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ABSTRACT 

A state space model for integrating and open-loop 
unstable systems is presented. The novel representation 
decomposes stable, unstable and integrating modes of 
the system, which in turn leads to the development of an 
infinite horizon MPC (IHMPC) for unstable systems. 
Equality constraints enforce that the system states 
corresponding to the integrating and unstable dynamics 
are zeroed whenever it is feasible. In this work, the 
control of a nonlinear CSTR with cooling jacket 
undergoing an exothermic irreversible reaction at an 
unstable steady state has been studied. The simulated 
results showed that the proposed IHMPC is capable of 
sustaining the system at its unstable steady state, 
rejecting unmeasured input disturbances and driving the 
system to a different steady state. 

 
Keywords: model predictive control; nonlinear control. 

 
1. INTRODUCTION 

Model Predictive Control (MPC) is widely used in the 
chemical and petrochemical industries and is arguably 
the most advanced process control strategy to date 
(Garcia, Prett, & Morari, 1989). Its most interesting 
features are the capability to account for input, control 
moves and output constraints directly into the control 
problem, and its straightforward application to  
Multiple-Input and Multiple-Output (MIMO) systems. 
Although MPC applications to open-loop stable systems 
are far more common in the literature, some processes 
and configurations give rise to open-loop unstable 
systems. For instance, linearized models identified 
around nominal operating points of processes with 
recycle, mass and heat integration networks and 
reactions systems, such as Continuous Stirred Tank 
Reactors (CSTR) or batch reactors in which exothermic 

reactions are taking place, CSTR operating in cascade 
fashion, polymerization reactors, and so on. In 
particular, it might be sought to operate a reactor system 
at its unstable point for economic reasons (Gobin, 
Zullo, & Calvet, 1994; Özkan & Çamurdan, 1998). In 
this fashion, some effort has been put on the 
development of control strategies for open-loop 
unstable systems. 
Several attempts to control open-loop unstable systems 
have been reported in the literature. The first attempts to 
control such systems were done employing classic PI or 
PID controllers, and even though these strategies are 
easy to implement and yield satisfactory results for 
stable systems, poor performance lead to the 
development of alternative control strategies. (Lee, Lee, 
& Park, 2000). Liu, Zhang, & Gu (2005) identified the 
two major limitations of PID control of open-loop 
unstable systems as excessive overshoot and large 
settling time in setpoint tracking scenarios. The authors 
developed a two degrees of freedom (2DF) control 
approach, comprised of three control blocks: the first 
one is a proportional-only controller that stabilizes the 
unstable system, and the second and third blocks 
decouple setpoint tracking and load disturbances effects 
on control performance. Robust stability is 
demonstrated via the Small-Gain Theorem for 
multiplicative model uncertainty, and simulation results 
showed that the proposed technique performs better 
than classic PID control regarding both overshoot and 
settling time problems. Huang & Chen (1997) put 
forward a formal demonstration of the PID limitations 
on open-loop unstable set-point tracking and 
disturbance rejection performance observed in Liu et al. 
(2005), and developed a 2DF control framework 
capable of suppressing overshoot for both first and 
second order unstable processes.  

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2015 
ISBN 978-88-97999-63-8; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.   

22



It was proposed by Rotstein & Lewin (1992) an 
adaptive tuning algorithm for PID controllers, which 
takes advantage of a real-time pole placement algorithm 
to select the most appropriate PID controller structure. 
A case study depicting the control of an exothermic 
reaction in a batch reactor showed that, 
counterintuitively, the adaptive PID strategy is not 
always better than the classic PID approach. The 
proposed control strategies for open-loop unstable 
systems up to here are mostly limited for applications in 
SISO systems. 
Gobin et al. (1994) controlled a styrene polymerization 
reaction in a two-CSTR cascade system with a Dynamic 
Matrix Control (DMC) algorithm. The step response 
coefficients were obtained from a linearized model 
identified at a stable operating point, and the authors 
reported that their approach is faster than classic PID 
controllers in setpoint tracking scenarios. However, it is 
known that such process is highly non-linear, and the 
reported DMC approach is limited to a restricted 
operating region. 
Hidalgo & Brosilow (1990) developed a coordinated 
MPC framework, in which the control actions, for each 
input, are independently calculated. The control 
framework was applied to a free radical solution 
polymerization of styrene in a CSTR. The authors stated 
that safe control of unstable processes is only feasible 
when there are sufficient degrees of freedom to keep the 
process within a small region about the desired 
operating point, therefore, MIMO layouts are essential. 
A simulation example showed that the proposed 
strategy stabilized the CSTR at its unstable operating 
point. 
A cascade control structure for open-loop unstable 
processes was proposed in Özkan & Çamurdan, (1998). 
First, a proportional-only controller stabilizes the 
system, then, a linearized model is identified at the 
stabilized operating condition, and its step response 
coefficients are used to design a DMC. The authors 
verified that once the unstable system is stabilized, the 
resulting control problem is trivial, and real time 
calculation of the DMC model, at each time step, does 
not improve control performance. 
Demircan, Camurdan, & Postlethwaite (1999) 
developed a DMC based on a fuzzy relational model for 
open-loop unstable systems. The advantages over the 
classic step response coefficients model are: it is an 
alternative for costly and knowledge demanding first-
principle model; and it represents the process accurately 
over a large operating range, even though the model is 
identified from data obtained in a limited range. The 
results showed that such model works well for 
processes with unusual dynamic behavior. The control 
strategies listed previously were based, to some extent, 
on the DMC control strategy, and alternatives to 
mitigate the limitations of modeling an unstable process 
as an input-output step response. 
Muske & Rawlings (1993) developed a nominally 
stabilizing MPC based on a state-space model for open-
loop stable and unstable systems. Equality constraints 

were enforced upon the states that represent the unstable 
dynamics of the systems, to guarantee that such states 
are zeroed after the control horizon. It was shown that 
in case of incomplete state measurement, a stable 
observer and a constrained regulator guarantee a 
nominally stabilizing controller. 
The control approach for open-loop unstable and 
integrating systems proposed here is based on an 
extension of the state-space model presented in Santoro 
& Odloak (2012). The redefinition of system states to 
accommodate the unstable dynamics is shown in 
Section 3, and the IHMPC for integrating and open-loop 
unstable systems is proposed in Section 4. It is 
presented a case study to illustrate the proposed 
approach, and for this end an exothermic irreversible 
reaction in a nonlinear CSTR with cooling jacket 
system is analyzed. Results and discussions are given in 
Section 5. Finally, conclusions and suggestions for 
future works are presented in Section 6. 
 
2. STATE SPACE MODEL REPRESENTATION 

FOR OPEN-LOOP UNSTABLE PROCESSES 

The state-space model for unstable systems proposed 
here is an extension of the state-space model for 
integrating and time delayed systems developed in 
Santoro & Odloak (2012). The original work arranges 
the system model matrices, separate three types of 
states: those related to the stable modes, the original 
integrating modes and finally the integrating states 
derived from the velocity representation. The extension 
of the proposed formulation includes the unstable states 
as well. 
Considering a system with ny outputs and nu inputs, the 
transfer function relating input uj and output yi is  
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where {na’, nb, nun N∈  | nb < na’+nun}, na’ is the 
number of stable poles and nun is the number of 
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of the system. Then, for a sampling period ∆t, the 
corresponding step response at time step k can be 
computed by the expression: 
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i j
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obtained from the partial fractions expansion of the 
transfer function Gi,j(s) Then, the following state-space 
model is defined: 
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In and 0n are the identity and null matrices of dimension 
n, respectively. The reader is referred to the original 
formulation (Santoro & Odloak, 2012) for detailed 
explanation about the integrating states. 
 
3. INFINITE HORIZON MPC FOR OPEN-LOOP 

UNSTABLE PROCESSES 

The equations below define the IHMPC proposed here. 
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subject to (3) and 
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prediction at time step k+j computed at time step k 
including the effects of the future control actions; ysp,k is 
the output reference; ∆u(k+j|k) is the input move 
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definite weighting  matrices associated with these 
slacks. 
The constraint defined in (7) tries to enforce that the 
unstable states will be zeroed at time step k+m.. A 
suitable selection of the weighting matrix Sun makes the 
control problem converge in practical situations. 
However, a formal nominal stability demonstration is 
not provided here and is a subject for future works. 
 
4. CONTROL OF A NON-LINEAR CSTR AT ITS 

UNSTABLE OPERATING POINT 

It is studied the control of a CSTR with cooling jacket 
where an elementary irreversible reaction takes place (A 
→ B). It is assumed that the physical properties and 
heat transfer coefficient are constant; therefore the first-
principles model that represents the true plant is given 
by the following set of nonlinear equations (Henson & 
Seborg, 1997): 
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                                                                               (9) 
 
The parameters associated with this system are given in 
Table 1. In the 3x3 control structure considered here, 
the controlled outputs are the liquid level in the reactor 
y1 [h (m)], the reactant concentration y2 [cA (kmol/m3)] 
and the reaction temperature y3 [T (K)]. The 
manipulated inputs are the inlet flow rate u1 [Fin 

(m3/min)], the outlet flow rate u2 [Fout (m
3/min)] and the 

cooling fluid temperature u3 [Tc (K)]. 
 
Table 1: Nominal parameters of the CSTR system. 
Description Values 
cA,in (reactant concentration in feed 

stream) 
1.0 kmol·m-3 

Tin (temperature in feed stream) 350 K 
r (radius of the reactor) 0.47 m 

k0 (pre-exponential factor) 6×1010 min-1 
E/R (activation energy/universal 

gas constant) 
8,890 K 

U (overall heat transfer coefficient) 315.6 W·m-2·K-1 
ρ (density of the reaction mixture) 7×102 kg·m-3 
Cp (heat capacity of the reaction 

mixture) 
220 J·kg-1·K-1 

∆H (enthalpy of reaction) -2×107 J·kmol-1 
 
An unstable steady state was identified solving (9) 
when the left hand side equals zero and the process 
parameters are taken from Table 1. Model equations 
may be linearized around this unstable steady state, 
resulting in the  transfer function model (10).  
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                                                                                   (10) 
 
The control problem defined in Problem 1 was solved in 
GAMS®23.6. The  plant was simulated using the ode45 
algorithm in MATLAB®2010a. It was assumed that the 
model states are corrected by a steady-state Kalman 
filter, based on the deviation between the output values 
calculated by the state-space model (3) and the values 
calculated by the first-principle model (9). The IHMPC 
and Kalman filter tuning parameters employed in the 
case study are listed in Table 2. 
The scenario analyzed here investigates if the IHMPC 
based on the proposed state-space model can keep the 
CSTR process at its unstable operating point. In this 
fashion, a simulation in which the system starts from 
y0=[0.91  0.82  349.54]T and u0=[0.91  0.91  250]T and it 
is driven towards the unstable steady state defined by 
the output values ysp1=[0.91  0.72  350.03]T is proposed. 
Once the system is stabilized, unmeasured impulse 
disturbances with intensity 5K and 0.25 m3/min affect 
inputs u3 and u2 at time instants 25min and 40min, 
respectively. Finally, the system is subject to a new 
setpoint, different from the unstable steady state: 
y
sp
2=[0.91  0.72  345.03]T. The input upper and lower 

bounds and control moves maximum values are 
umin=[0.01 0.01 200]T, umax=[2 2 415]T, and 
∆umax=[0.065 0.065 15]T respectively. All the variable 
values defined here follow the units previously defined. 
 
Table 2: IHMPC and Kalman filter tuning parameters. 
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Parameter Value 
IHMPC 

Qy diag([102  5×106  104]) 
Qi diag([102  5×106  104]) 
Sy diag([106  108  104]) 
Si diag([10  10  1]) 
Sun diag([104  104  104]) 
R diag([10-2  10-2  103]) 
m 7 
∆t 0.1 min 

Kalman Filter 
Process noise 
covariance matrix 

103×Inx 

Measurement noise 
covariance matrix 

diag([10-4  10-4  10-9]) 

 
Figures 1 to 4 depict the output and input responses of 
the system, the control cost function value, and the 
absolute value of the maximum component of the vector 
δun as a function of the simulation time, respectively. 
It is observed that the IHMPC stabilizes the nonlinear 
CSTR at its unstable operating point in less than 20 
minutes. The behavior of the cost function value and the 
absolute value of the maximum unstable slack variable 
indicate that the contribution of the setpoint deviation of 
y3 affects the cost function the most. In fact, its weight 
in the cost function (qy,3) and its respective δy weight 
were chosen as large values because this variable can 
easily lead to instability. It is also observed that the 
impact of the feed flowrate and cooling jacket 
disturbances are similar on y1, whereas the impact of the 
cooling jacket temperature disturbance is larger on y2 
and y3. Figure 2 shows that the feed flowrate 
disturbance is rejected in about 5 minutes, whereas the 
cooling jacket temperature disturbance rejection takes 
twice as long. The dot-dashed curves in Figure 1 depict 
the system outputs related to the estimated states . The 
largest deviations from the plant values, shown as 
continuous lines are observed for variable y1, especially 
regarding the oscillatory behavior amplitude, and in y2, 
from time instants 40 min to 45 min. It indicates that the 
tuning parameters of the Kalman filter were well 
chosen, and that the linearized model was capable to 
accurately represent the estimated states of the plant 
within the operating region. Finally, it is observed that 
the control cost function is not a monotonically 
decreasing function, nonetheless, in the present 
simulation the unstable slacks are zeroed and the control 
cost converges to zero. The setpoint change at 50 min 
drives the system further from the region in which the 
linearized model represents the nonlinear system well. 
Nonetheless, it is observed that the amplitude of the 
initial peak at 50 min, in Figures 3 and 4 decreases to a 
constant value within two minutes, and, from that time 
until the end of the simulation, all the system inputs and 
outputs oscillate. The trend observed in Figure 4, which 
depicts the absolute maximum value of the unstable 
slacks vector, is similar to the one in Figure 3. It 
indicates that there is a heavy contribution of the 
unstable slacks to the control cost function. Moreover, it 

is noted from time instants 25 to 30, 40 to 45 and 55 
until the end of the simulation that the cost function of 
the controller proposed here is not a Lyapunov function, 
therefore asymptotic stability of the closed-loop is not 
demonstrated here. 
The sampling time interval ∆t=0.1 min was necessary to 
adequately deal with the mismatch between the 
nonlinear  plant and the linearized model is the 
simulation considered here. Nonetheless, since it is 
merely a QP, it is reasonable to assume that Problem 1 
is solvable in less than 6 seconds, and the optimum 
control actions are readily available. 
 

 
Figure 1: Simulated output responses. 
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Figure 2: Simulated input responses. 

 

 
Figure 3: Control cost function. 

 

 
Figure 4: Maximum absolute entry of the vector of 
unstable slack variables, δun. 
 
5. CONCLUSIONS 

A state-space model based on the analytical step-
response of the system was used to formulate an 
IHMPC for stable, integrating and unstable systems. 
The latter may arise from operating processes at 
unstable regions for optimum profit, for example. It is 
shown in a simulated case study that the proposed 
framework is successfully capable of controlling an 
exothermal irreversible reaction in a nonlinear CSTR 
with cooling jacket at its unstable steady state. 
Moreover, input disturbance rejection capabilities were 
observed. However, oscillatory behavior was present 
when the process was operating far from the region in 
which the linear model of the IHMPC was identified. 
The work presented here does not provide formal 
stability guarantees, although the simulation shows that 
an appropriate selection of the IHMPC and Kalman 
filter tuning parameters can stabilize the closed-loop 
system as long as no constraints are violated. A formal 
stability demonstration, and the extension of the 
algorithm to account for multi-plant uncertainty are 
intended topics for future works. 
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