (see Figure 1) for methods M1 and M2 

and on the HPPC test (see Figure 2) for the third (M3) 

method, all parameter results are gathered in Table 1: 

 

Table 1: Battery parameters for the Tremblay Dessaint 

Model (TDM) and the Extended Battery Model (EBM) 

using the three estimations methods (M1,M2,M3) 

 TDM EBM 

 M1 M2 M3 M1 M2 M3 

   [ ] 3,311 3,297 3,320 3,312 3,284 3,275 

K1[mVAh-1] 
0,470 0,370 0,507 0,435 0,255 0,277 

  [ ] 
0,034 0,100 0,023 0,032 0,096 0,058 

  [    ] 
6,010 6,010 3,879 6,010 6,010 0,036 

  [mΩ] 
5,000 6,511 6,718 5,000 5,543 6,474 

   [mΩ] 0,470 0,370 0,507 0,632 0,624 0,788 

  [  ] 36 36 36,91 36 36 36,42 

   [ ] 
30 30 108,6 30 30 94,1 

 

4. BATTERY TESTS 

The battery test bench consists in a DC Power Supply 

and an Electronic DC Load functioning alternately in 

order to allow two quadrants operation. Data acquisition 

of voltage, current and temperature was done with a 

sampling time of 10ms.  

 A Lithium Iron Phosphate battery was tested 

(LiFePo4 3.2V-36Ah).  

 

4.1. Typical discharge characteristic 

Usually provided by the manufacturer, this test was 

reproduced in order to achieve parametric estimation of 

the two first estimation methods.  

 The “typical discharge characteristic” consists in 

discharging a fully charged battery at a constant current 

until minimal voltage is reached. Three different current 

intensities were selected (0.2C, 0.5C and 1C). 

 

 

 

 

Figure 1: Typical discharge characteristic (1C, 0.5C and 

0.2C) 

 

 In figure 1 the “Typical discharge characteristic” 

for the three different discharge currents is shown 

allowing extraction of the four points used in the first 

estimation method. 

 

4.2. Hybrid Pulse Power Characterization 

(HPPC)  

The HPPC profile was designed in order to measure the 

dynamic power capability over a device’s usable charge 

and voltage range (Hunt 2001, Shim and Striebel 2003). 

It consists in a series of discharge and charge pulses of 

constant current at different    . Pulse duration and 

intensity depends of test objectives.  

 In this particular case, because non-linear resistance 

identification is intended and because battery time 

constant is approximately 30s, a series of consecutive 

pulses increasing in intensity were considered with a 

duration of 45s followed by 45s pause intervals. The 

phase of pulses is followed by a constant current 

discharge to change the battery     of    . 
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Figure 2: A cyclic charge/discharge process followed by 

    variation. 

 

 

4.3. Typical Electric Vehicle profile (FTP) 

Based on the work presented by Carignano, Cabello and 

Junco (2014) a likely current profile from a battery-

powered electric vehicle (BEV) subject to the FTP-75 

driving cycle was extracted and adapted for the present 

battery. 

 

 
 Figure 3: Current profile demanded to the battery 

system of a BEV to complete FTP-75 speed profile. 

 

 This last profile will be used in the next section 

dedicated to the validation of estimated models. 

 

5. VALIDATION 

An important feature of this paper is the validation of 

the two models discussed with the corresponding three 

estimation methods. 

 The two first tests, “Typical discharge 

characteristic” and HPPC profile cannot really be used 

as validation test because they were used to estimate 

and fit parameters in the three methods. However, 

comparisons with these two profiles are displayed in 

Figures 5, 6 and 7 for “Typical discharge characteristic” 

and then in Figures 8, 9 and 10 for HPPC profile. In 

these figures model and experimental battery voltage 

behavior are compared. The FTP profile is also used to 

compare and validate the model accuracies. Note that 

this profile was never used to fit parameters in the 

estimation methods. 

 The Normalized Root Mean Square Error 

(NRMSE) relative to the nominal voltage was used to 

compare models accuracies. In all tests the error 

increase notoriously when approaching to a low      
Error calculation is distinguished between low     

(<20%) and the rest of the     span (see Table 2). 

 

5.1. Typical discharge characteristic 

Figure 5 compares the TDM and the EBM using the 

first method (M1) to estimate parameters. It can be seen 

that the maximal error is reduced from 2.5% to 1.3% for 

maximal discharge current while remaining almost the 

same for the two other discharge currents.  

 Comparing the model simulations of the second 

method (M2), see Figure 6, it can be seen that the TDM 

error is lower than 1% for a SoC > 20% as well as the 

EBM. Also comparing the NRMSE from Table 2 not a 

remarkable improvement is seen for this test. As 

expected, both models improve estimations regarding 

M1.  

 For the models estimated with the third method 

(M3) the errors increase. This was expected because the 

“typical discharge characteristic” was not used by the 

third method for estimation. 

 

Table 2: Normalized Root Mean Square of the TDM 

and EBM models using the 3 parameterization methods. 

 Estimation Validation 

Typ. Dis. 

Char. 

HPPC FTP 

SoC >20% <20% >20% <20% >20% <20% 

TDM-M1 1,01 1,97 0,68 1,51 1,03 2,37 

EBM-M1 0,86 1,74 0,79 1,49 0,92 1,70 

TDM-M2 0,42 1,44 1,12 0,97 0,66 1,40 

EBM-M2 0,40 1,32 1,33 0,97 0,56 1,11 

TDM-M3 0,40 2,13 0,41 0,74 0,49 1,47 

EBM-M3 0,49 1,70 0,35 0,44 0,36 1,39 
 

5.2. HPPC profile 

In Table 2, the reduction of the NRMSE can be seen 

while using the 2
nd

 estimation method (M2) instead of 

the M1 while     is lower that 20% but, on the 

contrary, an increment is seen for     higher than 20%.  

 The best simulation result is obtained by the 3
rd

 

estimation method (M3) of the EBM. These results are 

expectable because it was the fitting data for this 

method.  

 

5.3. Typical Electric Vehicle profile (FTP) 

For the M1 estimation method, the maximal error for 

the TDM is 5% while it is reduced to 4% for the EBM 

(Figure 11).  This improvement is also visible in Table 

2 as the reduction of the NRMSE (1.03% to 0.92% for 

typical     and from 2.37% to 1.70% for low    ).  

 The performance obtained for the EBM with the 

method M3 of parameter estimation improves the 

models estimated using M1 in at least 40% (1.03% to 

0.36% for typical     and from 2.37% to 1.39% for low 

   ). 

 

6. CONCLUSION 

In conclusion, this paper shows a battery model 

improvement from the Tremblay-Dessaint’s Model 

which does not increase model complexity or parameter 

estimation difficulty and provides a better prediction of 

voltage behavior. For SoC higher than 20%, the 

NRSME indicator is reduced by 10% while for typical 

SoC is reduced by 28% in the validation (FTP) test.  
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In addition, two novel estimation methods for both 

models were developed. One uses the normally given 

“Typical discharge characteristic”, where no battery 

tests are needed, and the other uses the “HPPC” profile.  

Each of these new methods improves the previous one.  
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APPENDIX 

 

 
Figure 4: Battery Test Bench developed in the 

LAPLACE. 

 

 
Figure 5: Comparison of typical discharge characteristic 

of TDM and EM with parametric estimation using 

method M1 §3.1 and test data. 

 

 
Figure 6: Comparison of typical discharge characteristic 

of TDM and EM with parametric estimation using 

method M2 §3.2 and test data. 

 

 
Figure 7: Comparison of typical discharge characteristic 

of TDM and EM with parametric estimation using 

method M1 §3.3 and test data. 

 

 
Figure 8: Comparison of HPPC profile of TDM and EM 

with parametric estimation using method M1 §3.1 and 

test data. 
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Figure 9: Comparison of HPPC profile of TDM and EM 

with parametric estimation using method M2 §3.2 and 

test data. 

 

 

 

 
Figure 10: Comparison of HPPC profile of TDM and 

EM with parametric estimation using method M3 §3.3 

and test data. 

 

 
Figure 11: Comparison of FTP profile of TDM and EM 

with parametric estimation using method M1 §3.1 and 

test data. 

 
Figure 12: Comparison of FTP profile of TDM and EM 

with parametric estimation using method M2 §3.2 and 

test data. 

 

 
Figure 13: Comparison of FTP profile of TDM and EM 

with parametric estimation using method M3 §3.3 and 

test data. 
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