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ABSTRACT
The paper proposes  a new learning method for  fuzzy
cognitive maps, which makes it possible to encode an
attractor  into  the  map.  The  method  is  based  on  the
principle of backpropagation through time known from
the  theory  of  artificial  neural  networks.  Simulation
results  are  presented  to  show  how  well  the  method
performs.  It  is  shown that  the  results  are  superior  to
those achieved using Hebbian learning approaches such
as nonlinear Hebbian learning.  Some lines for possible
future research and development are given.

Keywords: fuzzy cognitive maps, learning,  
backpropagation.

1. INTRODUCTION
Fuzzy  cognitive  maps  (FCMs)  represent  a  well
recognized  method in  the theory of  soft  computation.
They exhibit several noticeable traits, which make them
similar  to  artificial  neural  networks  (ANNs).  More
specifically  the FCM can  be  considered  as  a  distinct
type  of  a  single-layer  recurrent  neural  network  with
synchronous activation of units.

Some learning methods from the theory of ANNs
have been  introduced into the theory of FCMs before.
Most  notable  among these  approaches  is  a  family  of
methods based on Hebbian learning.

The paper will present a new method for encoding
an attractor  state  into an  FCM using the principle of
backpropagation  through  time.  The  theoretical
background of the method will be outlined hereinafter,
and  results  of  several  simulation experiments  will  be
presented  as well as their evaluation and discussion of
possible future lines of research.

2. DELTA RULE AND BACKPROPAGATION
Let us in this section cover some of the basic theory of
supervised error correction learning in artificial neural
networks (ANNs). It will later be shown how ANNs are
related to fuzzy cognitive maps (FCMs), and how this
theory may find applications there.

2.1. Artificial Neuron
In order to set down how the learning method works, let
us first with all due brevity give a basic definition of

what we mean by the artificial neuron, and by artificial
neural networks in general.

An artificial neuron is a structure, which has (a) its
set of inputs  X ={x1 , x2 , ... , xn} ,  (b) a set of weights
corresponding to the inputs W={w 1 , w2 , ... , wn} , (c) its
threshold  Θ ,  its  squashing  function  f  (which  is
perhaps  most  often  the  sigmoid  function,  or  the
hyperbolic  tangent)  (Krose  and  Smagt  1996).  The
illustration is given in Figure 1.
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Figure 1: Unwrapping a recurrent network

The  output  of  the  neuron  is  determined  in  the
following fashion (Krose and Smagt 1996):

O= f (u−Θ)= f (∑
i=1

n

(wi x i)−Θ) , (1)

where u  is the inner potential of the neuron.
Furthermore, in order to simplify derivation of the

learning  rules,  the  threshold  value  Θ  is  often
interpreted as a bias received from a neuron with the
constant output of 1 – thus the threshold value does not
have to be considered separately, and its value can be
learned in the same way as the weights of the inputs.

By an artificial neural network (ANN) we simply
understand  a  collection  of  mutually  interconnected
artificial neural networks.

2.2. The Delta Rule
The  delta  rule  is  probably  the  best  known  approach
(based  on  error  correction) to  learning  weights  of  an
artificial  neuron.  It  has  been  designed  for  supervised
learning  –  that  is  to  say  learning  from  a  dataset
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consisting  of  pairs of  the  following  form:  (input,
desired output). In other words, for every sample's input
in  the  dataset,  its  corresponding  desired  output  is
specified as well.

This  allows  formulation  of  an  error  function
(Krose and Smagt 1996):

E (W )=∑
p

E p
(W )=

1
2
∑

p
(D p

−O p
)

2
, (2)

where  D p  and  O p  denote  the  desired  and  the real
output for input pattern p .

Once such error function has been formed, the idea
behind delta rule is to do gradient descent minimization
with respect to the weights, thus bringing the real output
as  close to  the  desired  output  as  possible.  For  linear
neurons  (neurons  with  no  squashing  function)  the
following rule  –  known as  the  delta  rule  – has  been
derived (Krose and Smagt 1996):

Δ p w j=γδ
p x j , (3)

where  Δ p w j  denotes the prescribed change of weight
w j  due to pattern p , γ  is the learning rate, and:

δ
p
=D p

−O p . (4)

The  delta  rule  can  be  generalized  for  non-linear
neurons as well, in which case it contains the derivative
of the squashing function f '  (Krose and Smagt 1996):

δ
p
=(D p

−O p
) f '

(u p
) , (5)

where u p  is  the  inner  potential  of  the  neuron  with
pattern p  at the input.

2.3. The Backpropagation Principle
The delta rule cannot by itself be used for learning in
multi-layer  networks,  because  only  the  errors  of  the
output neurons can be computed directly using (3) or
(4)  –  desired  outputs  of  hidden  neurons  remain
unspecified.

However,  the  delta  rule  can  be  generalized  to
multi-layer  networks  using  the  backpropagation
principle.

In this case the error is propagated back from the
output layer to hidden layers. Again, the full derivation
of the rule can be found in  (Krose and Smagt  1996).
The rule itself can be stated as follows:

δh
p
=F '

(uh
p
)∑

o=1

N o

δo
p who , (6)

where h  refers to a neuron of the hidden layer, and o
refers to neurons of the output layer. N o  is the number
of  neurons  in  the  output  layer.  If  there  are  several
hidden layers, the principle can be applied recursively.

2.4. Backpropagation Through Time
Backpropagation  through  time  (BPTT)  is  a  further
extension of the principle to recurrent neural networks.
Recurrent  neural  networks  (RNNs)  are  networks  in
which  signals  may  propagate  from  one  time  step  to
another  (as  opposed  to  feed-forward  neural  networks,
which only propagate inputs from the current step and
have no memory).

The idea is that an RNN can be unwrapped in time
into  a  feedforward  neural  network,  and  then  trained
using backpropagation.

Figure  2 shows  an  example  of  unwrapping  a
single-layer  recurrent  neural  network  in  3 time steps,
resulting in a feedforward neural network with 3 layers.
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Figure 2: Unwrapping a recurrent network

For additional details and precise mathematical and
algorithmic  formulations  the  reader  may  refer  to
Werbos  (1990).  For  the  present  purpose,  what  has
already  been  said  concerning  backpropagation  itself
should suffice.

2.5. Vanishing/Exploding Gradients
The  backpropagation  principle  faces  significant
problems when applied to  deep neural  networks.  The
same kind of problem is usually associated with RNNs
using BPTT – because RNNs become deep themselves
when unwrapped in time.

The  problem  that  occurs  is  referred  to  as  the
vanishing/exploding gradients problem. When the errors
are  propagated  back  through  the  network,  unlike  the
forward  pass  no  squashing  functions  are  applied.
Depending on the values of the weights, the gradients
tend to grow very small (vanishing gradient),  or very
large  (exploding  gradient)  after  they  have  been
propagated  through  a  number  of layers  (Sutskever,
Martens, Hinton 2011).

However,  lately  some  considerable  advances  in
deep learning have been introduced through the work of
Hinton,  and  Salakhutdinov  (2006),  and  Bengio  et  al.
(2007). These mainly advocate careful initialization of
the weight matrix based on unsupervised pre-training.

An important breakthrough in the theory of deep
learning  has  been  marked  by  Martens  (2010).  The
author  has  developed  an  application  of  Hessian-free
optimization  method to  learning  in  deep  networks.  It
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has later been shown that this approach can indeed be
adapted for recurrent neural networks as well (Martens,
and Sutskever  2011).  Applications of the method have
since  begun  to  appear  (Sutskever,  Martens,  Hinton
2011).

In  consequence  of  these  developments,  the
backpropagation principle has lately been experiencing
a  renaissance.   Backpropagation coupled  with
Hessian-free  optimization  is  now  counted  among  the
most promising tools for learning in both – deep neural
networks and recurrent networks.

3. FUZZY COGNITIVE MAPS
Fuzzy  cognitive  maps  (FCMs) are  a  symbolic
representation  for  the  description  and  modeling  of
complex  systems  (Groumpos  2010).  They  can  be
expressed  and  visualized using  a  weighted  directed
graph such as that shown in Figure 3.

The  nodes  of  such  graph  represent  the  concepts
associated with the system being modeled. The number
and kind of  concepts  that form any particular FCM is
determined by experts  from the corresponding field  of
knowledge  (Groumpos  2010).  Every  concepts  C i  is
associated with its activation value  Ai .  The activation
values are most often taken from the interval [0,1] , or
[−1,1 ]  (this  depends  on  the  particular  squashing

function used – see equation (7) for the context).
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Figure 3: Fuzzy cognitive map – an example

 The edges in the graph are directed and weighted.
They express causal relationship between the concepts.
An  edge  directed  from  concept  C i  to  concept  C j

represents  the  knowledge  that  there  is  a  causal  link
between C i  and  C j .

The weight of the edge going from C i  to  C j  is
denoted  w ij ∈ [−1, 1] ,  and it specifies the strength of
the causal link. If w ij>0 , we can say that concept C i

causes C j  to some extent – it contributes positively to
its activation value. If w ij<0 , concept C i  has negative
influence on the activation value of  C j .  If  w ij=0 ,
there is no causal link at all (such edges are usually not
drawn when the FCM is visualized).

At  every  time  step  the  activation  values  of  the
concepts are updated. The update is synchronous.  The
update rule has several distinct forms. First of all there
is the rule proposed in  Kosko (1993) [the notation has
been modified for the sake of consistency]:

Ai
(k +1)= f (∑

j=1

N

A j
(k) w ji) , (7)

where  N  is  the  number  of  concepts,  Ai
(k )  is  the

activation  value of concept  C i  at time step  k .  f  is
the squashing function, which squashes the dot product

∑
j

A j
(k )w ji  into some convenient interval.

Most  often,  f  is  either  the  sigmoid  function,
which squashes the dot product into interval [0,1] :

S (x)=
1

1+e−x , (8)

or  the  hyperbolic  tangent,  which  yields the  interval
[−1,1 ] .

There are other forms of the rule. In some works,
such as Groumpos and Stylios (2000) the feedback links
from the concept to itself are removed:

Ai
(k +1)

= f (∑j=1
j≠ i

N

A j
(k) w ji) . (9)

In other versions, the feedback link is reintroduced,
but  the  same  weight  is  shared  by  all  concepts
(Groumpos and Stylios 2000):

Ai
(k +1)

= f (k 1∑
j=1
j≠ i

N

A j
(k )w ji+k 2 Ai

( k)) , (10)

where  k1  and  k 2  are  constants,  such  that
0≤k 1 , k2≤1 .

Unless specified otherwise, we will  adhere to the
rule given in equation (7)  in this work, because  that is
the most general one.

The  weight  matrix  of  the  FCM  is  usually
constructed by  experts.  There  are  several  approaches
which  make  the  task  easier  and  more  reliable  –  for
discussion of these, the reader may refer to  Groumpos
(2010),   Stach,  Kurgan,  Pedrycz  (2005a),  or Stylios,
Christova, and Groumpos (2002) for an instance.

It should also be noted that the FCM need not be
acyclic. In the presence of cycles, the issue of stability
naturally comes into mind. As mentioned in Dickerson,
and Kosko (1993), the FCM will quickly settle down to
a fixed point, to a limit cycle, or to a chaotic attractor
(for illustration, see Figure 4).
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Figure  4:  FCM  attractors:  fixed-point,  limit-cycle,
chaotic (Dickerson, and Kosko 1993)

3.1. The Relation between FCMs and Artificial 
Neural Networks

It is obvious that there is a close resemblance between
the FCM model as described in equation (7),  and the
ANN  model  as  shown  in  equation  (1).  More
specifically,  an  FCM can  be  considered  as  a  distinct
type  of  a  single-layer  recurrent  neural  network  with
sigmoid  squashing functions  and  synchronous
activation of units.

The FCM can also be viewed as an extension of
the  concept  of  a  Hopfield  network  to  which  its
architecture  bears  several  similarities.  However,  the
analogy  is  not  complete  –  there  are  several  traits  in
which these differ. Most notably perhaps, the Hopfield
network  has  been  designed  for  binary  (0  and  1) or
bipolar  (-1 and 1) activations,  it uses the sign function
as  the  squashing  function,  and its units  are  activated
asynchronously. Also, the theory of learning developed
for  Hopfield   is  based  on  the  concept  of  an  energy
function.  The  energy  function  derived  for  Hopfield
networks  requires that the weight matrix  be symmetric
(Krose and Smagt 1996), (Rojas 1996).

ANNs  are  notorious  for  their  lack  of
interpretability. The knowledge they contain is implicit
– it is sometimes called  procedural knowledge fro this
reason.

In  spite  of  their  close  relationship  with  ANNs,
FCMs do not  generally  suffer from the same problem,
because the knowledge they represent is modelled very
explicitly.  If the FCM is constructed by experts then it
naturally  follows that  its  dynamics are (by definition)
well  understood.  Even  in  cases  when  one  learning
method or other is used to modify the weight matrix or
to  learn  it  from  scratch,  the  inner  workings  of  the
resulting model typically remain transparent, due to the
fact that every node is linked with a distinct concept.

Naturally, this feature is paid for by the fact that
the FCM is not a universal  approximator. To put this
more precisely – if the concepts are linked by a more

complex  relationship,  which  cannot  be  adequately
represented using a single connection, the expert must
explicitly provide all the auxiliary concepts required to
express such relationship. In multi-layer artificial neural
networks,  neurons  are  not  associated  with  particular
concepts, and thus any of them is free to participate in
modelling the relationship.

It may also be noted that – in contrast to ANNs (1),
the FCM model (7) does not contain the threshold term.
Thus,  the  absolute  term  of  the  linear  relationship
expressing  the inner  potential  u  is  missing  – if  any
given concept is to have  some non-zero potential even
though all of its input concepts have the activation value
of  zero,  this  is  not  possible  to  achieve  unless  an
additional concept is added for that express purpose.

In any case,  it  should be obvious that  there  is  a
trade-off between the excellent interpretability of FCMs
on one hand, and the ability of multi-layer ANNs to do
universal approximation. Some work has been invested
into creating hybrid models, which offer trade-off points
closer  to  the  conventional  ANNs.  Among  these  the
fuzzy  cognitive  network  of  Kottas,  Boutalis,  and
Christodolou  (2007) can  be  mentioned,  or  the  fuzzy
neural  network  of  Wang  and  Wang  (2013) can  be
mentioned.

Furthermore,  even  though  the  concepts  and
weights of a conventional FCM are usually determined
by experts, the close connection between the theory of
FCMs  and  the  theory  of  ANNs  has  been  fuelling  a
promising line of research, which strives to bring some
of the learning methods from the theory of  ANNs to
perform  learning  in  FCMs.  The  next  section  covers
some of the existing approaches.

3.2. Fuzzy Cognitive Maps and Learning
We  have  now  covered  some  of  the  basic  ideas  and
concepts associated with FCMs and their close relation
to ANNs. In this section, we will consider the problem
of learning the weight matrix of an FCM.

We  note  that  there  are  two  main  classes  of
problems in the theory of FCMs,  to which the existing
learning methods apply: (a) the regression problem, that
is to say how a fuzzy cognitive map can be trained as a
regression model for a given dataset; (b)  the attractor
problem, that is to say given an initial fuzzy cognitive
map,  how  can  we  shift  a  fixed-point  attractor  to  a
desired point, to encode a given limit-cycle, etc.

The  most notable among  the existing approaches
inspired  by  the  theory  of  ANNs  are  those  based  on
Hebbian learning  – to  the description of these  we now
turn.
3.2.1. Differential Hebbian Learning

The first among the methods inspired by Hebbian
learning  is  the so-called  differential  Hebbian learning
(DHL)  proposed  by  Dickerson  and  Kosko  (1993).  It
introduces the following rule (notation modified for the
sake of consistency):
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Δw ij={ct [Δ Ai Δ A j−w ij] if Δ Ai≠0

0 else
, (11)

where  Δ Ai (t)=Ai (t)−A i(t−1) ,  and  c t  is  the
learning rate,  which decreases  in time.  Dickerson and
Kosko (1993) propose the following rule for c t :

c t(t k )=0.1[1−
t k

1.1 N ] . (12)

A  follow-up  on  this  method  can  be  found  in
Huerga  (2002). The author shows that rule  (11)  has a
considerable  weakness  in  that  it  cannot  encode some
types of sequences correctly. If, for example, concept 4
should change its activation to 1 after concepts 1, 2, and
3  change  their  activations  to  1,  after  learning  is
performed using DHL, concept 4 will react to any of the
concepts,  and  not  only to their simultaneous activation
(Huerga  2002).  The approach  know as  balanced DHL,
is proposed instead in Huerga 2002.

Both  of  these  approaches  –  DHL  and  balanced
DHL  – are  able  to  encode  attractors  into  the  FCM.
However,  both  of  them  also share  a  common
disadvantage: the authors only consider encoding binary
(or  bipolar)  attractors  (as  opposed  to  real-valued
attractors).  More importantly, even for such cases, the
rules are unable to encode an arbitrary sequence.

3.2.2. Active Hebbian Learning
In  Papageorgiou,  Stylios,  and  Groumpos  (2004b) the
authors  propose  another  learning  method  based  on
Hebbian learning – the active Hebbian learning (AHL)
method.

AHL  introduces  the  idea of  the  sequence  of
activation  of  the  concepts.  The  expert  specifies  the
sequence  and  manner  (synchronous,  asynchronous)  in
which  the  concepts  are  activated.  The  process  starts
from a concept  which activates  concepts  linked to it,
and thus the activation propagates until all the concepts
have been activated at which point the simulation cycle
stops and a new one starts.

Learning is based on the following rule:

w ji (k)=(1−γ)w ji (k−1)+ηA j
act

(k −1)A i(k−1) , (13)

where γ , and η  are tunable parameters, and A j
act  is

the value of the activation concept.  In addition to this
Papageorgiou,  Stylios,  and  Groumpos  (2004b) also
suggest  normalization  of  the  weight  matrix  to  size  1
after  every  step,  so  as  to  prevent  their  growing
indefinitely.

3.2.3. Nonlinear Hebbian Learning
Finally,  there  are  several papers  (e.g.  Papageorgiou,
Stylios,  and  Groumpos  2003;  Papageorgiou,  and
Groumpos  2005a;  Papageorgiou,  Stylios,  and
Groumpos  2006; Stach,  Kurgan,  and  Pedrycz  2008)
discussing  the  so-called  nonlinear  Hebbian  learning

(NHL). The learning rule used in this approach is based
on the Oja rule, and it has the following form:

Δw ji=ηA j (Ai−A j w ji) . (14)

In Papageorgiou, and Groumpos (2005a) the rule is
further extended into the following:

w ji
( k)

=γw ji
(k−1)

+ηA j
( k−1 )( A i

( k−1 )

−sgn (w ji
( k−1 ))A j

( k−1)w ji
( k−1 ))

. (15)

This  introduces  the  weight  decay  parameter  γ ,  and
term  sgn(w ji

(k −1)
) ,  which is supposed to maintain the

sign  of  the  corresponding  weight  (thus  keeping  the
physical  meaning  of  the  corresponding  relationship
between  the  concepts)  (Papageorgiou,  and  Groumpos
2005a).

It should  also  be noted that the mode in which in
these works NHL rule is coupled with the execution of
the FCM is what makes the method quite distinct from
the other learning methods discussed so far.

An initial FCM is constructed by the experts. This
is run in the standard way using one of the equations
(7), (9), (10). But in addition to this at every step, rule
(14) or (15) is applied to the FCM using the values of
concepts computed in that step. Thus the NHL method
does not simply perform learning – it is used online to
help drive the process, and to facilitate convergence to a
target attractor. The method is not simply meant to train
the FCM to perform a given task, or to encode a given
attractor. Rather, it actively participates in the execution
of  the  FCM  –  it  adjusts  the  FCM  cause-effect
relationships and controls the system's output concepts
(Papageorgiou, Stylios, and Groumpos 2006).

A more traditional  application of  the  NHL rule  is
proposed by  Stach, Kurgan, and Pedrycz (2008). In this
case, NHL is used to make an FCM with  a  randomly
initialized  weight  matrix  learn  the  cause-effect
relationships from historical data.  In other words – the
FCM learns to approximate a given data sequence. The
authors  use  another  randomly  generated  FCM  to
produce the data sequence, but the data could, naturally,
come  from  the  real  system.  The  authors  call  this
approach data-driven NHL (DD-NHL).

4. THE PROPOSED APPROACH
In this paper, we aim to approach the attractor problem
using the concept of backpropagation through time. We
refer to it as BPTT-based attractor setting (BAS). That
is to say, given a specification of what the steady state
should  look  like,  and  how  quickly  the  model  should
converge to it, we use BPTT to encode this information
into the FCM.

4.1. Using BPTT to Set the Attractor
Using BPTT we can train the FCM to give the desired
response  to  a  desired  input.  If  we  present  it  with  an
input, and run it for k  steps, we can compare the real
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output with the desired output, compute the error and
backpropagate  it  through  time  in  order  to  learn  the
weights.

Thus, if our intention is to set the attractor of the
FCM,  we  may  create  an  FCM  with  a  randomly
initialized  weight  matrix,  run  it  for  k  steps  from a
number  of  randomly-generated  initial  states,  and  do
backpropagation. The learning method should be able to
generalize, and so when we run the FCM from an initial
state for which it has not been trained, it should still end
up in the same attractor.

In  theory  it  should  certainly  possible  to  encode
limit  cycles  as  well  as  fixed-point  attractors,
nevertheless in this paper we will focus on fixed-point
attractors only. It is obvious that in addition to coming
to the desired state after k  steps, the FCM should also
remain in that state, if it is supposed to be an attractor.

To ensure this, we propose to specify that the FCM
should  be  in  the  desired  state  after  k  steps  (BPTT
steps), and should retain the same for  m  further  steps
(stabilising  steps).  If  m  is  large enough,  this should
ensure  that  the  FCM  remains  in  the  desired  state
indefinitely.

It should also be noted, that for the  m  steps, no
BPTT needs  to  be  done,  because  having  the  desired
activation value of every concept, we can compute the
error in every step precisely. BPTT is thus only done for
the k  steps.

However,  backpropagation  and  BPTT  could  be
useful  in  such  cases,  when  the  entire  attractor  is  not
specified, but rather only the values of certain concepts
are available. In such case, we can use backpropagation
and BPTT to compute errors for the missing concepts.

4.2. Vanishing/Exploding Gradients in FCMs
The  vanishing/exploding  gradient  problem  has  been
mentioned in connection with backpropagation learning
in  ANNs.  Naturally  the  same  problem may  occur  in
FCMs. We conclude, however, that – probably owing to
their limited size (according to  Stach et al. (2005b) in
practice  FCMs are  relatively small  and  most of  them
consist of 5-10 concepts),  and also due to the fact that
they are single-layer themselves – we did not find the
gradient explosion/vanishing problem to hinder learning
considerably.

The problem does occur in some cases (which is to
be expected – especially when using naïve initialization
methods),  but  these  are  not  very  frequent  and  it  is
possible  to  work  around  the  problem  by  selecting  a
different  initial point in the weight space and starting
learning anew from there.

Furthermore,  preliminary  tests  seem  to indicate
that if learning starts from an FCM constructed by the
expert,  the problem disappears  altogether.  Application
of BPTT together with learning based on hessian-free
optimization is nevertheless  of considerable  interest  –
especially if we are to encode chaotic attractors or limit
cycles into the FCM (as opposed to simple fixed-point
attractors), such more reliable learning methods may be
called for.

5. SIMULATION EXPERIMENTS
In  this  section,  we  will  present  the  results  achieved
using BPTT-based attractor setting.  The first part  will
cover  experiments  starting  from  an  FCM  with  a
randomly-generated initial weight matrix, into which a
randomly selected fixed-point attractor is encoded. The
accuracy of the resulting model is reported. The second
part  provides  a  comparison  with  results  reported  for
AHL  and  NHL  in   Papageorgiou,  Stylios,  and
Groumpos  (2006).  There is also a third section, which
offers some 2-dimensional visualizations.

5.1. Encoding Attractors into FCMs
In  every  experiment  we do BPTT from  a  number  of
randomly selected initial points. It is obvious that this
will  make  the  process  highly stochastic,  and  in
consequence  we  can  expect  the  results  to  have
considerable  variance.  Therefore,  unless  otherwise
specified, all experiments were carried out  100 times,
and their results were averaged. The learning rate is set
to 0.2 unless said otherwise.

For computing the attractor,  10 initial  points  are
randomly  selected,  and  the  FCM  is run  for  the
maximum number of 1000 steps, or until the change of
the activation values of the concepts from one step to
another is less than 1E-30 in terms of the mean squared
error (MSE). Afterwards,  we compare the real attractor
of the FCM as computed with the target attractor (again
using MSE).

In  some  cases  the  gradient  explosion  problem
makes  the  weights  grow  indefinitely  so  that  they
become NaN (not-a-number). We detect these cases and
report  their  number.  Naturally,  MSE  cannot  be
computed  in  these  cases  and  thus  these  runs are not
included  in  the  average.  Gradient  vanishing  probably
occurs in some cases as well, but we make no special
effort  to  detect  those  cases.  If  we  did  exclude  those
cases  from the  MSE,  the  results  might  be  somewhat
improved.

5.1.1. Number of Initial Points
As mentioned, in every experiment, BPTT starts from a
number of randomly generated initial points. The first
collection of results shows the effect of that the number
of said initial points has on the accuracy (in terms of
MSE) and on the number  of  cases  in  which gradient
explosion occurs.

Table  1:  Number of gradient explosions, and the MSE
for various numbers of stabilising steps

# of init
points:

10 30 50 70

MSE 2.827 E-3 2.745 E-3 1.606 E-3 1.403 E-5

Grad.
expl. #

2 4 8 14
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The results are for an FCM with 5 concepts,  the
number of BPTT steps k =5 , and m=30  stabilisation
steps.  10 random initial  vectors  are used for  training,
and 5 training steps are applied for each.

It is obvious from Table 1 that with increasing the
number of initial points, the MSE improves. This can be
accounted  for  by the fact  that  the amount  of  training
data increases. This should also improve generalization.

5.1.2. Number of Stabilising Steps
The following table shows the effect  that  the number
m  of  stabilising  steps  has  on  accuracy  and  on  the

tendency of the algorithm to exhibit gradient explosion.
The results are for an FCM with 5 concepts, the number
of BPTT steps k =5 , 10 random initial vectors are used
for training, and 5 training steps are applied for each.

Table  2:  Number of gradient explosions, and the MSE
for various numbers of stabilising steps

m: 10 30 50

MSE 1.178 E-2 2.827 E-3 3.356 E-4

Grad.
expl. #

0 2 4

As shown in Table 2, there is a correlation between
the  number  of  stabilising  steps  and  the  accuracy.
Accuracy  improves  with  increasing  the  number  of
stabilising steps, but the number of gradient explosions
increases with it as well.

5.2. Visualization
Figures  5 and 6 show examples of randomly-generated
attractor states encoded into an FCM. The FCM is run
from  a  number  of  randomly  chosen  initial  points  to
show how the FCM will  eventually  converge into the
attractor state in every case.

Figure 5: An example of a randomly generated attractor
state  encoded into an  FCM; convergence  to  the state
from randomly selected starting points shown

Figure 6: An example of a randomly generated attractor
state  encoded into an  FCM; convergence  to  the state
from randomly selected starting points shown

5.3. Comparison with Hebbian Learning
Let  us  now  present  a  preliminary  comparison  with
approaches based on Hebbian learning – in particular a
cooperation with results achieved using AHL and NHL
as  reported  in  Papageorgiou,  Stylios,  and  Groumpos
(2006).

The authors present a FCM constructed by experts.
Furthermore, the experts specify regions of acceptable
values for selected concepts. If the experts specify that
the  activation  value  of  concept  C j  should  fall  in
interval  [T j

min ,T j
max

] , the learning goal is given by the
following (Papageorgiou, Stylios, and Groumpos 2006):

T j=
T j

min
+T j

max

2
. (16)

The results compared are those for  the first  case
study.  They  follow  in  Table  3.  In  each  case  the
steady-state difference from the target activation values
(defined in terms of equation (16)) are computed, and
the mean square error is reported.

The results  reported  for  the BAS approach  were
achieved  using  the  learning  rate  of  0.2,  BPTT  was
started from 100 random initial positions, the number of
steps  after  which the  FCM should reach  the attractor
state was set to 5, and the additional number of steps for
which  was  trained  was  set  to  45.  In  this  case,  no
gradient explosion problem occurred – having a weight
matrix specified by experts clearly gives learning some
advantage.

There are two columns in the table for the NHL
method.  This  is  because   Papageorgiou,  Stylios,  and
Groumpos (2006) report two results. The first one is for
the steady-state starting from the initial weight matrix,
and  using  NHL  to  modify  weights,  and  control  the
process. NHL W refers to the steady-state reached when
using  the  weight  matrix  learned  using  NHL  without
doing  further  learning.  (There  is  no  considerable
difference between the errors though.)

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013 
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.                                          

84



Table  3:  Comparison of results using AHL, NHL, and
BPTT-based attractor setting (BAS)

AHL NHL NHL W BAS

MSE 3.394 E-04 1.312 E-3 1.405 E-3 1.322 E-12

It should be noted, that the comparison  presented
here is not in any sense definitive. The reason for this is
that  this  paper  does  as  of  yet  provide  no  tests  for
encoding attractors for which only the activation values
of several concepts are specified. In this case we work
around the problem by arbitrarily fixing the values of
the  other  concepts  to  0.5.  It  should,  however,  be
possible  to  instead  use  backpropagation  to  propagate
errors  to  the  concepts  with  unspecified  values.  This
issue remains for future investigation.

Also, we do not fix values of any of the weights –
not even of the zero ones. All weights are allowed to
change  in  this  version  of  the  algorithm.  This  may
provide our approach with an unfair advantage in this
case.  This  will  also  require  further  investigation,  but
existing  research  indicates  that  backpropagation  can
indeed work well even in cases when some or most of
the weights are fixed – in fact this property is already
being exploited by some types of ANNs, such as the
echo state network.

We conclude that the error margin of the approach
seems large enough to make the approach competitive
even if the aforementioned restrictions were to hurt its
performance to a certain extent.

6. FURTHER WORK
As  a  part  of  future  work,  the  algorithm  should  be
extended  with  the  state-of-the-art  learning  methods
based  on  Hessian-free  optimization.  This  should
effectively  prevent  the  vanishing/exploding  gradient
problem, and make learning faster in general.

The algorithm should be tested with real models. It
should  be  ascertained  how  well  it  can  be  used  in
scenarios where the training is only allowed to change
some weights, while other remain fixed.

Backpropagation could be used to learn attractors
in which only values of several concepts are specified.
It should be investigated how such approach to work,
and  whether  the  values  of  the  other  concepts  would
stabilize as well, and also whether they would always
stabilize at the same (though unspecified) values.

7. CONCLUSION
It has been shown in the past that the similarity between
artificial neural networks allow for transfer of learning
methods from one to another. Most notable among the
related approaches have been those based on Hebbian
learning.

In this paper we have contributed a new method
for encoding attractors into fuzzy cognitive maps. The
approach,  as  shown,  is  based  on  the  notion  of

backpropagation through time known from the theory of
recurrent neural networks.

The application of the method has been presented
and accompanied  with simulation results.  It  has  been
shown  that  the  method  perform  favourably,  and
preliminary  comparisons  show  that its  accuracy
surpasses that of  the  approaches  based  on  Hebbian
learning.  However,  further  work  is  necessary  at  this
point.

It  has  been shown that  increasing  the number of
stabilising steps  has a  positive influence on accuracy,
but also increases the chance of gradient explosions.  A
similar relationship has been shown for the number of
initial point from which BPTT learning is done.

Further study of some aspects of the approach is
still to be carried out. It remains to be shown how well
the  method  will  be  able  to  perform  when  target
activation values are only known for certain concepts. It
is  also  of  much  interest  to  investigate  how  well  the
method will perform when some of the weights will be
fixed  to  their  initial  values.  Also,  some  learning
situations  may  require  the  introduction  of more
powerful  optimization  methods  such  as  Hessian-free
optimization.
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