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ABSTRACT

When an abrupt parametric fault occurs in a system, active
fault tolerant control (FTC) aims at reconstructing the system
input after the fault has been isolated and estimated so that the
fault is compensated and the system output follows a desired
trajectory despite the fault.

Input reconstruction by inverse simulation is a quite gen-
eral approach to active FTC which can be supported by ex-
isting sophisticated simulation software for the solution of
DAE systems. Desired outputs are obtained by computing
a forward model of the healthy system. Values of the recon-
structed input into the faulty systems needed at the next time
instant are obtained by computing the DAE system of the in-
verse model simultaneously.

The proposed approach assumes a single fault hypothesis
and is illustrated by application to averaged models of simple
examples of power electronic systems. Differentiation of the
inverse model equations with respect to time results in a semi-
explicit ordinary differential equation (ODE) system.

Keywords: Active fault tolerant control, fault isolation and
estimation, fault accommodation, input reconstruction, in-
verse simulation, power electronic systems, averaged bond
graph models.

1. INTRODUCTION

The increasing equipment of mechatronic systems with com-
municating smart sensors, actuators, embedded digital cir-
cuitry and software renders them into what is sometimes
called intelligent systems and enables them to operate au-
tonomously to some extent. This includes to detect and iso-
late faults and to recover from faults by accommodating them
autonomously. Approaches to fault detection and isolation
(FDI) can be roughly categorised into data-driven and model-
based methods Borutzky (2015). Among the latter ones are
techniques based on bond graphs that derive analytical redun-
dancy relations (ARRs) from a bond graph (BG) and check
their residuals against thresholds Djeziri et al. (2007); Saman-
taray and Ould Bouamama (2008); Y. Touati et al. (2012);
Wang et al. (2013); Borutzky (2015). As to fault tolerant con-

trol (FTC), passive and active techniques are known. Passive
approaches use a controller with a fixed control law that en-
sures stability and the control objectives in the presence of
faults of a certain class of anticipated faults. In an active
approach, the control law is changed without changing the
controlled system after a fault has been detected and isolated
so that an acceptable system performance in the presence of
a persisting fault can be maintained. Changing the control
law and the system is often termed reconfiguration. An elab-
orated presentation of fault tolerant control may be found
in Blanke et al. (2006). A bibliographical review on recon-
figurable fault-tolerant control systems is given in Y. Zhang
and J. Jiang (2008). Bond graph model-based approaches to
passive as well as to active FTC have been presented in Na-
cusse, M. and Junco, S.J. (2011); Samantaray and Ould Boua-
mama (2008); Loureiro, R. (2012); Allous, M. and Zanzouri,
N. (2014). In active FTC, changing the controller law af-
ter a fault has occurred requires system inversion, i.e. to find
an input so that the faulty system produces a desired output.
One way to decide whether a model is invertible and to deter-
mine an input required to produce a desired output is to as-
sign bicausalities to a BG Gawthrop (1995); Ngwompo et al.
(2001a,b); Loureiro, R. (2012).

In this paper, input reconstruction is based on the solu-
tion of the DAE system of a forward model of the healthy
system deduced from a BG and considered as a system for
the required input into the faulty system. This way, exist-
ing sophisticated software for the solution of DAEs such as
OpenModelica OpenModelica Consortium (nd) can be used
for nonlinear inverse simulation, though, in general, the so-
lution of a DAE system is not guaranteed and stability issues
may arise.

The paper is organised in the following manner. The next
section briefly addresses the problem of isolating and esti-
mating a fault as this step is a prerequisite for FTC. In Sec-
tion the construction of an input that compensates for a fault
is confined to linear time-invariant multiple input multiple
output (MIMO) systems as forward models and assumes a
single fault hypothesis. The output of the healthy system is
considered the desired output for which an input must re-
constructed after a fault has happened. Differentiation of
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the inverse model equations with respect to time results in
a semi-explicit ODE system for the required input. An ex-
ample demonstrates that the matrix pre-multiplying the state
vector of this semi-explicit ODE system is not necessarily a
matrix with constants coefficients in contrast to the forward
model.

The procedure is applied to a boost converter and to a buck
converter driven DC motor as two simple examples of power
electronic systems. The dynamic behaviour of the healthy
systems is represented by a BG model with variables aver-
aged over the switching cycle time. In Section , a case study
considers as a fault scenario the leakage of the capacitor in the
buck converter driven DC motor sytem and the recovery from
this fault. Simulation runs have been performed by means of
the open source software Scilab Scilab Enterprises (nd).

2. PARAMETRIC FAULT ISOLATION AND ESTI-
MATION

In bond graph model-based fault detection and isolation
(FDI), analytical redundancy relations (ARRs) are deduced
from a diagnostic bond graph (DBG). Their evaluation gives
so-called ARR residuals that are close to zero in the case of a
healthy system and exceed given thresholds in the case a fault
has happened. If nonlinear constitutive component equations
permit to eliminate unknown variables so that ARRs can be
obtained in closed form, their structure is usually captured by
a structural fault signature matrix (FSM). If a single fault hy-
pothesis can be adopted, and if the fault can be mapped onto
a faulty parameter, and if the parameter has a unique com-
ponent fault signature, then the fault can be isolated by just
inspecting the FSM.

In case two components with parameters Θ1 and θ2 respec-
tively have got the same structural component fault signature
in the FSM, then, given the single fault hypothesis still holds,
parameter sensitivities of ARRs may be used to isolate the
fault Y. Touati et al. (2012).

Furthermore, multiple faults may happen simultaneously
but the ARR residuals sensitive to them may not be struc-
tured, i.e. the component fault signatures are not linear in-
dependent. As a result, faults cannot be isolated by inspec-
tion of the FSM. In this case, parametric faults can be iden-
tified by comparing actual parameters obtained by parameter
estimation with their nominal values (Samantaray and Ould
Bouamama, 2008; Wang et al., 2013; Borutzky, 2015). How-
ever, iterative parameter estimation takes time which may be
an issue in online fault diagnosis. Solving a nonlinear least
squares problem by means of a gradient based algorithm may
be faster than an algorithm that uses function evaluations only
but convergence is not guaranteed.

Finally, even if the system itself stays healthy, sensor and
actuator faults may degrade its control and thus the perfor-

mance of the closed loop system. Given a single fault hypoth-
esis, sensor and actuator faults assumed to be additive can be
easily isolated and estimated. ARR residuals can be used to
determine their size. In (Y. Touati et al., 2012), bicausality
assigned to a DBG is used for the estimation of isolatable
faults. Alternatively, the magnitude of a, say sensor fault, can
be obtained directly form the ARR established for the sensor
junction.

3. INPUT RECONTRUCTION

Assume that an abnormality in the dynamic behaviour of a
multiple input, multiple output (MIMO) system is observed
at time instant t1 and that it is due to a single parametric fault.
Once the fault has been isolated and its size has been esti-
mated, it can be accommodated by designing a new input
into the faulty system so that the fault is compensated and
the system produces a desired output behaviour despite the
fault. The required input can be determined by constructing
an inverse model. There are various approaches to system
inversion. The required input may be obtained by

• designing a feedback system,

• numerical solution of a DAE system,

• application of bicausality to a bond graph Gawthrop
(1995); Ngwompo et al. (1996)

A review of inverse simulation methods may be found in
(Murray-Smith, 2012, Chapter 4). All of them have their pros
and cons.

3.1 Model inversion by numerical solution of a DAE
system

In the following, an approach based on the solution of a
DAE is considered. Assume that the dynamic behaviour of
a healthy system may be captured by a linear time-invariant
multiple input, multiple output (MIMO) forward model de-
duced from a BG.

ẋxx(t) = Axxx(t)+Buuu(t) (1a)
yyy(t) = Cxxx(t) (1b)

where xxx(t) denotes the vector of state variables, uuu(t) the input
vector, and yyy(t) the output vector. The constant coefficient
matrices A,B,C are of appropriate dimensions. Suppose that
the single parametric fault that has occurred at t1 is isolated
and identified as of t2 > t1. Then for t > t2 an input uuureq(t) is
required that forces the faulty system to produce the output of
the healthy system as the desired output in the presence of the
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fault, i.e. yyydes(t) = yyy(t) . The equations of the faulty system
then read

˙̃xxx(t) = Ãx̃xx(t)+ B̃uuureq(t) (2a)
yyydes(t) = C̃x̃xx(t) (2b)

where x̃xx(t) denotes the unknown state of the faulty system and
uuureq(t) the input to be determined. As the faulty parameter
may affect the coefficients of all matrices, the latter ones are
distinguished from the ones of the healthy system by a tilde.

Differentiation of the algebraic constraint (2b) with respect
to time and substitution of (2a) into the result gives the DAE
system[

III 000
000 000

][ ˙̃xxx
u̇uureq

]
=

[
Ã B̃

C̃Ã C̃B̃

][
x̃xx

uuureq

]
+

[
0
−ẏyy

]
(3)

where I denotes the n× n identity matrix. DAE (3) is of in-
dex 1 if (C̃B̃)−1 exists and can be numerically computed by
a BDF-based solver. The algebraic constraint in (3) can be
solved for uuureq and substituted into the ODE for x̃xx.

˙̃xxx(t) = (Ã− B̃(C̃B̃)−1C̃Ã)x̃xx(t)+ B̃(C̃B̃)−1ẏyy(t) (4)

Differentiation of the algebraic constraint in (3) with respect
to time results in another DAE system.[

III 000
C̃Ã C̃B̃

][ ˙̃xxx
u̇uureq

]
=

[
Ã B̃
000 000

][
x̃xx

ureq

]
+

[
0
ÿyy

]
(5)

DAE (5) can be turned into an explicit ODE system if
(C̃B̃)−1 exists. The input required to accommodate the fault
reads

uuureq(t) = (C̃B̃)−1[−C̃Ãx̃xx(t)+ ẏyy(t) ] (6)

It may happen that some states of the faulty system can be
expressed as a function of the remaining states, the input uuureq
to be determined, the desired output yyydes and its time deriva-
tives. The result is an inverse model of reduced order. This is
illustrated by means of the example in the next section. See
also the appendix.

3.2 Example: Buck-converter driven DC motor

Fig. 1 displays a circuit schematic of a buck-converter-driven
DC motor and Fig. 2 shows a corresponding averaged forward
BG model, where RL denotes the resistance of the inductor,
Ra and La the resistance and the inductance of the motor’s
armature winding, b a friction parameter and τload an exter-
nal load torque. The transistor Q and the diode have been
modelled as a non-ideal switch with an ON-resistance Ron,
m := 1−d, where d denotes the duty cycle of the signal u(t)

E

Q

D

L,RL

C Jm

Figure 1: Schematic of a buck-converter-driven DC motor

controlling the transistor Q. The MTF and the Se source on
the left side may be combined into a modulated source MSe.

From the BG in Fig. 2, the following equations of the
healthy system are obtained.

11 : 0 = mE− (Ron +RL)iL−L
diL
dt
−uC (7)

01 : 0 = iL−C
duC

dt
− ia (8)

12 : 0 = uC−Raia−La
dia
dt
− k ω (9)

13 : 0 = k ia−bω− Jm
dω

dt
− τload (10)

y = ω (11)

Let the identified parametric fault be the resistance of the
motor inductance, R̃a := Ra +∆Ra, and let τload = 0 for sim-
plicity. If the load torque is different from zero it must be
measured or estimated. Accordingly, a load torque estima-
tor would be required in a practical implementation. Fur-
thermore, let ydes = ωdes = y = ω , u := mE, ureq = m̃E =
(1− d̃(t))E, x̃1 := ĩL, x̃2 := ũC, x̃3 := ĩa, x̃4 := ω̃ = ω and
R := Ron +RL. Then the DAE system determining ureq reads

0 = ureq−Rx̃1−L ˙̃x1− x̃2 (12)
0 = x̃1−C ˙̃x2− x̃3 (13)
0 = x̃2− R̃ax̃3−La ˙̃x3− k x̃4 (14)
0 = k x̃3−b x̃4− Jm ˙̃x4 (15)
y = x̃4 (16)

Substituting (16) into (15) gives

kx̃3 = by+ Jmẏ (17)

Comparison with (10) yields x̃3 = x3. Accordingly,

x̃2 = R̃ax3 +Laẋ3 + ky

= (Ra +∆Ra)x3 +Laẋ3 + ky

= Rax3 +Laẋ3 + ky+(∆Ra)x3

= x2 +(∆Ra)x3 (18)
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Figure 2: Averaged BG model of the healthy buck-converter-driven DC motor

Furthermore,

x̃1 = C ˙̃x2 + x̃3

= Cẋ2 +C(∆Ra)ẋ3 + x3

= x1 +C(∆Ra)x3 (19)

Finally,

ureq = R(x1 +C(∆Ra)ẋ3)+L(ẋ1 +C(∆Ra)ẍ3

+x2 +(∆Ra)x3

= Rẋ1 +Lẋ1 + x2︸ ︷︷ ︸
u

+(x3 +RCẋ3 +LCẍ3)(∆Ra)

= u+
1
k
(by+ Jmẏ+RC(ẏ+ Jmÿ)

+LC(bÿ+ Jmy(3)))∆Ra (20)

As a result, in this example, all unknown states of the faulty
system, x̃xx(t), can be eliminated. The required input ureq is
a function of the initial input u, the desired output y and its
derivatives. In the case of no fault ∆Ra, the required input
equals the initial input.

The result obtained in this example may be confirmed by
assigning bicausalities to the BG, by following the propaga-
tion of bicausality from the output source-sensor element SS
to the input SS element and by deducing equations from the
bicausal inverse BG model depicted in Fig. 3. As there is
a unique causal path from the output ydes = ω to the input
ureq = m̃E, the forward model is structurally invertible Ng-
wompo et al. (2001a). Note that bicausalities force all storage
elements into derivative causality. Hence, the inverse model
will be of order zero.

From the bicausal inverse BG in Fig. 3, the following
equations may be deduced and solved for the required input
ureq = m̃E.

13 : e2 = bωdes + Jmω̇des + τload (21)

GY : e3 = k ωdes (22)

ĩa = f3 =
1
k

e2 (23)

12 : ũC = e4 = R̃a ĩa +La
dĩa
dt

+ e3 (24)

01 : ĩL = f5 = f3 +Cė4 (25)

11 : e6 = R f5 +L
d f5

dt
+ e5 (26)

MT F : e6 = m̃E (27)

3.3 Scheme of the active FTC procedure

Fig. 4 displays the scheme of the active FTC procedure based
on system inversion by solving a DAE system. The real sys-
tem may be subject to a fault as of some time instant t1. Its
input uuu(t) and measured quantities are delivered into a DBG
model. It computation generates ARR residuals. On the basis
of these ARR residuals a diagnosis module decides whether
a fault has happened. If a parametric fault has occurred, it is
isolated and quantified. At time t2 > t1, the faulty parameter
p̃ is provided into an input reconstruction module that takes
the output yyy(t) of a forward model of the healthy system as
the desired output yyydes(t) and determines an input ũuu(t) into
the faulty system by solving a DAE system so that the output
of the faulty system recovers after the fault and matches the
one of the healthy system.

3.4 Nonlinear problems

In the previous section, it was assumed that a power elec-
tronic system may be represented by an averaged linear time-
invariant model. For model inversion, a semi-linear DAE
system with a constant coefficient matrix premultiplying the
descriptor vector could be turned into an explicit ODE sys-
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Figure 3: Inverse BG model of the buck-converter-driven DC motor
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Figure 4: Scheme of the active FTC procedure

tem given (C̃B̃)−1 exists. For systems of slightly different
structure, however, the forward model may be linear, while
model inversion leads to a nonlinear problem. This is illus-
trated by the simple example of a boost-converter. Fig. 5 de-
picts its circuit schematic and Fig. 6 shows an averaged linear
time-invariant forward BG model. The transistor and the
diode have been considered as non-linear switches with ON-
resistance Ron that commutate oppositely in a healthy system.
Furthermore, the equivalent series resistance of the capacitor
has been neglected.

Let R := RL +Ron. The equations of the averaged linear
forward model deduced from the BG in Fig. 6 read

L
diL
dt

= −RiL−muC +E (28a)

Cu̇C = miL−
uC

Rl
(28b)

y = uC (28c)

E

L

A

RL D
1

u(t) RC

C

Rl V

Figure 5: Circuit schematic of a boost converter

Now, suppose that the resistance, RL, of the inductor becomes
faulty as of some time instant t1. Given a constant voltage
supply, E, the question then is how to change the duty cy-
cle, d, of the signal u(t) controlling the MOSFET transistor
so that the output voltage Ṽ (t) = ũC(t) of the faulty systems
follows the output voltage V (t) = uC(t) of the healthy system
despite the faulty resistance R̃L. Changing the duty cycle, d,
into a time dependent variable, d̃(t) as of some time instant
turns the signal u(t) into a pulse width modulated (PWM)
signal.

Let x̃1 := ĩL, x̃2 := ũC, ydes := y and R̃ := R̃L +Ron. Then
the nonlinear DAE system that determines mreq(t) := 1− d̃(t)
read

L ˙̃x1 = −R̃x̃1−mreqy+E (29)

Cẏ = mreqx̃1−
1
Rl

y (30)

y = x̃2 (31)

Differentiation of the algebraic constraint (30) with respect to
time and (29) give the semi-explicit ODE system

[
L 0

mreq x̃1

][
˙̃x1

ṁreq

]
=

[
−R̃−y
0 0

][
x̃1

mreq

]
+

 E
ẏ
Rl

+Cÿ

 (32)
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Figure 6: Averaged linear forward BG model of a boost con-
verter

The unknown mreq can be eliminated from the first equation
of the inverse model by means of the equations of the forward
model. As ũC = x̃2 = y = uC = x2, the following relation may
be obtained.

mreqx̃1 = C ˙̃x2 +
1
Rl

x̃2 =Cẋ2 +
1
Rl

x2 = mx1 (33)

Substituting mreq = mx1/x̃1 into the first ODE of the inverse
model yields

1
2

L2x̃1 ˙̃x1 = −R̃x̃2
1−mx1y+Ex̃1 (34)

Let x := x̃2
1, then one obtains the explicit nonlinear ODE

ẋ = −2R̃
L

x+
2E
L

√
|x|− 2mx1y

L
(35)

The last term on the right hand side of this ODE is known
from a solution of the forward model. The values x(t) can be
used to determine mreq(t).

Suppose that the fault in RL occurred at t = t1 and that it
is isolated and quantified as of t > t2. Then, the fault can be
accommodated by switching from d to d̃(t).

4. CASE STUDY

In this case study, the buck converter driven DC-motor
(Fig. 1) is considered again. As a fault scenario, some leakage
in the capacitor as of some time t1 is assumed. As a result,
the voltage across the capacitor C driving the motor will drop
and so will the angular velocity ω . Given a constant voltage
supply of the buck converter, the duty cycle of the signal con-
trolling the transistor must be changed to keep up the angular
velocity of the healthy system considered the desired output
ydes.

4.1 Input Reconstruction

The leakage may be captured by a small resistance Rs in par-
allel to the capacitance that becomes effective as of some time
t1. Again, let τload = 0. For t > t1, the DAE system for the
inverse model then reads

0 = ureq−RĩL−L
dĩL
dt
− ũC (36)

0 = ĩL−C ˙̃uC−
ũC

Rs
− ĩa (37)

0 = ũC−Ra ĩa−La
dĩa
dt
− ky (38)

0 = kĩa−bω− Jmω̇ (39)
y = ω (40)

where ureq = m̃E is to be determined, y(t) is known (mea-
sured) and R = RL +Ron.

Let ia and uC denote the armature current and the capacitor
voltage in the healthy system obtained by solving the forward
model. Equation 39 then entails ĩa = ia and ũC = uC. Substi-
tution of equations yields for the required input

ureq = m̃E

= R(Cu̇C +
uC

Rs
+Ria)

+L
d
dt
(Cu̇C +

uC

Rs
+ ia)+uC

= mE +
R
Rs

uc +
L
Rs

u̇C (41)

In steady state, (41) reduces to

ureq = m̃E = R
[

1
Rs

(Ra
b
k
+ k)+

b
k

]
ω

+(Ra
b
k
+ k)ω (42)

As long as the leakage in the capacitor has not occurred, Rs→
∞ and m̃E =mE. This gives an equation the steady state value
of the desired angular velocity must fulfill.

mE =

[
(R+Ra)

b
k
+ k
]

ω (43)

If the fault is not accommodated by a changed input m̃E, then
the angular velocity reaches a faulty steady state value ω̃ that
is given by the equation

mE = R
[

1
Rs

(Ra
b
k
+ k)+

b
k

]
ω̃

+(Ra
b
k
+ k)ω̃ (44)

The parameters listed in Table 1 give the steady state values
ω = 69.63rad/s and ω̃ = 35.57rad/s.
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Table 1: Parameters of the system buck converter - DC-motor

Parameter Value Units Meaning

E 12.0 V Voltage supply
L 20 mH Inductance
RL 0.1 Ω Resistance of the coil
Ron 0.1 Ω ON resistance (switch, diode)
d 0.5 – Duty ratio
C 40 µF Capacitance
La 2.6 mH Armature inductance
Ra 2.0 Ω Armature resistance
k 0.046 V s/rad Motor constant
Jm 7.0 ·10−4 kgm2 Moment of inertia
b 8.4 ·10−4 Nms/rad Friction coefficient
τload 0 Nm Load moment
Rs 0.2 Ω Resistance accounting

for capacitor leakage

Figure 7: Time evolution of the armature current and the out-
put voltage of the buck converter

4.2 Simulation of the fault

Simulation runs have been performed by means of the open
source software Scilab Scilab Enterprises (nd) and have used
the parameters given in Table 1.

Fig. 7 shows the time evolution of the armature current and
the output voltage of the buck converter if the capacitor leak-
age is not compensated by a reconstructed input. The ana-
lytically computed steady state values for the healthy system
read ia = 1.27A, uC = 5.75V and for the faulty not accom-
modated system ĩa = 0.65A, ũC = 3.0V . In Fig. 7, the tilde is
indicated by the prefixed letter t.

Fig. 8 depicts the time history of the desired angular veloc-
ity, ωdes, the faulty velocity ω̃ (denoted as tw in the figure)
and the accommodated faulty velocity ωacc. Again, the sim-
ulation run confirms the analytically computed steady state

Figure 8: Time histories of the desired, the faulty and the
accommodated faulty angular velocity

Figure 9: Time history of the error between the desired, the
faulty angular velocity

values.
As of t1 = 1.5s, a small resistance of Rs = 0.2Ω in parallel

to the capacitor becomes effective. As a result of the capac-
itor leakage modelled this way, the capacitor voltage drops
sharply and so does the angular velocity. If this fault is not
compensated, the faulty steady state value is roughly half of
the desired one.

It is assumed that detection and isolation of this fault
takes about 0.02s so that fault accommodation can start at
t2 = 1.52s. Computing the reconstructed input by numeri-
cally solving the DAE system of the inverse model on a multi-
processor, multi-core computer also takes some time. As can
be seen, after the leakage of the capacitor has happened, the
reconstructed input ureq(t), in fact, forces the faulty angular
velocity, ω̃(t), to follow the desired velocity ωdes(t). The dy-
namics of the recovery depends on how much the capacitor
voltage has dropped and on the parameters of the systems.
Given the parameters in this case study, it takes about 1.5s to
recover from this sharp drop of the angular velocity (Fig. 9).
Finally, Fig. 10(a) shows that the armature current ia in the
accommodated system, apart from a peak at t = 1.5s caused
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by the abrupt leakage of the capacitor, in fact, remains un-
changed as it is determined by the desired angular velocity.

Fig. 10(b) indicates that the voltage uC in the accommo-
dated system does not drop to the steady state value of 3.0V
but is forced in a very short time to regain the value of the
healthy system so that the motor continues operating with
the desired angular velocity despite the leakage of the ca-
pacitor. As a result, the inductor current iL increases signif-
icantly (Fig. 10(c)). The steady state value rises from 1.27A
to 30.07A.

CONCLUSION

Once an abrupt parametric fault that has occurred in a system
at some time instant is isolated and its magnitude is estimated,
the system input can be reconstructed so that the system re-
turns to a desired output after some delay. In this paper, a for-
ward model deduced from a BG is considered a DAE system
of the inverse model that may be solved by inverse simulation
for the unknown required input that forces the faulty system
to produce the output of the healthy one. The inverse sim-
ulation uses values of output variables that are provided by
numerical computation of the forward model of the healthy
system.

The analysis has been confined to linear time-invariant for-
ward models. It is shown that after differentiation of the al-
gebraic output equation a semi-explicit ODE system can be
obtained that determines the required input. The approach to
active FTC is applied to two simple examples of power elec-
tronic systems which have been represented by an averaged
BG model. In a case study, a fault scenario in a buck converter
driven DC motor has been considered.

The reconstruction of the system input in response to
abrupt faults by inverse simulation is quite general. Exist-
ing sophisticated software for solving nonlinear DAE systems
can be used. Analytical determination of the reconstructed
system input is not necessary if possible at all. For complex
systems with fast dynamics, the time needed for computing a
reconstructed input after a fault has occurred may become an
issue. This time adds to the time needed to detect and to iso-
late a fault and increases the time delay until the reconstructed
input becomes effective. Exploitation of parallelism in the
system model and computation on a multiprocessor system
may reduce the time delay.

An advantage of input reconstruction by means of inverse
simulation is that it is applicable to cases in which an ana-
lytical determination of the input required to accommodate
a fault is not possible. Subjects of further research may be
the application to systems with nonlinearities and to hybrid
systems other than switched power electronic systems. Hy-
brid systems operate in various modes and their dynamic be-
haviour in one mode may be quite different from that in an-

(a) Time history of the currents ia and ĩa

(b) Time history of the voltages uC and ũC

(c) Time history of the currents iL and ĩL

Figure 10: Time history of the currents ia, iL and the voltage
uC in the accommodated system
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other mode. This affects FDI as well as input reconstruction
for active FTC.
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APPENDIX

In order to keep the presentation concise consider a linear
time-invariant single input single output (SISO) system with
three states. Let u denote the input and y the output.

ẋ1 = a11x1 +a12x2 +a13x3 +b1u (45)
ẋ2 = a21x1 +a22x2 +a23x3 +b2u (46)
ẋ3 = a31x1 +a32x2 +a33x3 +b3u (47)

= f3(x1,x2,x3,u) (48)
y = c1x1 + c2x2 + c3x3 (49)

Let c1 6= 0 without loss of generality. Then (49) may be
solved for x1.

x1 =
1
c1
(−c2x2− c3x3 + y) = f1(x2,x3,y) (50)

Differentiation of (49) with respect to time gives

ẏ = c1ẋ1 + c2ẋ2 + c3ẋ3 (51)
ÿ = c1ẍ1 + c2ẍ2 + c3ẍ3 (52)
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Substitution of (45) – (47) into (51) and (52) results in two
equations that may be written as

ẏ = f2(x1,x2,x3,u) (53)
b̄u̇ = f4(x1,x2,x3,u, ÿ) (54)

where b̄ = c1b1 + c2b2 + c3b3.
Substitute (50) into (53) and assume that the resulting lin-

ear equation can be solved for x2, i.e. the coefficient premul-
tiplying x2 does not vanish.

x2 = f̄2(x3,u,y, ẏ) (55)

Substituting x1 and x2 into (47) and (54) then yields

ẋ3 = f̄3(x3,u,y, ẏ) (56)
b̄u̇ = f̄4(x3,u,y, ẏ, ÿ) (57)

As a result, the required input is a function of a reduced num-
ber of states, the desired output and its derivatives.
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