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ABSTRACT

For a context-aware robotic assistant platform that
follows patients with moderate mobility impairment
and adapts its motion to the patient’s needs, the de-
velopment of an efficient leg tracker and the recogni-
tion of pathological gait are very important. In this
work, we present the basic concept for the robot con-
trol architecture and analyse three essential parts of
the Adaptive Context-Aware Robot Control scheme;
the detection and tracking of the subject’s legs, the
gait modelling and classification and the computation
of gait parameters for the impairment level assess-
ment. We initially process raw laser data and estimate
the legs’ position and velocity with a Kalman Filter
and then use this information as input for a Hidden
Markov Model-based framework that detects specific
gait patterns and classifies human gait into normal or
pathological. We then compute gait parameters com-
monly used for medical diagnosis. The recognised
gait patterns along with the gait parameters will be
used for the impairment level assessment, which will
activate certain control assistive actions regarding the
pathological state of the patient.

1. INTRODUCTION

The care of the constantly growing ageing population
is a considerable problem for modern societies (Foun-
dation, 2010; Center, 2010). One of the major issues
we have to face is the mobility difficulties of the el-
derly, which can be caused either by age, or by cer-
tain pathologies. Walking problems affect not only
the daily lives of the elderly but also their self-esteem,
after they lose their ability to look after themselves.
The lack of nursing staff, (Montemerlo et al., 2002),
in relation to the increased demands of the elderly for
care, led scientists to turn to robotic assistants, since
robotics can incorporate features such as posture sup-
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port and stability, walking assistance, navigation in
indoor and outdoor environments, health monitoring,
etc.

Our motivation is to use intelligent robotic plat-
forms (Fig.1), which can monitor and understand
the patient’s walking state and will autonomously
reason on performing assistive actions regarding the
patient’s mobility and ambulation (X.Papageorgiou
et al., 2014). We are working on the development of
an Adaptive Context-Aware Robot Control architec-
ture, when the robotic assistant is in front of the user
and detects the patient’s mobility state by using real-
time laser data. We recognise specific gait patterns
and also compute gait parameters that are indicative
of particular pathologies. The recognised parameters

Figure 1: A robotic platform equipped with a Hokuyo Laser
Sensor aiming to record the gait cycle data of the user (be-
low knee level).

of the user are then used for the patient’s mobility im-
pairment assessment, and this indication will trigger
certain control assistive actions and behaviours from
the robotic assistant that follows the user. Such ac-
tions would be velocity adjustment of the platform,
approach of the patient because of recognised changes
in gait patterns due to fatigue, walking instability or
due to the patient’s will to perform another task (like
approaching a chair to perform a stand-to-sit action).

In this paper we present our approach for the de-
velopment of two procedures that are important for
human gait modelling and their performance is nec-
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essary for the Adaptive Context-Aware Robot Con-
trol architecture. Firstly, we analyse the detection and
tracking of the patient’s legs, based on a Kalman Fil-
ter (KF), for estimating the legs’ kinematic parame-
ters. This process has the potential to track the user
while performing straight walking, but also can over-
come leg occlusions and false detections. Also, this is
an essential part of the preprocessing of the raw laser
data and it actually provides the input signal for our
control architecture. Secondly we describe the devel-
opment of a non-invasive framework for pathologi-
cal walking recognition, based on a Hidden Markov
Model (HMM), used for gait modelling and classi-
fication. This framework is designed to actively in-
corporate many different gait patterns as a subsystem
within a larger cognitive behaviour-based context-
aware robot control framework (that embodies several
walking morphologies, including turning and maneu-
vering motions). Furthermore, this framework has the
potential to be used for the classification of various
walking pathologies and related impairments, and for
actively and cognitively being augmented with new
patients with mobility difficulties.

2. RELATED WORK

As mobile robots are becoming more and more au-
tonomous, the robot-following-human concept is get-
ting popular in assistive robotics, and they are actu-
ally using various sensing technologies for monitor-
ing human activity (Hirai and Mizoguchi, 2003; Luo
et al., 2009). The automatic classification and mod-
eling of specific physical activities of human beings
is very useful for the development of smart walking
support devices, aiming to assist motor-impaired per-
sons and elderly in standing, walking and other mo-
bility activities, as well as to detect abnormalities and
to assess rehabilitation procedures (Dubowsky et al.,
2000; Spenko et al., 2006; Jiang et al., 2011; Bachlin
et al., 2010; Lin and Kulic, 2011). For the extraction
of gait motions, different types of sensors have been
used, from gyroscopes and accelometers to cameras,
etc., (Bae and Tomizuka, 2011; Nickel et al., 2011;
Pappas et al., 2001; Bebis et al., 2008; Meng et al.,
2010). Other approaches refer to human detection
and tracking, or recognition of human activity utiliz-
ing laser sensors, and in some cases complementary
with cameras, or force sensors, (Panangadan et al.,
2010).

For the robot-following-humanproblem, there is a
discrimination in positioning between human and mo-
bile robot; robot following human from behind, or by
the side of the human, or in front of the human. To-
wards this direction, the estimation of the legs’ kine-

matic parameters with respect to the mobility aid is
essential. Thus, the detection and tracking of humans
is a common problem. Most research work focuses
on detecting and tracking human legs from static sen-
sors, as in pedestrian tracking, (Shao et al., 2006), or
from laser scanners mounted on mobile robotic plat-
forms for person following (K.Arras et al., ), where
several tracking and control methods have been ap-
plied, (Kirby et al., 2007; Jung et al., 2012). The need
for a substantial interaction between human and ac-
companying robotic platform led to the development
of sophisticated control schemes for a high level un-
derstanding of the human behavior, presenting early
research results in (Zender et al., 2007; Cosgun et al.,
2013; Kruse et al., 2013; Ho et al., 2012). Most
gait tracking methods use standard Kalman Filters,
for which normal gait is modeled as an interchange
of accelerative and decelerative motions of the two
legs (Katsuyuki Nakamura and Shibasaki, 2012), with
predefined filter inputs for the motion models. How-
ever, those models are had to be applied to patholog-
ical gait. Mobility impairment of different origin re-
sult in different gait patterns. In this work, we present
a gait detection and tracking method that is easy to
implement, that uses a standard Kalman filter, using
acceleration as the system’s noise, and also uses the
predicted state vector as feedback of the tracking pro-
cess for the detection of the user’s legs for the next
time frame.

A key issue for the development of a context-
aware robotic assistant platform that monitors elderly
people with mobility inabilities, is gait modelling,
i.e. the extraction of specific gait patterns that cor-
respond to specific pathologies, and will be necessary
for the assessment of the mobility impairment level
of the subject, that will trigger certain assistive ac-
tions from the robotic assistant. The dynamic prop-
erties of walking led to the usage of Hidden Markov
Models(HMMs). Time series data can be modelled
by HMMs, since they are not only easy to build and
manipulate, but also to train and score them with op-
timal algorithms (e.g. maximum likelihood, Viterbi
decoding). In HMMs only the output of the model
is visible to the observer and the states of the model
(corresponding to a physical event) are not observ-
able, in other words are hidden, (Rabiner, 1990). The
versatility of HMMs makes them useful in extracting
human patterns. Apart from their prominent applica-
tion in speech recognition, (Katsamanis et al., 2008),
HMMs are also used in a number of pattern recog-
nition applications, gesture recognition, (Theodorakis
et al., 2009), human activity analysis, (Turaga et al.,
2008) and biometric gait recognition, (Chen et al.,
2006). The first attempts to model the normal walking
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motion by using HMMs with respect to laser data fea-
tures, were presented in (Papageorgiou et al., 2014;
Chalvatzaki et al., 2014). In this work we extend this
approach to model and characterize the pathological
walking motion, in order to integrate it into a Context-
Aware Robot Control.

3. SYSTEM OVERVIEW

An Adaptive Context-Aware Robot Control architec-
ture is being developed for the intelligent robotic as-
sistant platform, that will adapt and act according to
the patient’s needs. The system is driven by the sen-
sory data of a 2D laser range scanner that detects the
walking motion (Fig.1). An important step for per-
forming behavior-based context aware control is the
preprocessing of the system’s input signal. This pro-
cess incorporates the detection and tracking of the
user’s legs. This framework takes as input the noisy
laser data, detects the patient’s legs and estimates their
actual position and velocity with respect to the robotic
assistant. The estimated kinematic state of the sub-
ject’s legs feed the cognitive context-aware control
system as the environmental input signal, that is used
to infer the context (i.e. state of the patient) and to
perform specific actions in the detected context.

The control scheme consists of the typical three-
layer architecture. The high level of this control
scheme contains the Gait Modelling and Classifica-
tion module. This is an HMM-based approach that
can recognize sequences of gait patterns and also
it can classify them into normal pathological ones,
or non-walking activity. Given the spatiotemporal
properties of those sequences, we compute particular
gait parameters (such as step length, cadence), that
are commonly used for medical diagnosis, (Arias-
Enriquez et al., 2012), since differentiations in their
values are indicative of specific pathological states.
In that way, an impairment level assessment is per-
formed, for completely knowing the context of the
patient’s walking motion (i.e. recognition of the pa-
tient’s intention to walk, gait modelling, estimation of
the subject’s pathological status).

This context-awareness is used as input to the
medium level control module. Medium level control
contains specific behaviours and assistive actions, that
are activated according to the subject’s detected con-
text. The robotic assistant should adaptively track and
follow the subject during its walking motion. Also the
platform should smoothly stop in front of the subject
in cases when the subject freezes and stops abruptly.
Furthermore, the platform should smoothly approach
the user to provide possible support when instability
in gaiting is detected.

All this information is used as input to the typical
low level controller of the platform, in order to inher-
ently translate the decision of performing a specific
assistive action into motor commands.

4. PREPROCESSING OF CONTROL INPUT:

LEG DETECTION AND TRACKING

For the detection and tracking of the patient’s legs
we use a combination of K-means clustering to detect
the subject’s legs and a Kalman Filter for tracking the
user, and therefore estimate of the kinematic parame-
ters of walking, i.e. the legs’ positions and velocities.
Our approach is a recursive system with a substantial
forward-backward interaction between the detection
and tracking of the user.

4.1. Data Processing and extraction of candidate

legs

The raw laser data are processed at each time frame.
Data processing consists of defining an observation
window (a rectangle area) in the scanning plane of
the laser scanner. The window’s initial dimension is
computed by the area in front of the rollator, where we
expect the subject to be standing before performing
the walking task. This initial search window is pre-
determined and wide enough, while in the subsequent
frames it is adjusted. For the data inside the window
we use a simple background extraction method based
on thresholding criteria. The laser points that lie out-
side the observation window are discarded, while the
remaining are separated into groups, corresponding to
detected objects according to the Euclidean distance
between consecutive laser points. In cases of discon-
tinuities of laser points, due to fluctuations of the de-
vice, or due to the objects deformable surface (com-
mon in creasing pants), instead of having one laser
group describing an object, we end up with more. In
such cases the adjacent laser groups are merged ac-
cording to an euclidian threshold. Finally, any laser
group that contains less than a specific number of
points is deleted. The remaining laser groups formu-
late the candidate legs. The candidate legs extraction
is successful when we end up with two candidates,
corresponding to the legs. The treatment in cases of
less or more laser groups is described bellow.

4.2. Legs’ Detection

The candidate legs feed the Legs’ Detection sub-
system, by using a K-means++ clustering algorithm
(Arthur and Vassilvitskii, 2007), that classifies the
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left and right leg. Instead of using the highly noisy
centroid-mean of each cluster given by K-means, we
take as consensus that the human limbs can be rep-
resented as cylinders, and therefore can be seen as
circles in the scanning plane. We use nonlinear least
squares circle fitting with a constant pre-computed ra-
dius, in order to approach the actual planar leg cen-
ters. In that way we have a compact representation
of the legs, which is not influenced so much by the
shape deformations of the laser groups. The detected
legs’ centers compose the observation vectorzk for
the tracking process.

4.3. Kalman Filter Tracking

The tracking of the user’s legs is performed by
a discrete Kalman filter(KF) algorithm (May-
beck, 1979), using as observation vectorzk the de-
tected leg centers at each time frame. For the
description of the legs’ motion we used a sec-
ond order kinematic model, i.e. it incorporates
the position and velocity of the legs, and sub-
sequently the used state vector has eight param-
eters: xk = [ xL yL xR yR vL

x vL
y vR

x vR
y ]

where(xL,yL) ,(xR,yR) are the positions and(vL
x ,v

L
y ),

(vR
x ,v

R
y ) the velocities of the left and right leg along

the axes. The Kalman Filter process equation has
the form: xk+1 = Ak · xk + Bk · wk where Ak is the
transition matrix and it has the following form:Ak =[

I4 A1
/04 I4

]
whereA1 = ∆t · I4, andI4 is the 4x4 iden-

tity matrix. The gain matrixBk is multiplied with

the process noisewk and is given by:Bk =

[
B1

B2

]

whereB1 = (∆t2/2) · I4, B2 = ∆t · I4, I4 is the 4x4
identity matrix. The uncorrelated process noisewk
is white and gaussian, and is given by the distribu-
tion wk ∼ N(0,Qk), whereQk is the process noise
covariance matrix. Since we have no known con-
trol inputs, we assume that acceleration is the ef-
fect of an unknown input and we treat the accel-
eration as the process noise. Therefore, it repre-
sents the influence of acceleration’s variability at the
state parameters at each time instant k. The pro-
cess noise covariance matrixQk, which is an 8x8
square matrix, is computed by:Qk = Bk ·Ca · BT

k
whereCa is the covariance matrix of the acceleration
a, with a ∼ N(0,Ca) andCa is a 4x4 diagonal matrix
with diagonal elements:std2

Lax
,std2

Lay
,std2

Rax
,std2

Ray

wherestdLax ,stdLay ,stdRax,stdRay are the standard de-
viations of the accelerations along the axes for both
legs, that were experimentally defined and describe
the acceleration uncertainty throughout the gait.

The observation vectorzk of the true state is

updated according to the equation:zk = Hk · xk +
vk whereHk is the observation matrix which maps
the true state space into the observed space:Hk =[

I4 /04
]

with /04 is the 4x4 zero matrix, andvk is
the observation noise, with normal probability distri-
butionp(vk)∼N(0,Rk), whereRk is the measurement
noise covariance matrix, a 4x4 diagonal matrix with
diagonal elements:v2

xk
,v2

yk
,v2

xk
,v2

yk
wherevxk andvyk

for both legs are the standard deviations of the mea-
surement noisevk along the axes. KF is a recursive
Bayesian estimator that consists of two phases,(i) the
prediction and (ii) the update phase. During predic-
tion phase the KF projects the state vector and the
state covariance matrix forward in time according to
the physical model of the process described by the in-
put matrixAk, and provides thea priori state estimate:
x̂k|k−1 = Ak · x̂k−1|k−1 and thea priori estimate covari-
ance:Pk|k−1 = Ak ·Pk−1|k−1 ·Ak

T +Qk.

In the update phase, the observation vector serves
as a feedback that corrects the a priori estimates.
Thus, the observation innovation is computed by:
ỹk = zk − Hk · x̂k|k−1 and its innovation covariance:
Sk = Hk ·Pk|k−1 ·Hk

T +Rk.

Innovation is crucial for obtaining the Kalman
gain. The Kalman gain is the solution to the mini-
mum mean square error in the posterior state estima-
tion, and is given by:Kk = Pk|k−1 ·Hk

T ·Sk
−1. Kalman

gain technically calculates the quota of the predicted
state estimate and the measurement into the finala
posteriori state estimation. In that way we get thea
posteriori state estimate:̂xk|k = x̂k|k−1+Kk · ỹk and the
a posteriori estimate covariance:Pk|k = (I−Kk ·Hk) ·
Pk|k−1.

At each time instant, the detection process pro-
vides the observations for the KF tracking, and the
KF feeds the system back with the predicted state vec-
tor x̂k|k−1. Especially the legs’ predicted positions are
used as seed for the K-means++ algorithm, as an in-
ference to where it should assign the leg clusters in
the next frame. Around the predicted positions of the
legs, leg-windows are set having initial constant di-
mensions proportional to the leg-circle’s dimensions.
The leg-windows dimensions are also adaptively ad-
justed, by enlarging or shortening them according to
the variability of the predicted positions, provided by
thea priori estimate covariancePk|k−1 derived by the
KF. From the two leg-windows, a wider search win-
dow is defined in the plane and the detected raw data
inside it are ready to be processed. Thus, it results in
an iterative interaction between detection and track-
ing processes. Finally, the estimated state vectorx̂k|k
enters the HMM Gait Phases Recognition System as
an observation at each time frame.
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4.4. False Detection Treatment

Falsedetections are the cases in which either one leg
is occluded by the other or there is interference of an-
other person’s legs inside the search window that have
not been successfully discarded. Those cases can in-
terrupt or contaminate the detection and can result in
losing track of the legs. To address such false detec-
tions, certain hypotheses are checked. If the detected
leg centers violate a Euclidean distance constraint that
we have set, relevant to an experimentally defined
anatomical threshold, or when there are detected less
or more than two laser groups, the corresponding de-
tection is regarded false. In order to continue to the
tracking phase, an only-prediction Kalman filter is ap-
plied. In that particular case, we perform only the
prediction step and we use the prediction state vec-
tor x̂k|k−1 and thea priori estimate covariancePk|k−1
as feedback for the detection of the next frame, with-
out taking into consideration any observations for that
particular time frame. This choice has been made, as
it was noticed that between two consecutive frames
the leg positions are not so prone to sharp or sudden
shifts.

5. HMM GAIT MODELLING

Hidden Markov Models are well suitable for gait
recognition because of their statistical properties and
their ability to reflect the temporal state-transition na-
ture of gait. An HMM is defined as a doubly em-
bedded stochastic process with an underlying process
that is not observable (it is hidden), but can only be
observed through another set of stochastic processes
that produce the sequence of observations, (Rabiner,
1990). This reveals that the states underlying the data
generation process are hidden, and they could be in-
ferred through observations.

This HMM based model is performed in the high
level of the Adaptive Context-Aware Robot Control,
which utilizes as observables several quantities that
represent the motion of the subjects’ legs (relative po-
sition w.r.t. the laser, velocities, etc.), which are esti-
mated sequentially by the detection and tracking mod-
ule, while the robotic assistant platform follows the
subject’s motion.

In this paper we have used the gait phases that
characterize gait cycle. The gait cycle describes the
period of time when one leg leaves the ground for the
first time to perform a forward motion till when the
same leg contacts the ground again, (Jacquelin Perry,
1992). Each gait cycle has two phases: stance and
swing. In stance the foot is in contact with the ground.
In swing the foot is in the air performing a ballistic

motion. The gait cycle is divided into eight events: 1.
IC - Initial Contact: 0% of gc:1 Heel strike initiates
the gait cycle and represents the point at which the
body’s centre of gravity is at its lowest position. 2.LR
- Loading Response: 0-10% of gc: The time when the
plantar surface of the foot touches the ground. 3.MS
- Midstance: 10-30% of gc: When the swinging (con-
tralateral) foot passes the stance foot and the body’s
centre of gravity is at its highest position. 4.TS -
Terminal Stance: 30-50% of gc: The heel loses con-
tact with the ground and pushoff is initiated via the
triceps surae muscles, which plantar flex the ankle.
5. PW - Preswing: 50-60% of gc: Toe-off terminates
the stance phase as the foot leaves the ground. 6.IW
- Initial Swing: 60-70% of gc: Acceleration begins
as soon as the foot leaves the ground and the subject
activates the hip flexor muscles to accelerate the leg
forward. 7.MW - Midswing: 70-85% of gc: When
the foot passes directly beneath the body, coinciden-
tal with midstance for the other foot. 8.TW - Ter-
minal Swing: 85-100% of gc: Deceleration describes
the action of the muscles as they slow the leg and sta-
bilize the foot in preparation for the next heel strike.

Since the TW phase is characterized by heel strike
that is an equivalent trigger to the IC phase, those
phases are treated as identical. These seven states
can define the hidden states of the HMM (Fig. 2).
The state and observations at timet are denoted as
st and Ot , respectively. The seven states at time
t = 1,2, ...,T , whereT is the total time, are expressed
by the value of the (hidden) variablest = i ∈ S, for
i = 1, . . . ,7, where 1≡ IC/TW (since we treat IC
and TW as identical), 2≡ LR, 3 ≡ MS, 4 ≡ T S,
5 ≡ PW , 6 ≡ IW , and 7≡ MW . Regarding obser-
vations at timet, we define nine signals denoted as
xm, ym, υm

x , υm
y , for m = {R,L}, which are the co-

ordinates and the velocities along the axis for right
and left leg, respectively, andDlegs which is the dis-
tance between legs, that are represented by the vector
Ot = [o1

t . . .o
k
t ]

T ∈ O, for k = 1, . . . ,9, whereo1
t ≡ xR,

o2
t ≡ yR, o3

t ≡ xL, o4
t ≡ yL, o5

t ≡ υR
x , o6

t ≡ υR
y , o7

t ≡ υL
x ,

o8
t ≡ υL

y , ando9
t ≡ Dlegs. The observation data (de-

rived from the raw laser sensor data) are modeled us-
ing a mixture of Gaussian distributions. This is a
natural way of representing these data, as the data
vector takes values from a bounded set (recall that
we use the relative position of the legs from a robot
that follows the subject with his/her mean velocity)
and is inherently repetitive (due to the cyclic nature
of the human gait). Thus, by collecting many data
for a normal gait, we can obtain the mean and the
variance of the Gaussian distributions of the mix-
ture. Since nine signals are measured and consti-

1gc: abbreviation for gait cycle
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tute the extracted features at each time instant, the
distribution is a multivariate Gaussian distribution:
g(x|µm,Σm)=

1

(2π)
n
2 |Σm |

1
2

exp
{
− 1

2(x−µm)
T Σ−1

m (x−µm)
}

wherex ∈ R
n is the feature vector,µm ∈ R

n denotes
the mean vector andΣm denotes the(n× n) covari-

ance matrix of themth Gaussian probability density,
where in our casen = 9, andm = 1, . . . ,M. The
Gaussian Mixture Model (GMM) is then a weighted
sum of these M component Gaussian densities, as
given by the equation:P(x) = ∑M

m=1 wm ·g(x|µm,Σm)

wherewm are the mixture weights, for which it holds:
∑M

m=1 wm = 1, wm ≥ 0.
In normal gait cycle the gait phases follow each

other sequentially, while in pathological gait the se-
quence of gait phases may be different or some of
them may disappear. Thus, this HMM is a left-to-
right model.

6. GAIT PARAMETERS COMPUTATION

FOR MEDICAL DIAGNOSIS

The analysis of gait patterns for medical diagnosis is
presented in (Arias-Enriquez et al., 2012), by using
different types of wearable and non-wearable sensors
and by extracting and employing various gait param-
eters, (Muro-de-la Herran et al., 2014).

Figure 2: Internal states of normal gait cycle (Left Leg: blue
dashed line, Right Leg: red solid line).

The recognized sequence of gait phases is indica-
tive of the subject’s underlying pathology, since it dif-
fers from the normal gait phase sequences. We can,
also, take advantage of the segmentation in time that
the recognition system provides, regarding the dura-
tion of each gait phase, in order to compute specific
gait parameters from the range data, that are neces-
sary to specialists to perform medical diagnosis of the
subject, (Muro-de-la Herran et al., 2014). The recog-
nised gait patterns along with the gait parameters will
be used by the robotic platform for the assessment of
the patient’s impairment level, which will trigger spe-
cific behaviours and assistive actions by the robotic

assistant platform, in the medium level of the Adap-
tive Context-Aware Robot Control. For the impair-
ment level assessment, we are computing the follow-
ing gait parameters, (Muro-de-la Herran et al., 2014):
1. Step length (linear distance between two succes-

sive positions of the same leg)
2. Stride length (linear distance between the posi-

tions of both feet)
3. Cadence (number of steps per time unit)
4. Step width (lateral distance between the two legs)
5. Stance time (time from IC to TS)
6. Swing time (time from IW to TW).

7. EXPERIMENTAL RESULTS

7.1. Experiment Description and Dataset

The experimental data used in this work were col-
lected in Agaplesion Bethanien Hospital/ Geriatric
Center with patients that presented moderate to mild
impairment according to clinical evaluation of the
medical associates. We have used a Hokuyo rapid
laser sensor (UBG-04LX-F01 with mean sampling
period of about 28msec) mounted on the robotic plat-
form.

For the evaluation of our algorithmic approach, we
have used the recorded data of seven patients with
moderate mobility impairment (aged over 65 years
old), performing a scenario during which the sub-
ject walked unassisted, i.e. without any physical sup-
port of the carer or the robotic platform, the subject
walked straight in a walkway, while the robotic plat-
form moved in a near distance in front of the subject
(following mode).

7.2. Detection and Tracking results

For the experimental evaluation of the Detection and
Tracking system, we had experimentally defined the
thresholds used in the preprocessing of the laser data.
A crucial feature for the performance of the KF track-
ing is the fine tuning of the filter to achieve its con-
vergence to the true state. Since we did not have any
ground truth data, KF tuning was difficult to achieve.
As far as it concerns the measurement noise, given
that only three points are sufficient to define a circle,
we conducted Markov Chain Monte Carlo sampling
for the three point in the circle’s contour, using the in-
formation about the nominal noise of the laser scan-
ner (considered to be white and gaussian with stan-
dard deviationσlaser = 0.0025m. With those random
samplings we have simulated how the random distur-
bances of the three points on the circle’s contour in-
troduced by the laser’s error can deviate the estimated
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circle center through nonlinear circle fitting (given a
knownradius). On the other hand, the process noise
statistics were trained by raw data.

However, the described experimentation led to an
overestimation of the process noise parameters and
an underestimation of the measurement noise statis-
tics that resulted in overfitting problems. This seems
quite reasonable, since human leg’s locomotion can-
not be accurately described by a linear motion model,
and also measurement noise influenced by other pa-
rameters that cannot be simulated, e.g. the laser clus-
ters deformable shapes due to the patient’s clothing.
In order to achieve the filter’s convergence, we have
followed the presented methodology of (Gamse et al.,
2014). The resulted noise parameters are as follows:

• For the computation of the process noise covari-
ance matrix, we need the acceleration’s covari-
ance matrix, where:stdLax = 4.62, stdLay = 9.1,
stdRax = 2.63,stdRay = 8.38 (in m/sec2).

• For the measurement noise covariance matrix,
we resulted to the following standard deviations:
vxk = 0.05 andvyk = 0.01 (in m).

In Fig. 3 and Fig. 4 the detected (magenta and green
stars) and the estimated (solid blue and red lines) for
the lateral and forward displacement of the left and
right leg accordingly, are shown. For the evaluation

Figure 3: Detected and estimated legs’ lateral displacement.

Figure 4: Detected and estimated legs’ forward displace-
ment.

of the KF performance, we have computed the root
mean square errors(RMSE) between the estimated
and detected positions of the legs. In the absence of
ground truth data, we regard the computed RMSE a
measure of how much the KF improves the noisy ob-
servations. The average RMSE computed over the re-
sults of the detection and tracking process of the 7
patients that performed the same task, were 0.0078m
for the x coordinate (lateral motion) and 0.0018m for
the y coordinate (forward motion). In the lateral plane
there is greater uncertainty (about 4 times bigger), due
to the leg clusters shape deformability and length vari-
ability. In the absence of ground truth data, we are not
able to accurately evaluate the results of the computed
RMSE. However, we observed that the deformability
of the leg clusters caused greater variability in the lat-
eral plane, which is generally not wanted (gaiting is
mainly taking place in the forward direction towards
the rollator, thus sudden lateral motions are artifacts),
we can say that our method smooths out the noise
in the lateral motion, rather than in forward motion,
where we desire a smoother but closer tracking of the
observations in that direction. In order to evaluate the
results of our tracking method, we are working on ex-
tracting motion capture data to use as ground truth.

7.3. Gait Phases Recognition Results

HMM training procedure comprises only a part of
subjects’ data, excluding the recorded data of one sub-
ject. The testing procedure aims to test the perfor-
mance of the proposed approach, validating its gener-
alisation capacity over unseen data obtained by new
subjects. The evaluation is based on an assessment
of the estimated states provided by the constructed
HMM, which represents the human gait cycle.

For testing and evaluation purposes of the con-
structed HMM, we have demonstrated an example of
the real experimental data set which is depicted in
Fig. 5. The goal of this evaluation phase is to un-
veil the hidden parts of the constructed models, i.e.
to estimate the correct sequence of phase transitions
that occur in the test data. This test dataset reflects
the gait session of one elderly subject, and comprises
about seven walking sections (about seven strides2).
In this figure the displacement of each leg in the sagit-
tal plane with respect to time is depicted on the top
graph, while the bottom graph shows the evolution of
the distance between legs within the same time frame.
This figure is very useful to understand the exact sub-
ject’s motion. The walking session is starting with the
left leg, and it is obvious from the increasing of the

2Stride is the equivalent of gait cycle, i.e. two sequential
steps define one stride, (Perry, 1992).

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2015 
ISBN 978-88-97999-63-8; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.   

138



Figure 5: Real experimental data from one subject’s walk-
ing motion that have been used in the testing and evaluation
phase of the constructed HMM. Top: Left (blue data) and
Right (red data) legs displacement. Bottom: legs distance
in the sagittal plane.

Figure 6: Estimated sequence of gait phases based on the
constructed model with respect to time by testing the data
depicted in Fig. 5, which represent an unknown walking
section.

distance between the legs that the early gait phases
are occurred, Fig. 5. While this distance is going to
zero (crossing point) the right leg is moving forward
until the next crossing point. It can be observed that
the first complete stride is recognized to begin just af-
ter the 6sec. This is observable to the results of the
constructed HMM in Fig. 6, since at the time instant
just after the 6sec, a gait cycle is started by the recog-
nized IC phase.

The estimated sequence of gait phases obtained
using the trained model is depicted in Fig. 6. This
figure shows the time instant at which each gait phase
(hidden state of HMM) is activated. A first remark
that can be made by observing these experimental re-
sults is that the evolution of the gait phases provided
by the models matches the general evolution of the
human gait model that is to be represented by the
HMMs; i.e. the gait phases appear sequentially with
the correct order, and the time frame of each phase
is within the general bounds as have been mentioned

previously in Section 5. It is obvious that some of the
gait phases are omitted, since these experimental data
corresponds to a subject with walking difficulties re-
lated to an underlying pathology.

There is an assumption, without loss of general-
ity, that at the beginning of each gait cycle the initial
contact refers to the left leg, while a complete stride
is concluded when the right leg is again in front of the
left leg, ready for a new initial contact and therefore
for the next stride. By observing the results depicted
in Fig. 6, it can be seen that the model manages to
successfully recognize that (for the recorded exper-
imental data of Fig. 5, used in this case study for
model testing) the subject starts the motion with the
right leg. Thus, the first estimated gait phase in Fig. 6
is the Terminal Stance (TS).

Another remark concerns the abnormal walking
motion. At some point of the recorded test data of
Fig. 5 (after 16sec), it can be seen that the motion
is characterized by abnormal behaviour, and therefore
the gait phase evaluation procedure has typical abnor-
mal exports. Although the walking motion starts a
new stride with the left leg, due to the abnormal nature
of the data, the model could not recognize a complete
stride. The results show that the constructed model
recognizes the pathological gait.

7.4. Gait Parameters Computation Results

In order to perform the assessment of the impairment
level of each patient, it is necessary to compute the
appropriate gait parameters from which we can infer
the pathological state. We have used the recognized
sequence of gait phases and therefore the timestamps
of each gait phase along with the estimated positions
of the legs from the laser data to compute these pa-
rameters. The data are presented as the mean quan-
tity plus/minus its standard deviation and refer to the
patient’s motion depicted and analysed in Fig. 5,
6. The presented gait patterns refer to a female pa-
tient, aged 77 years old with height 159cm, weight
60kg and knee height 45.5cm. Medical partners per-
formed cognitive and mobility evaluation, in which
this patient was categorised in cognitive level 1, i.e.
no cognitive impairment and in mobility level 2, i.e.
mild/moderate impairment - gait speed< 0.6m/sec
for unassisted walking.

The respective gait parameters for this patient are
presented in Table 1. The gait parameters will be use-
ful for the formulation of a pathology recognition sys-
tem based on the recognised gait patterns. We are
currently working along with clinicians for the evalu-
ation of those parameters and their categorization ac-
cording to certain pathologies that result in mobility
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Parameters
Right Step Length (m) 0.0565±0.0147
Left Step Length (m) 0.1298±0.0245
Stride Length (m) 0.1863±0.0376
Step Width (m) 0.1688±0.058
Cadence (step/min) 53.38
Stance time % of gait cycle 57.5
Swing time % of gait cycle 42.5

Table 1: Gait Parameters computed using the range data and
the segmentation in time of the recognised gait phases

inabilities. The information about the patient’s patho-
logical state will then be used in the Context-Aware
Robot Control for the assessment of the impairment
level of the patient, and thus the inference of the pa-
tient’s pathological status will trigger certain control
assistive behaviors to be executed by the robotic as-
sistant platform.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the basic concept of
an Adaptive Context-Aware Robot Control architec-
ture for a robotic assistant platform, that is moving
in front of the the user, and will adapt to the user’s
needs in order to act assistively whenever in case.
We have analysed the parts of the proposed control
scheme. Firstly, we have described the processing
of the raw data from a laser range scanner mounted
on the robotic platform. We have analysed the usage
of a Kalman Filter for the tracking of the subject’s
legs and therefore the estimation of the legs’ position
and velocity, which are the input signal of the control
scheme. Then, a Hidden Markov Model based frame-
work have been represented in order to analyse the
pathological walking motion, by detecting sequences
of gait phases, constituting a completely non-invasive
approach, since we have used a non-wearable device.
The resulted sequence of the gait phases and the time
segmentation are appropriate in order to compute spe-
cific gait parameters, necessary for clinical diagnosis.

For further research, we are working on a new de-
tection and tracking system based on particle filter-
ing, fusing also other sensorial data like RGB data,
for a whole body tracking approach. Particle filters
will perform better in more complicate motion sce-
narios including also turnings, that are not easy to
track with Kalman Filter, which is a linear estimator.
Moreover, particle filters can be better used for hier-
archical tracking of the human body parts. Further-
more, we are working on the classification approach
of normal/pathological gait or non-walking activity.
Moreover, in assistance with clinicians, we are elab-
orating on the computed gait parameters from vari-

ous patients, in order to organize and classify them
according to certain pathologies. In that way, a com-
plete automatic pathology recognition system will be
developed in order to assess the impairment level of
the patient, and particular levels of mobility impair-
ment will indicate the need for specific control assis-
tive actions for the robotic platform in order to adapt
to the user’s needs.
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