
TUNING THE POSITION OF A FUZZY COGNITIVE MAP ATTRACTOR USING
BACKPROPAGATION THROUGH TIME

Michal Gregor(a), Peter P. Groumpos(b)

(a)Department of Control and Information Systems, Faculty of Electrical Engineering, University of Žilina
(b)Laboratory for Automation and Robotics, Department of Electrical and Computer Engineering, University of Patras

(a)michal@ gregor.sk , (b)groumpos@ece.upatras.gr

ABSTRACT
The paper proposes a new learning method for fuzzy
cognitive maps, which makes it possible to encode an
attractor into the map. The method is based on the
principle of backpropagation through time known from
the theory of artificial neural networks. Simulation
results are presented to show how well the method
performs. It is shown that the results are superior to
those achieved using Hebbian learning approaches such
as nonlinear Hebbian learning. Some lines for possible
future research and development are given.

Keywords: fuzzy cognitive maps, learning,
backpropagation.

1. INTRODUCTION
Fuzzy cognitive maps (FCMs) represent a well
recognized method in the theory of soft computation.
They exhibit several noticeable traits, which make them
similar to artificial neural networks (ANNs). More
specifically the FCM can be considered as a distinct
type of a single-layer recurrent neural network with
synchronous activation of units.

Some learning methods from the theory of ANNs
have been introduced into the theory of FCMs before.
Most notable among these approaches is a family of
methods based on Hebbian learning.

The paper will present a new method for encoding
an attractor state into an FCM using the principle of
backpropagation through time. The theoretical
background of the method will be outlined hereinafter,
and results of several simulation experiments will be
presented as well as their evaluation and discussion of
possible future lines of research.

2. DELTA RULE AND BACKPROPAGATION
Let us in this section cover some of the basic theory of
supervised error correction learning in artificial neural
networks (ANNs). It will later be shown how ANNs are
related to fuzzy cognitive maps (FCMs), and how this
theory may find applications there.

2.1. Artificial Neuron
In order to set down how the learning method works, let
us first with all due brevity give a basic definition of

what we mean by the artificial neuron, and by artificial
neural networks in general.

An artificial neuron is a structure, which has (a) its
set of inputs X ={x1 , x2 , ... , xn} , (b) a set of weights
corresponding to the inputs W={w 1 , w2 , ... , wn} , (c) its
threshold Θ , its squashing function f (which is
perhaps most often the sigmoid function, or the
hyperbolic tangent) (Krose and Smagt 1996). The
illustration is given in Figure 1.

AN
O= x

x
0

x
1

x
2

w
2

w
1

w
0

Figure 1: Unwrapping a recurrent network

The output of the neuron is determined in the
following fashion (Krose and Smagt 1996):

O= f (u−Θ)= f (∑
i=1

n

(wi x i)−Θ) , (1)

where u is the inner potential of the neuron.
Furthermore, in order to simplify derivation of the

learning rules, the threshold value Θ is often
interpreted as a bias received from a neuron with the
constant output of 1 – thus the threshold value does not
have to be considered separately, and its value can be
learned in the same way as the weights of the inputs.

By an artificial neural network (ANN) we simply
understand a collection of mutually interconnected
artificial neural networks.

2.2. The Delta Rule
The delta rule is probably the best known approach
(based on error correction) to learning weights of an
artificial neuron. It has been designed for supervised
learning – that is to say learning from a dataset

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

78

mailto:mail@uni.edu
mailto:mail@uni.edu

consisting of pairs of the following form: (input,
desired output). In other words, for every sample's input
in the dataset, its corresponding desired output is
specified as well.

This allows formulation of an error function
(Krose and Smagt 1996):

E (W)=∑
p

E p
(W)=

1
2
∑

p
(D p

−O p
)

2
, (2)

where D p and O p denote the desired and the real
output for input pattern p .

Once such error function has been formed, the idea
behind delta rule is to do gradient descent minimization
with respect to the weights, thus bringing the real output
as close to the desired output as possible. For linear
neurons (neurons with no squashing function) the
following rule – known as the delta rule – has been
derived (Krose and Smagt 1996):

Δ p w j=γδ
p x j , (3)

where Δ p w j denotes the prescribed change of weight
w j due to pattern p , γ is the learning rate, and:

δ
p
=D p

−O p . (4)

The delta rule can be generalized for non-linear
neurons as well, in which case it contains the derivative
of the squashing function f ' (Krose and Smagt 1996):

δ
p
=(D p

−O p
) f '

(u p
) , (5)

where u p is the inner potential of the neuron with
pattern p at the input.

2.3. The Backpropagation Principle
The delta rule cannot by itself be used for learning in
multi-layer networks, because only the errors of the
output neurons can be computed directly using (3) or
(4) – desired outputs of hidden neurons remain
unspecified.

However, the delta rule can be generalized to
multi-layer networks using the backpropagation
principle.

In this case the error is propagated back from the
output layer to hidden layers. Again, the full derivation
of the rule can be found in (Krose and Smagt 1996).
The rule itself can be stated as follows:

δh
p
=F '

(uh
p
)∑

o=1

N o

δo
p who , (6)

where h refers to a neuron of the hidden layer, and o
refers to neurons of the output layer. N o is the number
of neurons in the output layer. If there are several
hidden layers, the principle can be applied recursively.

2.4. Backpropagation Through Time
Backpropagation through time (BPTT) is a further
extension of the principle to recurrent neural networks.
Recurrent neural networks (RNNs) are networks in
which signals may propagate from one time step to
another (as opposed to feed-forward neural networks,
which only propagate inputs from the current step and
have no memory).

The idea is that an RNN can be unwrapped in time
into a feedforward neural network, and then trained
using backpropagation.

Figure 2 shows an example of unwrapping a
single-layer recurrent neural network in 3 time steps,
resulting in a feedforward neural network with 3 layers.

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

C1

C2

C3

C4

k=1 k=2 k=3

Figure 2: Unwrapping a recurrent network

For additional details and precise mathematical and
algorithmic formulations the reader may refer to
Werbos (1990). For the present purpose, what has
already been said concerning backpropagation itself
should suffice.

2.5. Vanishing/Exploding Gradients
The backpropagation principle faces significant
problems when applied to deep neural networks. The
same kind of problem is usually associated with RNNs
using BPTT – because RNNs become deep themselves
when unwrapped in time.

The problem that occurs is referred to as the
vanishing/exploding gradients problem. When the errors
are propagated back through the network, unlike the
forward pass no squashing functions are applied.
Depending on the values of the weights, the gradients
tend to grow very small (vanishing gradient), or very
large (exploding gradient) after they have been
propagated through a number of layers (Sutskever,
Martens, Hinton 2011).

However, lately some considerable advances in
deep learning have been introduced through the work of
Hinton, and Salakhutdinov (2006), and Bengio et al.
(2007). These mainly advocate careful initialization of
the weight matrix based on unsupervised pre-training.

An important breakthrough in the theory of deep
learning has been marked by Martens (2010). The
author has developed an application of Hessian-free
optimization method to learning in deep networks. It

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

79

has later been shown that this approach can indeed be
adapted for recurrent neural networks as well (Martens,
and Sutskever 2011). Applications of the method have
since begun to appear (Sutskever, Martens, Hinton
2011).

In consequence of these developments, the
backpropagation principle has lately been experiencing
a renaissance. Backpropagation coupled with
Hessian-free optimization is now counted among the
most promising tools for learning in both – deep neural
networks and recurrent networks.

3. FUZZY COGNITIVE MAPS
Fuzzy cognitive maps (FCMs) are a symbolic
representation for the description and modeling of
complex systems (Groumpos 2010). They can be
expressed and visualized using a weighted directed
graph such as that shown in Figure 3.

The nodes of such graph represent the concepts
associated with the system being modeled. The number
and kind of concepts that form any particular FCM is
determined by experts from the corresponding field of
knowledge (Groumpos 2010). Every concepts C i is
associated with its activation value Ai . The activation
values are most often taken from the interval [0,1] , or
[−1,1] (this depends on the particular squashing

function used – see equation (7) for the context).

C
1

C
2

C
3

C
4

C
5

C
6

w
12

w
13

w
35

w
43

w
54

w
56

w
25

Figure 3: Fuzzy cognitive map – an example

 The edges in the graph are directed and weighted.
They express causal relationship between the concepts.
An edge directed from concept C i to concept C j

represents the knowledge that there is a causal link
between C i and C j .

The weight of the edge going from C i to C j is
denoted w ij ∈ [−1, 1] , and it specifies the strength of
the causal link. If w ij>0 , we can say that concept C i

causes C j to some extent – it contributes positively to
its activation value. If w ij<0 , concept C i has negative
influence on the activation value of C j . If w ij=0 ,
there is no causal link at all (such edges are usually not
drawn when the FCM is visualized).

At every time step the activation values of the
concepts are updated. The update is synchronous. The
update rule has several distinct forms. First of all there
is the rule proposed in Kosko (1993) [the notation has
been modified for the sake of consistency]:

Ai
(k +1)= f (∑

j=1

N

A j
(k) w ji) , (7)

where N is the number of concepts, Ai
(k) is the

activation value of concept C i at time step k . f is
the squashing function, which squashes the dot product

∑
j

A j
(k)w ji into some convenient interval.

Most often, f is either the sigmoid function,
which squashes the dot product into interval [0,1] :

S (x)=
1

1+e−x , (8)

or the hyperbolic tangent, which yields the interval
[−1,1] .

There are other forms of the rule. In some works,
such as Groumpos and Stylios (2000) the feedback links
from the concept to itself are removed:

Ai
(k +1)

= f (∑j=1
j≠ i

N

A j
(k) w ji) . (9)

In other versions, the feedback link is reintroduced,
but the same weight is shared by all concepts
(Groumpos and Stylios 2000):

Ai
(k +1)

= f (k 1∑
j=1
j≠ i

N

A j
(k)w ji+k 2 Ai

(k)) , (10)

where k1 and k 2 are constants, such that
0≤k 1 , k2≤1 .

Unless specified otherwise, we will adhere to the
rule given in equation (7) in this work, because that is
the most general one.

The weight matrix of the FCM is usually
constructed by experts. There are several approaches
which make the task easier and more reliable – for
discussion of these, the reader may refer to Groumpos
(2010), Stach, Kurgan, Pedrycz (2005a), or Stylios,
Christova, and Groumpos (2002) for an instance.

It should also be noted that the FCM need not be
acyclic. In the presence of cycles, the issue of stability
naturally comes into mind. As mentioned in Dickerson,
and Kosko (1993), the FCM will quickly settle down to
a fixed point, to a limit cycle, or to a chaotic attractor
(for illustration, see Figure 4).

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

80

Figure 4: FCM attractors: fixed-point, limit-cycle,
chaotic (Dickerson, and Kosko 1993)

3.1. The Relation between FCMs and Artificial
Neural Networks

It is obvious that there is a close resemblance between
the FCM model as described in equation (7), and the
ANN model as shown in equation (1). More
specifically, an FCM can be considered as a distinct
type of a single-layer recurrent neural network with
sigmoid squashing functions and synchronous
activation of units.

The FCM can also be viewed as an extension of
the concept of a Hopfield network to which its
architecture bears several similarities. However, the
analogy is not complete – there are several traits in
which these differ. Most notably perhaps, the Hopfield
network has been designed for binary (0 and 1) or
bipolar (-1 and 1) activations, it uses the sign function
as the squashing function, and its units are activated
asynchronously. Also, the theory of learning developed
for Hopfield is based on the concept of an energy
function. The energy function derived for Hopfield
networks requires that the weight matrix be symmetric
(Krose and Smagt 1996), (Rojas 1996).

ANNs are notorious for their lack of
interpretability. The knowledge they contain is implicit
– it is sometimes called procedural knowledge fro this
reason.

In spite of their close relationship with ANNs,
FCMs do not generally suffer from the same problem,
because the knowledge they represent is modelled very
explicitly. If the FCM is constructed by experts then it
naturally follows that its dynamics are (by definition)
well understood. Even in cases when one learning
method or other is used to modify the weight matrix or
to learn it from scratch, the inner workings of the
resulting model typically remain transparent, due to the
fact that every node is linked with a distinct concept.

Naturally, this feature is paid for by the fact that
the FCM is not a universal approximator. To put this
more precisely – if the concepts are linked by a more

complex relationship, which cannot be adequately
represented using a single connection, the expert must
explicitly provide all the auxiliary concepts required to
express such relationship. In multi-layer artificial neural
networks, neurons are not associated with particular
concepts, and thus any of them is free to participate in
modelling the relationship.

It may also be noted that – in contrast to ANNs (1),
the FCM model (7) does not contain the threshold term.
Thus, the absolute term of the linear relationship
expressing the inner potential u is missing – if any
given concept is to have some non-zero potential even
though all of its input concepts have the activation value
of zero, this is not possible to achieve unless an
additional concept is added for that express purpose.

In any case, it should be obvious that there is a
trade-off between the excellent interpretability of FCMs
on one hand, and the ability of multi-layer ANNs to do
universal approximation. Some work has been invested
into creating hybrid models, which offer trade-off points
closer to the conventional ANNs. Among these the
fuzzy cognitive network of Kottas, Boutalis, and
Christodolou (2007) can be mentioned, or the fuzzy
neural network of Wang and Wang (2013) can be
mentioned.

Furthermore, even though the concepts and
weights of a conventional FCM are usually determined
by experts, the close connection between the theory of
FCMs and the theory of ANNs has been fuelling a
promising line of research, which strives to bring some
of the learning methods from the theory of ANNs to
perform learning in FCMs. The next section covers
some of the existing approaches.

3.2. Fuzzy Cognitive Maps and Learning
We have now covered some of the basic ideas and
concepts associated with FCMs and their close relation
to ANNs. In this section, we will consider the problem
of learning the weight matrix of an FCM.

We note that there are two main classes of
problems in the theory of FCMs, to which the existing
learning methods apply: (a) the regression problem, that
is to say how a fuzzy cognitive map can be trained as a
regression model for a given dataset; (b) the attractor
problem, that is to say given an initial fuzzy cognitive
map, how can we shift a fixed-point attractor to a
desired point, to encode a given limit-cycle, etc.

The most notable among the existing approaches
inspired by the theory of ANNs are those based on
Hebbian learning – to the description of these we now
turn.
3.2.1. Differential Hebbian Learning

The first among the methods inspired by Hebbian
learning is the so-called differential Hebbian learning
(DHL) proposed by Dickerson and Kosko (1993). It
introduces the following rule (notation modified for the
sake of consistency):

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

81

Δw ij={ct [Δ Ai Δ A j−w ij] if Δ Ai≠0

0 else
, (11)

where Δ Ai (t)=Ai (t)−A i(t−1) , and c t is the
learning rate, which decreases in time. Dickerson and
Kosko (1993) propose the following rule for c t :

c t(t k)=0.1[1−
t k

1.1 N] . (12)

A follow-up on this method can be found in
Huerga (2002). The author shows that rule (11) has a
considerable weakness in that it cannot encode some
types of sequences correctly. If, for example, concept 4
should change its activation to 1 after concepts 1, 2, and
3 change their activations to 1, after learning is
performed using DHL, concept 4 will react to any of the
concepts, and not only to their simultaneous activation
(Huerga 2002). The approach know as balanced DHL,
is proposed instead in Huerga 2002.

Both of these approaches – DHL and balanced
DHL – are able to encode attractors into the FCM.
However, both of them also share a common
disadvantage: the authors only consider encoding binary
(or bipolar) attractors (as opposed to real-valued
attractors). More importantly, even for such cases, the
rules are unable to encode an arbitrary sequence.

3.2.2. Active Hebbian Learning
In Papageorgiou, Stylios, and Groumpos (2004b) the
authors propose another learning method based on
Hebbian learning – the active Hebbian learning (AHL)
method.

AHL introduces the idea of the sequence of
activation of the concepts. The expert specifies the
sequence and manner (synchronous, asynchronous) in
which the concepts are activated. The process starts
from a concept which activates concepts linked to it,
and thus the activation propagates until all the concepts
have been activated at which point the simulation cycle
stops and a new one starts.

Learning is based on the following rule:

w ji (k)=(1−γ)w ji (k−1)+ηA j
act

(k −1)A i(k−1) , (13)

where γ , and η are tunable parameters, and A j
act is

the value of the activation concept. In addition to this
Papageorgiou, Stylios, and Groumpos (2004b) also
suggest normalization of the weight matrix to size 1
after every step, so as to prevent their growing
indefinitely.

3.2.3. Nonlinear Hebbian Learning
Finally, there are several papers (e.g. Papageorgiou,
Stylios, and Groumpos 2003; Papageorgiou, and
Groumpos 2005a; Papageorgiou, Stylios, and
Groumpos 2006; Stach, Kurgan, and Pedrycz 2008)
discussing the so-called nonlinear Hebbian learning

(NHL). The learning rule used in this approach is based
on the Oja rule, and it has the following form:

Δw ji=ηA j (Ai−A j w ji) . (14)

In Papageorgiou, and Groumpos (2005a) the rule is
further extended into the following:

w ji
(k)

=γw ji
(k−1)

+ηA j
(k−1)(A i

(k−1)

−sgn (w ji
(k−1))A j

(k−1)w ji
(k−1))

. (15)

This introduces the weight decay parameter γ , and
term sgn(w ji

(k −1)
) , which is supposed to maintain the

sign of the corresponding weight (thus keeping the
physical meaning of the corresponding relationship
between the concepts) (Papageorgiou, and Groumpos
2005a).

It should also be noted that the mode in which in
these works NHL rule is coupled with the execution of
the FCM is what makes the method quite distinct from
the other learning methods discussed so far.

An initial FCM is constructed by the experts. This
is run in the standard way using one of the equations
(7), (9), (10). But in addition to this at every step, rule
(14) or (15) is applied to the FCM using the values of
concepts computed in that step. Thus the NHL method
does not simply perform learning – it is used online to
help drive the process, and to facilitate convergence to a
target attractor. The method is not simply meant to train
the FCM to perform a given task, or to encode a given
attractor. Rather, it actively participates in the execution
of the FCM – it adjusts the FCM cause-effect
relationships and controls the system's output concepts
(Papageorgiou, Stylios, and Groumpos 2006).

A more traditional application of the NHL rule is
proposed by Stach, Kurgan, and Pedrycz (2008). In this
case, NHL is used to make an FCM with a randomly
initialized weight matrix learn the cause-effect
relationships from historical data. In other words – the
FCM learns to approximate a given data sequence. The
authors use another randomly generated FCM to
produce the data sequence, but the data could, naturally,
come from the real system. The authors call this
approach data-driven NHL (DD-NHL).

4. THE PROPOSED APPROACH
In this paper, we aim to approach the attractor problem
using the concept of backpropagation through time. We
refer to it as BPTT-based attractor setting (BAS). That
is to say, given a specification of what the steady state
should look like, and how quickly the model should
converge to it, we use BPTT to encode this information
into the FCM.

4.1. Using BPTT to Set the Attractor
Using BPTT we can train the FCM to give the desired
response to a desired input. If we present it with an
input, and run it for k steps, we can compare the real

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

82

output with the desired output, compute the error and
backpropagate it through time in order to learn the
weights.

Thus, if our intention is to set the attractor of the
FCM, we may create an FCM with a randomly
initialized weight matrix, run it for k steps from a
number of randomly-generated initial states, and do
backpropagation. The learning method should be able to
generalize, and so when we run the FCM from an initial
state for which it has not been trained, it should still end
up in the same attractor.

In theory it should certainly possible to encode
limit cycles as well as fixed-point attractors,
nevertheless in this paper we will focus on fixed-point
attractors only. It is obvious that in addition to coming
to the desired state after k steps, the FCM should also
remain in that state, if it is supposed to be an attractor.

To ensure this, we propose to specify that the FCM
should be in the desired state after k steps (BPTT
steps), and should retain the same for m further steps
(stabilising steps). If m is large enough, this should
ensure that the FCM remains in the desired state
indefinitely.

It should also be noted, that for the m steps, no
BPTT needs to be done, because having the desired
activation value of every concept, we can compute the
error in every step precisely. BPTT is thus only done for
the k steps.

However, backpropagation and BPTT could be
useful in such cases, when the entire attractor is not
specified, but rather only the values of certain concepts
are available. In such case, we can use backpropagation
and BPTT to compute errors for the missing concepts.

4.2. Vanishing/Exploding Gradients in FCMs
The vanishing/exploding gradient problem has been
mentioned in connection with backpropagation learning
in ANNs. Naturally the same problem may occur in
FCMs. We conclude, however, that – probably owing to
their limited size (according to Stach et al. (2005b) in
practice FCMs are relatively small and most of them
consist of 5-10 concepts), and also due to the fact that
they are single-layer themselves – we did not find the
gradient explosion/vanishing problem to hinder learning
considerably.

The problem does occur in some cases (which is to
be expected – especially when using naïve initialization
methods), but these are not very frequent and it is
possible to work around the problem by selecting a
different initial point in the weight space and starting
learning anew from there.

Furthermore, preliminary tests seem to indicate
that if learning starts from an FCM constructed by the
expert, the problem disappears altogether. Application
of BPTT together with learning based on hessian-free
optimization is nevertheless of considerable interest –
especially if we are to encode chaotic attractors or limit
cycles into the FCM (as opposed to simple fixed-point
attractors), such more reliable learning methods may be
called for.

5. SIMULATION EXPERIMENTS
In this section, we will present the results achieved
using BPTT-based attractor setting. The first part will
cover experiments starting from an FCM with a
randomly-generated initial weight matrix, into which a
randomly selected fixed-point attractor is encoded. The
accuracy of the resulting model is reported. The second
part provides a comparison with results reported for
AHL and NHL in Papageorgiou, Stylios, and
Groumpos (2006). There is also a third section, which
offers some 2-dimensional visualizations.

5.1. Encoding Attractors into FCMs
In every experiment we do BPTT from a number of
randomly selected initial points. It is obvious that this
will make the process highly stochastic, and in
consequence we can expect the results to have
considerable variance. Therefore, unless otherwise
specified, all experiments were carried out 100 times,
and their results were averaged. The learning rate is set
to 0.2 unless said otherwise.

For computing the attractor, 10 initial points are
randomly selected, and the FCM is run for the
maximum number of 1000 steps, or until the change of
the activation values of the concepts from one step to
another is less than 1E-30 in terms of the mean squared
error (MSE). Afterwards, we compare the real attractor
of the FCM as computed with the target attractor (again
using MSE).

In some cases the gradient explosion problem
makes the weights grow indefinitely so that they
become NaN (not-a-number). We detect these cases and
report their number. Naturally, MSE cannot be
computed in these cases and thus these runs are not
included in the average. Gradient vanishing probably
occurs in some cases as well, but we make no special
effort to detect those cases. If we did exclude those
cases from the MSE, the results might be somewhat
improved.

5.1.1. Number of Initial Points
As mentioned, in every experiment, BPTT starts from a
number of randomly generated initial points. The first
collection of results shows the effect of that the number
of said initial points has on the accuracy (in terms of
MSE) and on the number of cases in which gradient
explosion occurs.

Table 1: Number of gradient explosions, and the MSE
for various numbers of stabilising steps

of init
points:

10 30 50 70

MSE 2.827 E-3 2.745 E-3 1.606 E-3 1.403 E-5

Grad.
expl. #

2 4 8 14

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

83

The results are for an FCM with 5 concepts, the
number of BPTT steps k =5 , and m=30 stabilisation
steps. 10 random initial vectors are used for training,
and 5 training steps are applied for each.

It is obvious from Table 1 that with increasing the
number of initial points, the MSE improves. This can be
accounted for by the fact that the amount of training
data increases. This should also improve generalization.

5.1.2. Number of Stabilising Steps
The following table shows the effect that the number
m of stabilising steps has on accuracy and on the

tendency of the algorithm to exhibit gradient explosion.
The results are for an FCM with 5 concepts, the number
of BPTT steps k =5 , 10 random initial vectors are used
for training, and 5 training steps are applied for each.

Table 2: Number of gradient explosions, and the MSE
for various numbers of stabilising steps

m: 10 30 50

MSE 1.178 E-2 2.827 E-3 3.356 E-4

Grad.
expl. #

0 2 4

As shown in Table 2, there is a correlation between
the number of stabilising steps and the accuracy.
Accuracy improves with increasing the number of
stabilising steps, but the number of gradient explosions
increases with it as well.

5.2. Visualization
Figures 5 and 6 show examples of randomly-generated
attractor states encoded into an FCM. The FCM is run
from a number of randomly chosen initial points to
show how the FCM will eventually converge into the
attractor state in every case.

Figure 5: An example of a randomly generated attractor
state encoded into an FCM; convergence to the state
from randomly selected starting points shown

Figure 6: An example of a randomly generated attractor
state encoded into an FCM; convergence to the state
from randomly selected starting points shown

5.3. Comparison with Hebbian Learning
Let us now present a preliminary comparison with
approaches based on Hebbian learning – in particular a
cooperation with results achieved using AHL and NHL
as reported in Papageorgiou, Stylios, and Groumpos
(2006).

The authors present a FCM constructed by experts.
Furthermore, the experts specify regions of acceptable
values for selected concepts. If the experts specify that
the activation value of concept C j should fall in
interval [T j

min ,T j
max

] , the learning goal is given by the
following (Papageorgiou, Stylios, and Groumpos 2006):

T j=
T j

min
+T j

max

2
. (16)

The results compared are those for the first case
study. They follow in Table 3. In each case the
steady-state difference from the target activation values
(defined in terms of equation (16)) are computed, and
the mean square error is reported.

The results reported for the BAS approach were
achieved using the learning rate of 0.2, BPTT was
started from 100 random initial positions, the number of
steps after which the FCM should reach the attractor
state was set to 5, and the additional number of steps for
which was trained was set to 45. In this case, no
gradient explosion problem occurred – having a weight
matrix specified by experts clearly gives learning some
advantage.

There are two columns in the table for the NHL
method. This is because Papageorgiou, Stylios, and
Groumpos (2006) report two results. The first one is for
the steady-state starting from the initial weight matrix,
and using NHL to modify weights, and control the
process. NHL W refers to the steady-state reached when
using the weight matrix learned using NHL without
doing further learning. (There is no considerable
difference between the errors though.)

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

84

Table 3: Comparison of results using AHL, NHL, and
BPTT-based attractor setting (BAS)

AHL NHL NHL W BAS

MSE 3.394 E-04 1.312 E-3 1.405 E-3 1.322 E-12

It should be noted, that the comparison presented
here is not in any sense definitive. The reason for this is
that this paper does as of yet provide no tests for
encoding attractors for which only the activation values
of several concepts are specified. In this case we work
around the problem by arbitrarily fixing the values of
the other concepts to 0.5. It should, however, be
possible to instead use backpropagation to propagate
errors to the concepts with unspecified values. This
issue remains for future investigation.

Also, we do not fix values of any of the weights –
not even of the zero ones. All weights are allowed to
change in this version of the algorithm. This may
provide our approach with an unfair advantage in this
case. This will also require further investigation, but
existing research indicates that backpropagation can
indeed work well even in cases when some or most of
the weights are fixed – in fact this property is already
being exploited by some types of ANNs, such as the
echo state network.

We conclude that the error margin of the approach
seems large enough to make the approach competitive
even if the aforementioned restrictions were to hurt its
performance to a certain extent.

6. FURTHER WORK
As a part of future work, the algorithm should be
extended with the state-of-the-art learning methods
based on Hessian-free optimization. This should
effectively prevent the vanishing/exploding gradient
problem, and make learning faster in general.

The algorithm should be tested with real models. It
should be ascertained how well it can be used in
scenarios where the training is only allowed to change
some weights, while other remain fixed.

Backpropagation could be used to learn attractors
in which only values of several concepts are specified.
It should be investigated how such approach to work,
and whether the values of the other concepts would
stabilize as well, and also whether they would always
stabilize at the same (though unspecified) values.

7. CONCLUSION
It has been shown in the past that the similarity between
artificial neural networks allow for transfer of learning
methods from one to another. Most notable among the
related approaches have been those based on Hebbian
learning.

In this paper we have contributed a new method
for encoding attractors into fuzzy cognitive maps. The
approach, as shown, is based on the notion of

backpropagation through time known from the theory of
recurrent neural networks.

The application of the method has been presented
and accompanied with simulation results. It has been
shown that the method perform favourably, and
preliminary comparisons show that its accuracy
surpasses that of the approaches based on Hebbian
learning. However, further work is necessary at this
point.

It has been shown that increasing the number of
stabilising steps has a positive influence on accuracy,
but also increases the chance of gradient explosions. A
similar relationship has been shown for the number of
initial point from which BPTT learning is done.

Further study of some aspects of the approach is
still to be carried out. It remains to be shown how well
the method will be able to perform when target
activation values are only known for certain concepts. It
is also of much interest to investigate how well the
method will perform when some of the weights will be
fixed to their initial values. Also, some learning
situations may require the introduction of more
powerful optimization methods such as Hessian-free
optimization.

REFERENCES
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle,

H., 2007. Greedy layer-wise training of deep
networks. Advances in neural information
processing systems 19.

Dickerson, J.A., and Kosko, B., 1993. Virtual worlds as
fuzzy cognitive maps. Virtual Reality Annual
International Symposium, 471–477.

Groumpos, P.P., and Stylios, C.D., 2000. Modelling
supervisory control systems using fuzzy cognitive
maps. Chaos, Solitons and Fractals 11 (1),
329–336.

Groumpos, P.P., 2010. Fuzzy cognitive maps: basic
theories and their application to complex systems.
In: Glykas, M., ed. Fuzzy Cognitive Maps. Berlin:
Springer-Verlag, 1–22.

Hinton, G.E., and Salakhutdinov, R.R., 2006. Reducing
the dimensionality of data with neural networks.
Science 313 (5786), 504–507.

Huerga, A.V., 2002. A balanced differential learning
algorithm in fuzzy cognitive maps. Proceedings of
the Sixteenth International Workshop on
Qualitative Reasoning, 10–12.

Kottas, T.L., Boutalis, Y.S., and Christodoulou, M.A.,
2007. Fuzzy cognitive network: A general
framework. Intelligent Decision Technologies 1
(4), 183–196.

Krose, B., and Smagt, P.V.D., 1996. An Introduction to
Neural Networks. University of Amsterdam.
Available from: http://www.cs.unibo.it/babaoglu/
courses/ cas/resources/tutorials/Neural_Nets.pdf
[Accessed 10 May 2013].

Martens, J., 2010. Deep learning via Hessian-free
optimization. Proceedings of the 27th
International Conference on Machine Learning.

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

85

Martens, J., and Sutskever, I., 2011. Learning recurrent
neural networks with Hessian-free optimization.
Proceedings of the 28th International Conference
on Machine Learning 46.

Papageorgiou, E.I., Stylios, C.D., and Groumpos, P.P.,
2003. Fuzzy cognitive map learning based on
nonlinear Hebbian rule. AI 2003: Advances in
Artificial Intelligence, 256–268.

Papageorgiou, E.I., and Groumpos, P.P., 2004a. A new
hybrid method using evolutionary algorithms to
train fuzzy cognitive maps. Applied Soft
Computing 5, 409–431.

Papageorgiou, E.I., Stylios, C.D., and Groumpos, P.P.,
2004b. Active Hebbian learning algorithm to train
fuzzy cognitive maps. International Journal of
Approximate Reasoning, 37 (3), 219–249.

Papageorgiou, E.I., and Groumpos, P.P., 2005a. A
weight adaptation method for fuzzy cognitive map
learning. Soft Computing, 9 (11), 846–857.

Papageorgiou, E.I., Parsopoulos , K. E., Stylios, C.S.,
Groumpos, P.P., and Vrahatis, M.N., 2005b. Fuzzy
Cognitive Maps Learning Using Particle Swarm
Optimization. Journal of Intelligent Information
Systems 25 (1), 95–121.

Papageorgiou, E.I., Stylios, C.D., and Groumpos, P.P.,
2006. Unsupervised learning techniques for
fine-tuning fuzzy cognitive map causal links.
International Journal of Human-Computer Studies
64 (8), 727–743.

Parsopoulos, K.E., Papageorgiou, E.I., Groumpos, P.P.,
and Vrahatis, M.N., 2003. A first study of fuzzy
cognitive maps learning using particle swarm
optimization. The 2003 Congress on
Evolutionary Computation, 2003. CEC'03, 2,
1440–1447.

Rojas, R., 1996. Neural networks: a systematic
introduction. Berlin: Springer-Verlag.

Stach, W., Kurgan, L., and Pedrycz. W., 2005a. A
survey of fuzzy cognitive map learning methods.
Issues in soft computing: theory and applications,
71–84.

Stach, W., Kurgan, L., Pedrycz., W., and Reformat, M.,
2005b. Genetic learning of fuzzy cognitive maps.
Fuzzy Sets and Systems, 153 (3), 371–401.

Stach, W., Kurgan, L., and Pedrycz, W., 2008.
Data-driven nonlinear Hebbian learning method
for fuzzy cognitive maps. IEEE International
Conference on Fuzzy Systems. FUZZ-IEEE 2008
(IEEE World Congress on Computational
Intelligence), 1975–1981.

Stylios, C.D., Christova, N., and Groumpos, P.P., 2002.
A hierarchical modeling technique of industrial
plants using multimodel approach. Proceeding of
10th IEEE Mediterranean conference on Control
and Automation, Lisbon, Portugal.

Sutskever, I., Martens, J., Hinton, G., 2011. Generating
Text with Recurrent Neural Networks.
Proceedings of the 28th International Conference
on Machine Learning.

Wang, H., and Wang, L., 2013. Application of
Improved Fuzzy Cognitive Map Based on Fuzzy
Neural Network in Intrusion Detection. Journal of
Information & Computational Science 10 (1),
271–278.

Werbos, P.J., 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE 78 (10), 1550–1560.

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.

86

