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ABSTRACT 
The quadruple-tank process has been proposed as a 
benchmark for multivariable control system design. 
This paper addresses the design in the bond graph 
domain of a robust controller having the volumetric 
flows of two pumps as manipulated variables and the 
level of the two lower tanks as the regulated outputs. 
The basic control objectives, expressed in terms of 
desired closed-loop energy and power-dissipation 
functions, are captured in the bond graph domain means 
a so-called Target Bond Graph, and the controller 
design is performed via Bond-Graph prototyping. The 
basic control law is further robustified against 
parameter uncertainties, measurement deviations and 
faults using the diagnostic bond graph concept, what 
leads to an additional loop consisting in a PI-law also 
being expressed with a physically meaningful bond 
graph subsystem. Some causal manipulations on the 
four-tank bond graph allow to extend to this multi-
variable case the technique developed to solve the 
simpler monovariable two-tank control problem. 

 
Keywords: quadruple-tank system, bond graph 
prototyping, robust fault-tolerant control, non-linear 
energy-based control. 

 
1. INTRODUCTION 
The quadruple-tank system proposed in (Johansson 
2000) turned into a very popular benchmark allowing to 
test different control algorithms for multivariable 
processes. It is a Two-Input Two-Output or TITO 
nonlinear plant consisting of four interconnected water 
tanks fed by two pumps, whose linearized model has a 
multivariable zero, which can be made minimum or 
non-minimum phase by simply changing the position of 
two distribution valves. This system has been used to 
test and design several control schemes. In (Abdullah 
and Zribi 2012) a bibliographical review and three 
different control schemes are presented; gain 
scheduling, a linear parameter varying controller and 
input-output feedback linearization have been 
compared, measuring the pressure of the four tanks. In 
(Johnsen and Allgöwer 2007) an interconnection and 
damping assignment plus passivity based control (IDA-

PBC) algorithm for the minimum phase configuration 
of the four-tank system is presented showing simulation 
and experimental results. Limon, et al. 2010 present a 
robust model predictive control (MPC) algorithm for 
level tracking. In both cases the level of the four tanks 
are measured. 

This paper addresses the design in the Bond Graph 
(BG) domain of an energy-based nonlinear control law 
which only measures the pressures of the two bottom 
tanks. The control system design objectives are to track 
the levels (or pressures) of the two bottom tanks, to 
reject disturbances originated in model uncertainties and 
measurement errors, and to be tolerant to some 
interconnection faults. 

Fault tolerant control (FTC) can be classified in 
two main categories, Passive Fault Tolerant Control 
(PFTC) and Active Fault Tolerant Control (AFTC). 
Both approaches are usually complemented in the 
praxis to improve the performance and stability of the 
fault tolerant system (Blanke, et al. 2006). Refer to 
(Zhang and Jiang 2008) for a bibliographical and 
historical review on FTC. The passive approach defines 
a unique control law to achieve the control objectives 
even in the presence of a fault. Generally speaking, the 
passive approach ensures stability and confers 
robustness under faults to the control system, but there 
exists a trade-off between performance and robustness 
(Isermann 2006). Although this paper follows a PFTC-
approach, some concepts commonly found in the design 
of AFTC controllers are used. 

The active approach modifies the control law 
according to the faults occurred, so that in this approach 
a fault detection and isolation (FDI) phase is mandatory 
before making a decision on how to reconfigure the 
control law. Analytical redundancy relationships 
(ARR), which count among the many solutions used to 
generate residual signals for FDI, have been 
implemented in the BG domain via the Diagnostic Bond 
Graphs (DBG) technique presented in (Samantaray, et 
al. 2006). Using the plant inputs and plant 
measurements, residual signal are generated that depend 
on the model parameters and the real plant parameters. 

Nacusse and Junco (2011) address the PFTC-
problem of a two-tank system in the BG domain using 
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an energy and power shaping method (Junco 2004). 
This method first expresses the control system 
specifications in terms of desired closed-loop energy 
and power dissipation functions, proceeds further 
capturing both functions in a so called Target Bond 
Graph (TBG) that represents the desired closed-loop 
behaviour, and concludes constructing the controller via 
Bond Graph prototyping. This prototyping is such that 
the coupling of the resulting controller-BG and the 
plant-BG renders the whole equivalent to the TBG. In 
Nacusse and Junco (2011) the basic control law 
obtained in this way is robustified with additional terms 
derived considering a Diagnostic Bond Graph (DBG) of 
the closed-loop: the nominal control system represented 
by the TBG (originally proposed under ideal 
assumptions) is fed with the actual reference signals and 
measured plant outputs. Thus, the residual signal 
obtained from the closed loop DBG (CL-DBG) is a 
measure of the error between the desired and the actual 
dynamics of the control system. So, the control law 
aims at making the residual signal vanish in time, 
making the closed-loop system to behave 
asymptotically like the original TBG. 

The rest of the paper is organized as follows. 
Section 2 reviews some background results and 
summarizes the main results presented in Nacusse and 
Junco (2011). Section 3, revisiting this previous result 
on the two-tank system, addresses some BG 
manipulations that simplifies the controller and, 
simultaneously, provides a way to extend the design 
method employed in the simpler system to the 
multivariable four-tank process which in shown in 
Section 4. Next, Section 5 presents some simulation 
responses that prove the good dynamic response of the 
control system and, finally, Section 6 addresses some 
conclusions. 

 
2. BACKGROUND AND PREVIOUS RESULTS 
This section briefly summarizes the main ideas on 
performing energy shaping and damping assignment 
directly in the BG domain through BG prototyping and 
recalls their application to solve a control problem on a 
two-tank system as presented in Nacusse and Junco 
(2011). This result will be revised in the next section as 
a prelude to the development of the main result in this 
paper, the design of a controller for the quadruple-tank 
benchmark process. 
 
2.1. Energy- based control in the BG domain 
The power and energy shaping control technique 
defines the control problem as a stabilization one, 
choosing desired closed-loop energy- and power-
dissipation functions, and obtaining the control law 
through equations that match the control open-loop 
energy function (a kind of control Lyapunov function, 
see Sontag 1998) and the desired closed-loop functions. 
Passivity-based control on port-Hamiltonian models 
count among the most successful (Ortega, et al., 2002, 
Ortega, et al., 2008). 

In the BG domain, the closed-loop specifications are 
expressed by a so-called Target Bond Graph (TBG) 
representing the equivalent closed-loop behavior. In 
order to obtain the control law, the controlled sources –
which provide the manipulated variables in the BG 
model of the plant–  are prototyped (meaning that their 
behavior is expressed means BG components) in such a 
way that their power-interconnection with the rest of the 
plant BG –which is called a Virtual BG (VBG)– 
matches the TBG.The control law is obtained from the 
VBG by simply reading the outputs of the prototyped 
sources with the help of the causal assignment in the 
VBG. This method is exemplarily performed below on 
a two-tank system. For more details refer to (Junco 
2004).  

 
2.2. Control via BG-prototyping: the 2-tank system 
As shown in Figure 1, the tanks are located one above 
the other, the upper tank discharging into the lower 
tank. Both tanks are fed with a unique input flow 
splitted between them through a distribution valve 
whose parameter γ	 ∈ 	 �0,1� determinates how the input 
flow is distributed to the tanks as indicated by the BG in 
Figure 1. 

The control objectives imposed on Tank1 are: 
 
• Tracking of constant reference levels 
• Rejection of constant disturbances. 
• Robustness regarding parametric uncertainties 

and faults. 
 

 
Figure 1: Two-tank system and its BG model. Measured plant 
outputs encircled in red. 

The state equations can be read from the BG of 
Figure 1 using the standard procedure, giving as state 
variables the stored liquid volumes. Here the gauge 
pressures at the bottom of the tanks are chosen as state 
variables (instead the liquid levels used in Nacusse and 
Junco 2011) and presented in (1): 
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Where, with i=1,2, 	� represents the gauge pressu-
re at the bottom of Tanki; �� are the tanks hydraulic 
capacities and �� are coefficients depending on the cross 
sections of the outlet holes of the tanks. 

The proposed TBG for the closed loop system is 
shown in Figure 2 where the desired stored energy and 
power dissipation are expressed in terms of the tracking 
error state variable in (2) and (3). 

 

 
Figure 2: TBG for pressure control of lower tank. 
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The tracking error 	� = 	� − 	�$�% is the state 

variable of the TBG and 	�$�% is the Tank1 reference 
pressure. 

To enforce the desired closed-loop dynamics 
specified by the TGB, the Virtual BG (VBG) of Figure 
3 is constructed. It shows how to proceed in order to 
obtain the control law. The left half of the figure is 
obtained prototyping the controlled power source MSf 
in such a way that access is gained to the chosen output, 
the pressure x1, and an overall equivalent behavior to 
the TBG is achieved. The first objective is achieved via 
the exact compensation of the Tank2 pressure on the 
pump over the distribution valve and of the discharge of 
Tank2 on Tank1. The second objective is reached first 
adding the virtual elements with negative “gains” that 
cancel the own dynamics of Tank1 and later building 
the incremental dynamics around the reference pressure 
&�$�% for Tank1 via the insertion of  the virtual elements 
': ��and MSe (shapes the closed-loop energy) and 
): *+ (damping assignment). 

 

 
Figure 3: Virtual and plant BG. 

Using the standard causality reading procedure the 
control law (12)can be read directly from the VBG as: 
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Assuming exact model knowledge and perfect 

measurements, this control law yields a closed-loop 
behavior equivalent to the TBG of Figure 2, i.e., the 
closed-loop dynamics satisfies (3). 

Remark: the rated control law (4) performs a 
partial energy shaping and damping assignment, since 
only the dynamics of Tank1 is captured in the TBG. As 
no objectives are imposed on Tank2 and its dynamics is 
hidden in closed-loop, its stability must be analyzed 
after the controller has been designed, property that can 
be easily verified in this case. 

 
Perturbed closed-loop dynamics. Because of 

parameter dispersion, faults, modeling errors, sensor 
limited precision, noise, etc., neither the model nor the 
measurements are exact. To deal with this it is 
convenient to think the control input as composed by 
two terms as in (5), where �$ is the “rated” part of		�, 
i.e., the control input part that performs the power and 
energy shaping under ideal plant and measurement 
conditions. In the same expression, 34 is the unknown 
controller part due to modeling errors, parametric 
dispersion, faults, etc. The BG of Figure 4 reflects this 
situation. 
 
� = �$ + 34	 	 �5�	
 

 
Figure 4: Perturbed TBG. 

Under this situation the closed-loop dynamics no 
longer satisfies (3) but (6). 
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2.3. Robustifying the control law 
The CL-DBG is defined injecting the pressure tracking 
error (as measured on the real control system) into the 
TBG through modulated sources and collecting a 
residual signal as shown in Figure 5.  

 

 
Figure 5: Proposed CL-DBG. Measurements to be fed 
encircled in red. 

The CL-DBG yields to the new error dynamics in (7) 
which is driven by the residual signal 789. The residual 
signal, which is the power co-variable of the error 
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injected into the CL-DBG, is a measure of the 
difference between the actual and the ideally expected 
closed-loop dynamics, i.e., when 789 = 0, 	� responds 
as previously defined in the TBG of Figure 2. This 
suggests that the control objectives could be reached 
extending the previously computed control law to a new 
one � = �/	�, 	�, 	�$�% , 7890 incorporating the residual 
signal in such a way that 789 tends to zero with growing 
time. 
 

	
� = − �
�� !

	� + $�:
��

 (7) 
 

The residual expression (8) obtained reading the 
CL-DBG clearly shows that choosing � as in (4) (rated 
control law) yields 789 = 0, in absence of faults and 
modeling errors. 
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To improve the control system robustness, the 
extra term u4 shown in (9) is added to the expression (4) 
for u. 

 

� = , �
���- .��√	� − ��√	� − �

 !
/	� − 	�

$�%0 +
��	
�$�% + �>1 (9) 

 
Choosing �> = −@ A 789 yields the residual 

dynamics (10): 
 
789
 + @ 789 = (1 − <B)34
  (10) 
 

Thus, with constant 34, 789 goes asymptotically to 
zero with time constant 1/@. As already anticipated, 
this forces 	� to approach asymptotically the desired 
error dynamics defined in the TBG of Figure 2. 

Representing �> in terms of /	� − 	�
$�%0 yields 

(11), expression showing that, in this case, the residual 
signal defined in the CL-DBG has a PI structure. Note 
however that this does not necessarily generalize, since 
the resulting structure depends on the TBG.  
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3. THE TWO-TANK PROBLEM REVISITED 
In this Section the two-tank problem is revisited. First, a 
causal manipulation of the original system BG is shown 
which leads to a simplification of the control law and 
will be advantageously used in the process of deriving 
the control law for the quadruple-tank system. Second, a 
BG interpretation of the robustifying additional term is 
provided.  
 
3.1. Causal manipulation and simplified control law 
In Figure 1 the flow E�� from Tank2 into Tank1 is 
computed by the R-element representing the discharge 

orifice of the former. Putting in derivative causality the 
upper C-element (models the potential energy stored in 
the upper tank) yields the BG of Figure 6, where the 
discharging flow is computed as the sum of the 
incoming flow from the source and the output flow to 
the upper C element, i.e., E�� = <� − EF�. This new 
computation justifies the equivalent BG of Figure 7. 

 

 
Figure 6: BG model of the two tanks system with the upper C 
in derivative causality. 

 
Figure 7: Equivalent plant model after manipulation of the 
original BG. 

Furthermore, as the control objectives are placed 
only on Tank1, for control system design purposes the 
equivalent plant model shown in Figure 8 can be 
considered, where the effect of Tank2 enters as a 
disturbance.  

 

 
Figure 8: Equivalent control system design BG. 
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Following similar steps as those detailed in Section 
2.2, the VBG of Figure 9 can be constructed to enforce 
the desired closed-loop dynamics specified by the TGB. 

 

 
Figure 9: Virtual and plant BG. 

The control law (12) can be read directly from the 
VBG using the standard causality reading procedure: 
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Remark: Equations (4) and (12) are fully 

equivalent and both show the need to measure not only 
the pressure of Tank1 but also that of Tank2 to 
implement the control law u. However, equation (12) –
which results from the above manipulation performed 
on the BG– has the advantage of showing that its last 
term can be eliminated from the control law as it is an 
evanescent perturbation, i. e., it vanishes in steady state, 
and as such it does not affect the equilibrium point. 
Doing so yields the control law (13) which can be 
implemented with the sole measurement of 	�. 
However, it must be realized that this simplification 
amounts to modifying the TBG as indicated in Figure 
10. 
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Figure 10: New TBG without measuring 	�. 

3.2. BG interpretation of the robustifying term 
This subsection revisits the result of (Nacusse and 
Junco 2011) summarized in Section 2.3 of this paper in 
order to provide a BG implementation of the additional 
term �> of the control law given in (11). 

The TBG defines the closed loop dynamics of the 
system. To robustify its behavior it is necessary to inject 
an additional control action. In order to analyze this 
problem in the BG domain a concise word BG version 
of Figure 9 is presented in Figure 11. Departing from 
Figure 11, Figure 12 shows the word BG of a power 
interconnection proposed as a means to provide the 
additional control action. There, the word BG block 
named mDBG must be capable of rejecting all of the 
above-mentioned disturbances. 

 
Figure 11: Power coupling between plant BG and VBG to 
obtain the TBG. 

 
Figure 12: Proposed power interconnection 

In the approach presented in Nacusse and Junco 
(2011) a residual signal is generated through a CL-DBG 
as indicated in Figure 13 (cf. Figure 5) (see Appendix B 
for a brief description of the DBG for FDI purposes). 
This residual measures the error between the PTBG and 
the TBG and is used to generate an additional control 
action forcing this error to vanish in steady-state (as 
well as the residual itself). 

 

 
Figure 13: Signal coupling between PTBG and TBG through 
closed loop DBG.  

The additional control action �> (a hydraulic flow) 
given in (11) in terms of the tracking error (a pressure) 
can be interpreted as produced by an effort-sharing set 
of a hydraulic resistance and inertance, i.e., an I - and a 
R-element. Figure 14 shows the resulting closed loop 
BG with power coupling between the PTBG and the 
mDBG, where *� = 1 @��⁄  and H� = *+ @⁄ . 

 

 
Figure 14: Power coupling between the PTBG and the mDBG. 
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Figure 15 shows the resulting closed loop BG, 
where the power interconnection among the plant BG, 
the VBG and the mDBG is highlighted in dotted 
squares. Notice that the redundancy in the MSe which 
injects the – &�

$�% can be eliminated by shifting the 
mDBG into the VBG as it is shown in Figure 16. 

 

 

Figure 15: Resulting closed loop BG. 

 
Figure 16: Closed loop BG with mDBG coupled into the VBG 

Remark: As already anticipated, with constant δK, the 
tracking error 	� approaches zero asymptotically, as it 
can be easily verified through a causal and power 
analysis of the BG in Figure 14. Indeed, with constant 
disturbances at the outputs of both MSf, the I -element 
integrates its input effort &� until it is driven to zero. At 
the same time, the I -element keeps at its output a 
constant flow-value which exactly cancels the sum of 
the MSf-flows and, thus, generates a zero-flow situation 
at the input of the C-element, which in turn keeps	&� in 
zero, which is precisely the control objective. The 
stability of this situation depends on the R elements 
being strictly dissipative (Junco 2001), which is of 
course ensured by design. 

 
4. APPLICATION TO THE FOUR-TANK 

BENCHMARK PROBLEM 
The four-tank system depicted in Figure 17 is a TITO 
nonlinear plant consisting of four interconnected water 
tanks fed by two pumps, whose linearized model has a 
multivariable zero, which can be made minimum or 
non-minimum phase by simply changing the position of 
two distribution valves. 

 

 
Figure 17: Four-tank system with measurements encircled in 
red. 

4.1. Causal manipulation and controller design 
In this subsection the control law for the four-tank 
system is designed. The control objectives are the same 
of that proposed for the two-tank system, in this case 
imposed on both of the bottom tanks. 

 

 
Figure 18: BG model of the four-tank system. 
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associated R-elements but as the difference between the 
flows of the sources minus their net input flows 
(<�	�� −	�L&
L and <�	�� −	�>&
>). This manipulation 
permits to construct the new BG given in Figure 20. 
This BG exhibits two internal variables ��∗ and ��∗ , 
which in the sequel are going to be treated as virtual 
control inputs. Seen from the bonds associated to these 
two auxiliary flow variables the quadruple-tank problem 
appears as two decoupled two-tank problems. Hence, 
the multivariable problem is strongly simplified, as the 
previously developed procedure can be first applied to 
each sub-problem and then the overall control law be 
recovered using the causal relationships relating the 
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auxiliary variables with the control inputs provided by 
the power-conserving structure. 
 

 
Figure 19: BG of the four tanks system with upper tanks in 
derivative causality. 

The real and the virtual control inputs are related 
through a transformation matrix which is given in (14). 
Notice that when <� + <� = 1 the transformation matrix 
is singular. In this condition of the distribution valves 
the multivariable zeros (of the linearized system) are 
placed at the origin of the complex plane. 

 

N��∗
��∗

O = N(1 − <�) <�
<� (1 − <�)O .����1 (14) 

 
The virtual control laws, obtained following the 

same procedure as in the two-tank example ignoring the 
vanishing term, are given in (15). 

 

��∗ = ��√	� − �
 !�

/	� − 	�
$�%0 + ��	
�$�%

��∗ = ��√	� − �
 !�

/	� − 	�
$�%0 + ��	
�$�% (15) 

 
4.2. Robustifying the control law 

The virtual control laws (15) are robustifyied, as in 
the two-tank example, via power coupling of the mDBG 
or by simply adding a term like (11) to each equation of 
(15). This yields the real control laws given in (16) and 
(17). 

 

�� = − �
��P���� Q(1 − <�) N��√	� − �����RST

 U�
+ ��x
 �WXY −

@���/	� − 	�WXY0 − D�
 U�

A/	� − 	�WXY0O − <� N��√	� −
�����RST

 U�
+ ��x
 �WXY − @���/	� − 	�WXY0 − D�

 U�
A/	� −

	�WXY0OZ   (16) 

 

�� = − �
��P���� Q(1 − <�) N��√	� − �����

[\]

 !�
+ ��	
�$�% −

@���/	� − 	�
$�%0 − D�

 !�
A/	� − 	�

$�%0O − <� N��√	� −
�����

[\]

 !�
+ ��	
�$�% − @���/	� − 	�

$�%0 − D�
 !�

A/	� −
	�

$�%0OZ   (17) 

 
Using (16) and (17) the stability of the hidden 

closed-loop dynamics of Tank_3 and Tank_4 can be 
verified.  

 

 
Figure 20: BG model after manipulation for controller design. 
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5. SIMULATION RESULTS. 
The parameters used in the simulations, shown in Table 
I, were obtained from (Johansson 2000), where ^� are 
the cross section areas of the tanks, related to the tanks 
hydraulic capacities by the relation	�� = ^� _`⁄  where _ 
is the liquid (water) density and ` is the gravitational 
acceleration. The parameters of the mDBG are *+� =
*+� = 10 and @� = @� = 0.01. 

 
Table I. Simulation parameters 

Parameter Value 
^�,	^L 28	bc� 
^�,	^> 32	bc� 
��, �L 0.071	bc�dbcL `7⁄  
��,	�> 0.057	bc�dbcL `7⁄  

 
Using the control laws (16) and (17) with noisy 

measurements, with normal distribution and amplitude 
	e = 0.1	bc, of the bottom tanks pressures, the 
simulation scenarios involve abrupt faults in the system. 
To show the robustness of the control laws, the used 
parameters are -10% and +10% for those related with 
Tank1 and Tank2 respectively. For illustration purposes 
the simulations show tanks levels instead of tanks 
pressures.  

The first simulation scenario, Scenario_1, consists 
of a minimum phase configuration with valves positions 
in <�$ = 0.3 and <�$ = 0.2. This are rated values used 
to parameterize the control laws. In this scenario two 
sequential faults occurred: at time f = 20009 the value 
of the cross section area of outlet hole of Tank2 is 
increased by 50% (forcing the same increment in ��); 
and at time f = 50009 the value of the valve position 
changes to <� = 0.6. 

 

 
Figure 21: Tanks levels responses for sequential faults in 
Scenario_1. 

The simulation responses for Scenario_1 are 
shown in Figure 21 and Figure 22, which show that 
despite the faults occurrence the control system behaves 
as expected and the bottom tanks levels follow their 
references. For both cases, the control inputs, 	�� and 
	��, force to zero the residual signals in order to reject 
the faults. 

  

 
Figure 22: Residual signals and control inputs for sequential 
faults in simulation Scenario_1. 

In simulation Scenario_2 a non-minimum phase 
configuration is tested, where the valves position are 
placed at: <�$ = 0.7, <�$ = 0.7. Again two sequential 
faults occurred, the first, at time f = 60009 where the 
value of the position valve changes to <� = 1 which 
physically implies that pump_2 injects all its flow to 
Tank_3; and the second, at time f = 150009, where the 
value of the cross section area of outlet hole of Tank1 
(��) is increased by 50%. 
In this scenario the bottom tank levels follow their 
references rejecting the disturbances originated by the 
faults occurrence as it is shown in  
Figure 23. Figure 24 shows the associated residual 
signals and the control inputs. Here again, the control 
inputs force the residual signals to remain at zero to 
reject the faults. 
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Figure 23: Tanks levels responses for sequential faults in 
Scenario_2. 

 
Figure 24: Residual signals and control inputs for sequential 
faults in simulation Scenario_2. 

6. CONCLUSIONS 
This work addressed the design of a robust controller 
for a multivariable four-tank system in three stages. A 
(partial) energy shaping and damping assignment 
control system design technique in the bond graph 
domain was first applied to obtain an almost-exact I/O-
feedback linearizing controller for a simpler two-tank 
problem. The controller is just almost-exact because a 

feedback term was ignored in the (otherwise exact) 
control law in order to spare a measurement. The 
second stage proceeded to robustify the previous 
controller to which aim a closed-loop diagnostic bond 
graph was introduced. Finally, a causal manipulation 
was performed on the BG of the quadruple-tank that 
permitted handling the associated multivariable problem 
as two monovariable decoupled problems, each for a 
simple two-tank system. 
Simulation results demonstrate the good response and 
the fault tolerance of the control system. 
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APPENDIX A: RESIDUAL SINKS 
The residual sink component injects the necessary effort 
or flow in order to make vanish the power conjugated 
variable into the sink. 

A residual sink element can be interpreted as an 
energy store where it parameter tend to zero. For 
example, an effort residual sink can be interpreted a C 
element in integral causality: 

 
�8
 = ∆i 

 
If the parameter C tends to zero, then 8
 is 

determined by the algebraic equation	∆i = 0. 
Figure 25 shows the graphical representation of the 

effort and flow residual sink used in (Borutzky 2009).  
 

 
Figure 25:flow and effort residual sink. 

 
APPENDIX B: DIAGNOSTIC BOND GRAPH 
The Diagnostic Bond Graph was first presented by 
(Samantaray, et al. 2006) for numerical evaluation of 
analytical redundancy relationships (ARR). The ARRs 
are calculated to perform FDI in an AFTC frame. 

Basically, the DBG is obtained from a BG model 
of the plant injecting the plant measurements and inputs 
through modulated sources. The residual signal is 
obtained by measuring the power co-variables of the 
modulated sources, see Figure 26. 

 
Reading directly from the BG the residuals are: 

 
7891 = ��	
� + ��√	� + ��√	� − �1 − <��
7892 = ��	
� + ��√	� − <�																													

	 �18�	
 

As can be noted in (18), the residuals depend on 
system parameters. If the model represents perfectly the 
controlled system, then the residual signals are zero. 
The differential causality is an advantage in FDI, 
because no initial states are necessary to evaluate the 
residuals. 
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Figure 26: Diagnostic Bond Graph of the two tank system. 
Plant measurements to be fed into the DBG encircled in red. 
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