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ABSTRACT 

This project aims at validating the assumption 

of predictive maintenance based on four 

parameters. The economy of Northern Quebec 

region is highly dependent on iron and 

aluminium production and transformation. 

Related industrial activities ensure employment 

for a large proportion of the population. 

Traditional maintenance is no longer enough to 

ensure competitiveness of these companies. 

Optimised asset management and maintenance 

is essential to reduce production cost and 

machine downtime. This project has as 

objective the development of a high precision 

maintenance method embodying 

instrumentation, statistical and numerical 

modeling techniques. 

Keywords: predictive maintenance, instrumentation, test bench, numerical simulation, wear, 

degradation, multiphysics. 

Abbreviations: 

PM Preventive maintenance 

i  ordinal load cycles 

hi(t) system hazard rate function prior to the ith preventive maintenance, PM, activity

Ti time interval for PM prior to the ith PM

r radius 

R system reliability threshold for scheduled PM 

Cup expected cost rate for unscheduled PM

Csp expected cost rate for scheduled PM

τp duration of PM, same for scheduled PM and unscheduled PM

Costr  additional replacement cost

CEr expected cost per unit time for the system in the residual life

The targeted technology will have as objectives to 
increase condition monitoring precision, reduce required 
maintenance interventions, improve reliability, reduce 
maintenance cost and allow better recognition of factors 
(internal and external) influencing machine element 
deterioration. The developed model is tested and refined 
on an industrially inspired test bench at Cégep de Sept-
îles. The final aim is to compare the different trends 
(statistical, specifications and numerical simulation) to 
establish a mean algorithm that will encourage the 
achievement of the enumerated objectives. In this paper, 
we establish the motivation of the work, definition of 
the test bench, experimental model, simulation model 
and manufacturer’s specification model. Preliminary 
results are also presented as well as future work required 
for the final definition of this technique. Final results 
and technique efficiency validation will be obtained and 
performed once all experimental results on “in 
operation” test bench are obtained.  
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INTRODUCTION 

For most systems, failure is a dangerous or 

costly event. In a region like Sept-Iles, on the 

North Shore of Québec province, production 

needs to be continuous in order to ensure 

availability of spare parts for major mining 

companies of the region which operating on an 

incessant basis. The available information on the 

failure time is often not very accurate because of 

the great variability of elements belonging to the 

same population. Classical preventive 

maintenance policy leads to elements being 

replaced before complete exploitation of the 

useful life. Hence, failure risk is reduced but 

maintenance costs and maintenance frequency is 

increased. The need for accurate condition based 

maintenance, that is, predictive maintenance 

based on precise recognition of element health in 

real time is important for risk free and low cost 

maintenance policy application. This paper 

focuses on the preliminary work and results 

obtained within a project at developing a 

new predictive maintenance technique.  The 

project aims at the validation of the 

assumption of predictive maintenance based 

on four parameters: manufacturer’s 

specifications, statistical data, 

instrumentation and numerical simulation. 

The “Institut Technologique de Maintenance 

Industrielle (ITMI)” has as mission to 

accompany companies in achieving 

maximum efficiency and optimized asset 

management. Based in the region of 

Northern Quebec (Sept-Îles) and part of the 

Cégep de Sept-Îles (CSI), the Institute is in 

the heart of Northern Quebec mining 

industry development. Optimised asset 

management and maintenance is essential as 

it highly reduces production cost and avoids 

machine downtime - essential in the present 

economic situation. Worldwide competition 

is fierce and the price of iron and aluminium 

low. Numerous small and medium 

enterprises (SME) are subcontractors of the 

major mining and metal transformation 

companies and ensure employment for a 

large proportion of the population as well as 

the development of communities where they 

are located. Traditional maintenance is no 

long enough to ensure competitiveness of 

these companies. This paper illustrates a 

project aiming the development of a high 

precision maintenance method that will 

significantly reduce cost and frequency of 

checks as well as better asset management. 

In this paper, we establish the motivation of 

the work, definition of the test bench, 

experimental model, simulation model and 

manufacturer’s specification model. 

Preliminary results are also presented as 

well as future work required for the final 

definition of this technique. Final results and 

technique efficiency validation will be 

obtained and performed once all 

experimental results on “in operation” test 

bench are obtained.  

 

BACKGROUND 

CSI has ensured training and technical help 

regarding traditional maintenance of the 

numerous industries harboured in Northern 

Quebec region for more than 20 years. The 

need for more cut edge maintenance has 

encouraged the college to set up ITMI which 

sets the path for more sophisticated and 

result oriented maintenance that blends itself 

in the present economic condition.  

Predictive maintenance allows scheduling 

maintenance with the least effect on 

activities and unexpected equipment 

breakdowns and scheduled maintenance 

downtime is virtually eliminated. Literature 

undoubtedly encourages predictive 

maintenance over traditional routine 

maintenance. Our on field evaluation 

supports this need. [1-5] all justify the 

advantages of using predictive maintenance 

to even quantify the relative per horsepower 

cost of maintenance. However, as [6] puts it 

– preventive or predictive maintenance is 

rarely performed in industries due to time 

pressure. Therefore, there is need to develop 

a tailor made approach that perfectly 

inscribes the maintenance measures in the 

activities of the industry. Furthermore, 
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literature shows that predictive maintenance 

is most of the time based on the follow up of 

one parameter as in [7]. The need to be more 

precise in predicting failure in machines and 

in an attempt to encourage training allowing 

optimised and diligent implementation of 

predictive maintenance routines in 

companies has been the motivation to the 

project illustrated in this paper. The 

methodology was developed and tested with 

Métal 7 Company. Located in the main 

industrial region for iron ore in Canada, 

Metal 7 has a very firm grasp of the needs of 

major mining companies and SME for 

whom, through its R&D department, 

manufactures durable, high-performance 

equipment. Metal7 dynamism and 

involvement in the community as well as 

worldwide business will propose a number 

of advantages on training, the local 

community and for knowledge improvement 

in the field. 

 

PROJECT DESCRIPTION 

Industrial activities rely on the proper 

functioning of mechanical equipment. It is 

necessary to control the reliability of the 

equipment to optimize maintenance 

planning and minimize costs. 

Various methods can be used to assess the 

remaining lifespan of a machine element 

prior to next failure. Condition based 

maintenance information can be inferred 

from:  

1.the manufacturer's specifications, duration 

of operation and operating conditions;  

2.instrumentation data from installed 

sensors; 

3.statistical data on failure ; 

4.numerical simulation results.  

When maintenance is planned according to 

manufacturer's specifications, duration of 

operation and operating conditions, the 

equipment is replaced in accordance with 

manufacturer's specifications regardless of 

the actual wear. Manufacturer’s 

specifications are usually built according to 

machine element degradation trend in 

controlled environment which may differ 

from actual situation. When maintenance 

plan is based on instrumentation and 

statistical data, the machine element is 

replaced according to measured values from 

sensors or when the probability of failure is 

greater than or equal to a selected threshold. 

Systematic and random errors from sensors 

as well as installation limitations can limit 

sensors’ accuracy. During operation, 

conditions vary, the probability of failure is 

calculated with conservative parameters and 

calculated life is less than the actual life. 

When maintenance is scheduled based on 

the results of numerical simulation, it is 

possible to take into account the variation of 

the operating conditions in the calculation of 

the probability of failure. This allows for a 

more precise calculation of remaining 

lifespan and machine element is kept in 

operation longer. Furthermore, simulation 

allows us to study the effect of modifying 

the design of a product over its useful life. It 

also allows infer the effect of chosen 

operating parameters on the lifespan of a 

product. The simulation is useful to optimize 

the design and operation of industrial 

equipment. However, numerical simulations 

have numerous limitations including: model 

precision, mesh precision, resolution scheme 

precision… The idea behind this project is 

to evaluate the correlation between 

degradation trends monitoring according to 

the four different techniques and compare 

the techniques within a mathematical model 

for error cancellation between the trends. 

COST MOTIVATION  

In this section, we wish to demonstrate the 

cost effectiveness of this four parameter 

damage accumulation monitoring policy 

versus a traditional preventive maintenance 

policy. Using 4 different parameters of wear 

and degradation monitoring, the aim is to 

increase the number of cycles by a more 

precise wear and degradation monitoring 

scheme – the aim is to increase the number 

of cycles of a given machine element whilst 

ensuring reliability of system. 
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According to [8-11], reliability can be 

expressed as follows:  

 

𝑒− ∫ ℎ1(𝑡)𝑑𝑡
𝑇1

0 = 𝑒− ∫ ℎ2(𝑡)𝑑𝑡
𝑇2

0

= ⋯ . 𝑒− ∫ ℎ𝑁(𝑡)𝑑𝑡
𝑇𝑁

0

= 𝑅 … … … … . (1) 
 

From figure 1, excerpt from [12], showing 

hazard rare evolution against hybrid 

evolution model for system hazard, we note 

that the relationship between hazard rate 

functions before and after ith PM can be 

expressed as:  

 

ℎ𝑖+1(𝑡) = 𝑏𝑖ℎ𝑖(𝑡 + 𝑎𝑖𝑇𝑖) for t  ∈
(0, 𝑇𝑖+1)………………………….…(2) 

 

0 < 𝑎𝑖 < 1, 𝑏𝑖 > 1  are age reduction 

factors and hazard rate increase factor 

respectively. 

 

 
 

Figure 1: Hybrid evolution model for system hazard 
rate 

Replacing equation (2) in (1), we have: 

∫ ℎ1(𝑡)𝑑𝑡
𝑇1

0

= ∫ ℎ2(𝑡)𝑑𝑡
2

0

= ⋯ … .

= ∫ ℎ(𝑁)(𝑡)𝑑𝑡
𝑇𝑁

0

= −𝐿𝑛 𝑅 … … … … (3) 

∫ ℎ1(𝑡)
𝑇1

0
 represents the cumulative failure 

risk in maintenance cycle i. This implies that 

cumulative cycle is equal to –R. 

We will now compare maintenance cost 

efficiency for our aimed model versus 

traditional preventive maintenance models. 

For preventive models:  

𝑅 = 𝑒− ∫ ℎ𝑁(𝑡)𝑑𝑡
𝑇𝑁

0  

 

In our case: 

𝑅1

=
𝑒− ∫ ℎ𝑁

,(𝑡)𝑑𝑡
𝑇𝑁

0 + 𝑒− ∫ ℎ𝑁
,,(𝑡)𝑑𝑡

𝑇𝑁
0 + 𝑒− ∫ ℎ𝑁

,,,(𝑡)𝑑𝑡
𝑇𝑁

0 + 𝑒− ∫ ℎ𝑁
,,,,(𝑡)𝑑𝑡

𝑇𝑁
0

4
 

………….(4) 

 

For the same reliability, the number of 

cycles can be increased and hence relative 

maintenance cost is reduced for same 

reliability as expressed by equation (5). As 

numerators (function of R) are logarithmic 

functions, and cycles as denominators, for 

same R, i is increased and maintenance cost 

is reduced: 

𝐶𝐸𝑟𝑖 =
𝐶𝑢𝑝𝜏𝑝(− ln(𝑅)) + 𝐶𝑠𝑝𝜏𝑝(1 + ln(𝑅))

𝑇𝑖 + 𝑇𝑝
 

……………….(5) 

 

TEST BENCH 

Four parameters based predictive 

maintenance calibration and study was 

performed on an industry inspired and 

supported test bench at “Cegep de Sept-

Îles”. The test simulated a braking system on 

an inertial rotating mass. The inertial start – 

braking system was automated using an 

Allen bradley programmable logic 

controller. Figures 2 and table 1 illustrates 

the test bench set up and tested for the 

purpose of this project. 
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Figure 2: Test bench used for technique validation 

Table 1: Test bench description: 

 

 

 

 

 

 

 

 

 

A Horton/ Nexen
@

 brand 835000 model DB 

caliper less brake disc was used. The brake 

was pneumatically activated. A Red Lion 

angular speed sensor was used to measure 

this quantity on the brake at all times. The 

idea is to be able to ensure reproducibility of 

the experiment and availability of enough 

information for the construction of 

numerical and manufacturer`s specifications 

correlation. The Red Lion
@

 IFMA model 

accepts a frequency input, and outputs an 

analog voltage or current in proportion to 

the input frequency, with 0.1% accuracy. 

The programmable minimum and maximum 

response times provide optimal response at 

any input frequency.  

The objectives of the project, as mentioned 

in the abstract are not only to better predict 

wear level but, also, to understand wear 

triggering parameters. A pressure sensor was 

used to evaluate the pressure applied by the 

brake pads on the inertial disc. This data was 

also used to build the numerical model. The 

Dwyer
@

 626 pressure transmitter converts a 

single positive pressure into a standard 4-20 

mA output signal. Accuracy of instrument is 

specified at 0.25 to 1%.  

For similar motivations as the pressure 

sensor, a Phoenix
@

 brand, configurable 

temperature transducer for thermocouple 

types J and K was used (model: MINI MCR-

SL-TC-UI). The sensor accuracy is specified 

to be 0.2 %. 

Finally, in order to measure the wear on the 

braking pad, a Hoskin
@

 (KL series) 

conductive plastic potentiometric position 

transducer was used. The accuracy of the 

sensor is specified at 0.1 %. 

 

INSTRUMENTATION ERROR ANALYSIS 

The brake pad wear measurement is 

dependent of 1) the accuracy of the Hoskin
@ 

sensor, 2) the quality and accuracy of the 

sensor fixture and 3) the alignment accuracy 

of the inertial disc as can be inferred from 

figure 3 below, which illustrates the sensor 

fixture relative to the inertial disc and brake 

pad. 

 

 

 

 

 

 

Figure 3: Hoskin displacement sensor fixture 

Such analysis is essential as the wear is very 

small for 20 000 cycles – around 0.12 mm. 

Hence, even minor errors in the alignment or 

fixture can bring large percentage errors in 

the wear value. This was actually the case 

for our measurements. Figure 4 shows 

results we obtained from our bench test 

when we compared wear (in mm) against 

energy developed and dissipated by the 
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inertial-braking system after 150 hours 

operation. For increasing developed and 

dissipated energy, simple logic will lead us 

to anticipate increasing wear on the pad. 

However, we noticed that, the wear trend is 

basically unchanged and we can even detect 

wear reduction at certain intervals of 

increasing dissipated energy. It is clear that 

this is impossible. The reason behind such 

irrational measurement is that alignment 

error increased at a comparable rate to wear 

rate with energy application.  

 

 

 

Figure 3: Results obtained after 150 hours operation 

In order to cancel the errors, preliminary 

measurement tests were performed with pre-

measured and known wear at the same 

energy operating regimes to evaluate the 

errors. The corrections were brought to 

minimize the errors. The interest here is that 

our model can, hence, be applied to high 

precision requirements where minor wear 

needs to be detected. Furthermore, it is 

interesting to note that statistical means exist 

to identify and correct such errors: figure 4 

represents the probability density of the 

residuals of the linear regression model 

whereas figure 5 represents the probability 

density of misalignment. 

 

Figure 4 : Probability density of the residuals of the 
linear regression model 

 

Figure 5: Probability density of misalignment 

Figures 4 and 5 show that the shape of the 

probability density of the residuals of the 

linear regression model is very similar to the 

probability density of misalignment of the 

inertial disc. The difference between the 

minimum and maximum alignment values 

as well as the minimum and maximum 

residuals of the regression model are 

presented in table 2 which follows. 

  

 

 

 

W
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m
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Energy (J) 
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Tableau 2 : Comparison of the deviation of alignment 
value and residuals of linear regression model 

Parameter  

Alignment deviation 0.254 mm 

Deviation of residuals of linear 
regression model 

0.265 mm 

 

The two values are very close to each other. 

Figures 4 and 5 show that the dispersion of 

wear measurements can be explained mainly 

by the misalignment of the inertial disc. 

The mode of operation of the inertial-brake 

system has been established by the Grafcets 

presented in figure 6. 

 

 

 

Figure 6 : Grafcets  set up for operating 
regimedefinition of test bench in  programmable 

logic controller 

 

SIMULATION MODEL 

Numerical simulation model as an intrinsic 

part of predictive maintenance can be of 

upmost interest. A numerical model may 

have numerous limitations including 

disturbance modelling limitations, mesh 

precision, resolution scheme… However, 

numerical models can simulate results 

according to any operating regime and 

external conditions (intrinsic of model) and 

becomes an excellent comparison trend to 

identify bad quality instrumented data, 

systematic and random errors. Furthermore, 

numerically generated degradation trend 

according to actual operating parameters and 

external conditions can be valuable data to 

correct manufacturers’ specifications data 

usually generated according to different 

operating and external conditions. 

In our case, a numerical model simulating 

the inertial-brake system was built using 

ANSYS and the model was calibrated using 

a Matlab based finite element model:  

𝜕𝜎𝑟

𝜕𝑟𝜕𝑡
=

𝜕 [𝐸𝛼∆𝑇 + 𝐸
𝜕𝜔1

𝜕𝑟
+ 𝐹(𝑏𝑟𝑎𝑘𝑒)]

𝜕𝑟𝜕𝑡
… … (6) 

The system is discretized over finite 

elements and integrating over a rotating disk 
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of radius r. The applied force F is discretized 

over same finite elements but integrated 

over a smaller disk of radius r’’. The area of 

the disk corresponds to the area of the 

braking pad with an error of 4%.  

Therefore:  

∫
𝜕𝜎𝑟

𝜕𝑟𝜕𝑡
−

2𝜋

0

𝜕 [𝐸𝛼∆𝑇 + 𝐸
𝜕𝜔1

𝜕𝑟
]

𝜕𝑟𝜕𝑡
(𝑟𝑑𝑟𝑑𝜃)

− ∫
𝜕[𝐹(𝑏𝑟𝑎𝑘𝑒)]

𝜕𝑟𝜕𝑡
(𝑟′′𝑑𝑟′′𝑑𝜃)

2𝜋

0

= 0 … … … … … … … . (7) 

Local displacements are then expressed as 

nodal displacements:  

𝜔′(𝑟′) = 𝜔′
1 + (𝜔′

2 − 𝜔′
1)

𝑟′

𝑟
 

𝜔′(𝑟′) = [(1 −
𝑟′

𝑟
)(

𝑟′

𝑟
)] {

𝜔′
1

𝜔′
2

} 

𝜔′(𝑟′) = [𝑁1 𝑁2] {
𝜔′

1

𝜔′
2

} 

Hence:  

[𝑁] = [(1 −
𝑟′

𝑟
)(

𝑟′

𝑟
)] 

 

[
𝜕𝑁

𝜕𝑟′
] = [𝑁′] = [(−

1

𝑟
)(

1

𝑟
)] 

 

Shape function development leads to the 

first contributing term to the matric rigidity: 

 

∫
𝑑𝜕𝜔′

𝑑𝑟′

𝑟

0

𝐸𝐴
𝜕𝜔′

𝜕𝑟′
𝜕𝑟′

= ∫ [𝜕𝜔′]{𝑁′}
𝑟

0

𝐸𝐴[𝑁′]{𝜔′}𝜕𝑟′

= [𝜕𝜔′][𝑆′]{𝜔′} … … … (8) 
Comparing and developing equations:  

[𝑆′] = 𝐸𝐴 [

1

𝑟
−

1

𝑟

−
1

𝑟

1

𝑟

] 

 

Similarly, other matrix rigidity terms are 

developed. The model allowed us to define 

functioning temperature and stresses for one 

operating 𝜔 value and applied brakes 

pressure. This model was used to build and 

calibrate an ANSYS based model used for 

establishment of the 4 parameters based 

predictive maintenance policy. 

The ANSYS based model was built and run 

for the following compared test bench 

operating parameters. Manufacturer’s 

specifications data were also correlated to 

the same parameters. Figure 7 illustrates the  

Thermal distribution on the brake inertial 

disk just after zero angular velocity is 

attained after brake application. Table 3 

describes operating parameters and 

conditions used for experimental 

measurements, numerical model design and 

manufacturer’s data correlation. 

 

 

Figure 7 : Thermal distribution on inertial brake disc 
at establishment of zero angular velocity. 

 

Table 3 : Operating parameters and conditions of 
numerical, experimental and manufacturer’s models. 

Working, simulated 
and specification 
corrected 
parameters 

Value Unit 

Total inertia 507,44 lb/in^2 

static torque factor 144 lbf 

Dynamic torque 
factor 

122,4  

Baking torque 520,2 lbf.in 

Rotating speed, 𝜔 180,118 rad/s 

Brake disc inertia 50 lb.in^2 

Specific heat 
capacity of brake 
disc 

0,5 kJ/(kg°K) 

Mass of braking 
disc 

1,8 kg 

Time to accelerate 
the drive wheel 

5 s 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2015
ISBN 978-88-97999-63-8; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.

8



  

Brake pad thickness 7,87 mm 

Time to brake 
0,455076549 s 

Number of cycles in 
an hour 

360  

 

MANUFACTURERS’ SIMULATED MODEL  

The life cycle of the manufacturer is defined 

to be 1244 hphr which is a measure of 

energy. The maximum power applied on the 

system was averaged over the disk 

acceleration and braking cycles and the 

estimated manufacturer specified life cycle 

is 1386388. 

RESULTS 

At this point, experimental data have been 

acquired for 18 816 cycles. The wear values 

obtained experimentally from the test bench 

were corrected to mitigate errors and 

compared to results generated by the 

numerical model and the manufacturer’s 

specification to test bench operation 

correlated values. Statistical models were 

used to correct and improve quality of the 

experimental data. Table 4 presents the 

results obtained according to the different 

models. 

Table 4: Wear values obtained according to 
instrumentation, numerical model and 
manufacturer’s specification data correlation 

 

 

Figure 8 : Wear trend obtained according to 
instrumentation, numerical model and 

manufacturer’s specification data correlation 

It is interesting to note that 1) the three 

models provide very close values and 2) that 

the manufacturer’s specifications data are 

more conservative than the data generated 

by the other models. This was actually 

anticipated and was actually the aim of the 

study. The idea is to develop precise 

degradation monitoring models that provide 

close values to manufacturer’s specified data 

that are usually used for preventive 

maintenance. The precise but less 

conservative trends will allow for less 

frequent maintenance, lower maintenance 

cost but high reliability level. In order to 

establish an algorithm that will use the 

different models to establish more precise 

failure occurrence, the experimental tests 

needs to be run a few reproducible time 

till failure. 

However, in anticipation of the 

experimental data availability, a 

preliminary function tending to identify 

anticipated failure has been built using 

Matlab
@

. The algorithm based function is 

expected to be an average of the different 

models as illustrated in figure 9 below:   

 

 

cycles wear in mm 
(instrumentation) 

wear in mm 
(numerical 
model) 

wear in mm 
(manufacturer's 
spec) 

0 0 0 0 

855 0,01651 0,01543 0,004787 

3495 0,01651 0,01685 0,019567 

4660 0,03556 0,03356 0,026089 

5203 0,03683 0,03645 0,029129 

6224 0,04699 0,04452 0,034846 

7013 0,04826 0,046522 0,039263 

7839 0,04826 0,047899 0,043887 

9096 0,05715 0,05252 0,050925 

10297 0,05715 0,05822 0,057649 

18816 0,0889 0,089125 0,105343 
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Figure 9: Expected averaged function attempting to 
predict failure such that reliability is maintained 
while maintenance frequency and cost reduced. 

 

Using Excel and Matlab
@

, polynomial 

functions of each model were built with 

criterion- close fit of model data: 

1) Numerical function model :  

𝑓(𝑥) = 3. 10−18𝑥4 − 9. 10−14𝑥3

+ 7. 10−10𝑥2

+ 4. 10−6𝑥 + 0.004 

2) Experimental function model :  

𝑓(𝑥) = 5. 10−18𝑥4 − 2. 10−13𝑥3

+ 1. 10−9𝑥2

+ 3. 10−6𝑥 + 0.0047 

3) Manufacturer’s specification 

correlated function:  

𝑓(𝑥) = −3. 10−30𝑥4 + 2. 10−25𝑥3

+ 3. 10−21𝑥2

+ 6. 10−6𝑥

+ 8. 10−14 

Matlab@ 
was used to generate an average 

function illustrated in thicker blue which is 

anticipated to provide a better predictive 

maintenance policy according to objectives 

specified in this project. The generated trend is 

illustrated in figure 10. 

 

Figure 10: Matlab generated averaged wear function 

Green trend: Manufacturer’s specifications 

Red  trend: Experimental data 

Purple trend: Numerical data 

Thick blue trend: Averaged function 

 

CONCLUSION AND FUTURE WORK 

This paper illustrated work performed to set up a 

new predictive maintenance technique aiming at 

improving reliability whist reducing 

maintenance frequency and cost. The test bench 

used to develop the experimental model has 

been illustrated and explained in this paper. 

Particular emphasis was laid on the need for data 

quality control in order to ensure accuracy of 

instrumented data. A numerical model was also 

made and illustrated. The numerical model was 

itself counter compared with another model to 

ensure accuracy. The two models were 

compared with manufacturer’s specifications to 

calculate an averaged function which could be 

used to identify failure and help for decision 

taking for maintenance activities. Future work 

will comprise of the conclusion of 

experimentation on the test bench until failure. 

The aim will then be to improve the different 

models and the averaged function such that it 

can fit to identify the failure at the same cycle 

number or before but with less conservativeness 

than the manufacturer’s specified data. 

Afterwards, the model will need to be validated 

and performance analysed for different machine 

element operating regimes and different machine 

elements. 

 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2015
ISBN 978-88-97999-63-8; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.

10



  

SUPPORT  

ITMI and CSI wish to thank the support of the 

NSERC (Natural Sciences and Engineering 

Research Council of Canada) for having 

financially supported this project and ensuring 

other necessary supports when needed. 

 

REFERENCES 

1. Predictive Maintenance Program « 

Promotes reduced maintenance cost for 

facility and ground support equipment » 

NASA technical report OPS-13 

2. Lockheed Space Operations Company 

Predictive Engineering Technology Program 

Implementation Plan, 10/ 94 

3. EG&G Florida, KSC Predictive 

Maintenance Plan. EGG-4061130, 11/20/92 

4. P/PM Technology Publications (1986, 

1992, 1998, 2002) 

5. Maintenance Technology Publications 

(1995, 1997, 2001, 2002, 2004) 

6. Laurent Giraud et al. “ Sécurité des outils, 

des machines et des procédés industriels- 

Étude et 

Recherche » Rapport R-578 IRSST 

7. Thermographie infrarouge en 

maintenance prédicitive « La thermographie 

infrarouge en maintenance prédictive -cas 

du Centre hospitalier Saint-Joseph-

Espérance » 

8. Malik MAK. Reliable preventive 

maintenance policy. AIIE Trans 

1979;11(3):221–8. 

9. Nakagawa T. Sequential imperfect 

preventive maintenance policies. 

IEEE Trans Reliab 1988;37(3):295–8. 

10. Jayabalan V, Chaudhuri D. Cost 

optimization of maintenance 

scheduling for a system with assured 

reliability. IEEE Trans Reliab 

1992;41(1):21–5. 

11. Chan JK, Shaw L. Modeling repairable 

systems with failure rates that 

depend on age and maintenance. IEEE Trans 

Reliab 1993;42(4): 

566–71. 

12. X. Zhou et al. « Reliability-centered 

predictive maintenance scheduling for a 

continuously monitored system subject to 

degradation” Reliability Engineering and 

System Safety 92 (2007) 530–534  Science 

Direct 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2015
ISBN 978-88-97999-63-8; Bruzzone, Dauphin-Tanguy, Junco and Longo Eds.

11

http://www.nserc-crsng.gc.ca/
http://www.nserc-crsng.gc.ca/

