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ABSTRACT 
During oilwell drilling, the long slender drillstring is 
susceptible to coupled lateral, axial and torsional 
vibrations that can reduce drilling efficiency and 
damage components.  A bond graph model of an 80 
metre drillstring collar section, subjected to bit-rock 
interaction boundary conditions and multiple lateral 
stabilizers, is created.  Three-dimensional rigid lumped 
segments are connected by axial, torsional, shear, and 
bending springs.  Thirty segments are sufficient to 
predict the lowest natural frequencies and static 
deflection accurately.  An active lateral vibration 
controller is implemented, in which actuators and strain 
gauges are placed 90-degrees apart around the pipe 
walls, near the middle of the longest span.  A 
proportional controller acting on the strain gauge output 
significantly attenuates vibration.  The model structure 
allows easy reconfiguration of the drillstring geometry, 
boundary conditions, and actuator and sensor locations, 
to study the effect of any controller on coupled lateral, 
axial, and/or torsional vibration. 

 
Keywords: multibody dynamics, bond graph, lumped 
segment, drillstring, lateral vibration control 

 
1. INTRODUCTION 
Drilling accounts for approximately 35% of all oil and 
gas exploration and production costs (CAPP, 2012).  An 
estimated 2% to 10% of well drilling costs can arise 
from vibration-related problems, such as lost time while 
pulling out of hole, reduced rate of penetration (ROP), 
poor wellbore quality, and increased service cost 
because of the need for ruggedized equipment (Jardine 
et al., 1994).  Figure 1 shows a schematic of a 
drillstring.  The drill pipes form a long slender beam-
like structure in tension.  The bottom-hole assembly 
(BHA) consists of heavier pipes called collars, shock 
absorbers (“shock subs”), the bit, and possibly vibrating 
tools and measurement-while-drilling (MWD) tools for 
logging vibration levels and reporting orientation in 
deviated (non-vertical) wells.  A “neutral point” 
between tension and compression is typically near the 
top of the BHA.  Stabilizers provide low radial 
clearance at certain points, potentially creating multiple 

spans for lateral vibration.  Stabilizers are typically 
modeled as pinned lateral boundary conditions. 

 

 
 

Figure 1: Drillstring Schematic (Khulief et al., 2007) 
 
Potentially destructive vibration can occur axially, 

torsionally, or laterally.  The most severe manifestations 
of these are, respectively,  

 bit bounce where the bit comes off bottom 
despite weight on bit (WOB) from collars 

 stick slip where the bit alternately stops and 
overspeeds 

 severe lateral forward or backward whirl with 
wellbore contact 

While many approaches to drillstring modeling 
have been pursued, there are few models that can 
capture axial, torsional and lateral vibration without 
prohibitively high computation time.  Most models 
capture a subset of the three types of vibration, and may 
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neglect coupling.  Control design is typically done on 
overly simple models.  Verifying the performance of the 
controller by including sensors and actuators in a more 
complex finite element or modal expansion model can 
be difficult.  This paper presents a physically intuitive 
multibody bond graph model that predicts three-
dimensional drillstring (or any other long shaft) 
vibratory motion, and into which a controller and 
associated components can be easily added.  A simple 
lateral vibration controller, effected by axial force 
actuators, is demonstrated.   
 
2. LITERATURE REVIEW 
Active control of drillstring vibration is an emerging 
research area.  Linear quadratic regulator (LQR) control 
of torsional vibration has been simulated by Yigit and 
Christoforou (2006) and Sarker et al. (2012), with 
torsional control action having a positive effect on axial 
vibration.  Lumped segment models with axial and 
torsional degrees of freedom, coupled through a bit-rock 
interaction model, were used.  Stick-slip control has 
been simulated using robust µ-synthesis (Karkoub et al., 
2010), H∞ control (Serrarens et al., 1998), genetic 
algorithms (Karkoub et al., 2009), torque estimators 
(Pavkovic et al., 2011), and modeling error 
compensation-based control (Puebla and Alvarez-
Ramirez, 2008).  These controllers were designed using 
simple two-mass torsional pendulum models. 

Many such controllers have practical limitations, 
most notably the difficulty in measuring states such as 
instantaneous bit speed.  While measurement-while-
drilling (MWD) tools exist for recording accelerations, 
force and torque near the bit, there is no reliable and 
cost-effective means for delivering this information, at a 
suitable sampling frequency, to a controller at the 
surface.  A “Soft Torque Rotary System” (Jansen and 
Van den Steen, 1995), which has been adopted by 
industry, controls top drive speed to absorb torsional 
waves, based on torque feedback.   Rotary vibration 
control is most common in industry because of the 
relative ease of detecting torque fluctuations at the 
surface.  Active lateral and axial control is not currently 
done.  In other applications such as bridges (Younesian 
et al., 2010) and cantilever beams (Ahmadabadi and 
Khadem, 2012), lateral vibration has been suppressed 
by elements such as nonlinear energy sinks; however, 
the structures are not rotating shafts.  In drilling, lateral 
vibration control is done indirectly, through control of 
parameters such as rotary speed to avoid lateral 
resonance frequencies. 

The rotating shaft can be modeled using simple 
one-dimensional decoupled lumped-segment or modal 
expansion approaches (Karnopp et al., 2006) for axial, 
torsional, and lateral motion.  While axial-torsional 
coupling can be done through bit-rock interaction 
models, the coupling of lateral vibration to axial and 
torsional is more difficult.  Energy methods 
(Lagrangian, Hamiltonian) have been used to 
analytically determine equations of motion, which have 
been solved with approximate methods (Yigit and 

Christoforou, 1996, Ghasemloonia et al., 2012).  
Reconfiguring such models for different and new 
boundary conditions (e.g., more spans between 
stabilizers), and new discrete components such as 
vibrating tools, shock absorbers, and actuators is neither 
obvious nor trivial.  Finite element models, for example 
(Ghasemloonia et al., 2013, Khulief and Al-Naser, 
2005), can be more easily reconfigured, but typically 
exhibit high computation times and are not suited to 
prediction of closed-loop dynamic response. 

This paper describes a bond graph model in which 
three-dimensional rigid lumped segments are connected 
by axial, torsional, shear, and bending springs.  The 
model is demonstrated to capture coupled axial, lateral 
and torsional vibrations at the appropriate natural 
frequencies.  Boundary conditions, including wellbore 
contact, location of stabilizers, and bit rock force or 
displacement can be reconfigured.  The bond graph 
formalism and modeling approach allow 
straightforward inclusion of actuator or sensor 
submodels.  Implementation of a controller directly on 
to the bond graph is done in commercial software.  A 
lateral vibration suppression controller case study is 
presented.  

 
3. MODEL DESCRIPTION 
The drillstring is represented as a sequence of 
cylindrical rigid bodies joined by spherical joints with 
three translational and rotational compliances, as shown 
in Figure 2.  Springs “kbend” are rotary springs about the 
body-fixed x and y axes of body i+1, “ktors” is a rotary 
spring about body-fixed z, “kaxial” is a translational 
spring in body-fixed z, and “kshear” are translational 
springs in body-fixed x and y.  The torsional and 
bending springs are shown separately in the right 
portion of the figure, and one shear spring is not shown 
for clarity; however, all springs exist at the joint 
between point B on body i and Point A on body i+1. 

 

kbend

ktorskaxial

kshear

A

B

G

Body i

Body i+1
 

Figure 2: Successive Multibody Segments 
 
Stiffness values are computed for a segment length 

x = L/n of a string of length L with n segments, using 
basic solid mechanics theory, as follows (Karnopp et 
al., 2006): 
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   (1-4) 

 
where E is elastic modulus, A and I are cross-sectional 
area and area moment, G is modulus of rigidity, J is 
polar moment of area, and  is a parameter accounting 
for non-uniform shear across a cross section. 

 
3.1. Bond Graph of Segments and Joints 
The Euler Junction Structure is used, representing the 
following equations governing the dynamics of bodies 
undergoing large motions (Karnopp et al., 2006): 
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where G is the mass centre, left superscript 0 indicates 
vectors resolved into inertial frame components, and i 
indicates vectors (in this case, absolute velocities) 
resolved along body-fixed frame i.  The translational 
equations are expressed in frame 0 to facilitate 
application of the gravity vector.  The first term on the 
right hand side of the rotational equation is an inertial 
term, and the second term gyrational.  The hinge point A 
velocity is defined as follows (B is defined similarly): 
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where Gi/Ai
i r


is the position vector from G to A, and 

Gi/Ai
i r~ is a skew-symmetric matrix containing the 

relative position vector components.   
 
Figure 3 is a top-level vector bond graph (Breedveld, 
1985) representation of the above equations.  Note the 
modulated transformer representation of Eq’n (8).   
Cardan orientation angle (rotations , θ,  about body 
fixed z, y, x) rates are calculated, integrated, and used to 
create rotation matrices between body-fixed and inertial 
coordinate frames according to the following equations: 

zyx

zy

zy

cos

sin
cos

cos

sin
sin

cos

cos

cos

sin

sincos





























(9-11) 

Orthogonal rotation matrices transform vector 
components as follows: 
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The rotation matrix, as a function of Cardan angles, is: 
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where “c” and “s” represent cos and sin respectively. 
Figure 4 shows a joint submodel in which the 

relative velocity between point B and A on successive 
bodies is calculated in the Body i+1-fixed frame.  The 
multiport C and R elements have a diagonal stiffness 
matrix to model the stiffnesses described in Eq’ns (1-4), 
and a viscous material damping matrix tuned to give a 
reasonable damping ratio in the first mode. 
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Figure 3 – Body i Bond Graph 
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Figure 4 – Joint i Bond Graph 
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The 80-m collar section under study is very similar to 
the schematic shown in Figure 1.  The top is constrained 
axially and laterally with stiff translational springs, and 
a rotational speed increasing from 0 to 20 rad/s over 1 
second is prescribed.  Stabilizers are modeled via stiff 
lateral constraint springs at the bit, and 26.67 m above 
the bit.  A 3 mm sinusoidal axial bit displacement 
boundary condition is applied, at a frequency equal to 
rotational speed.  The pipe is divided into 30 segments 
of equal length.   
 
3.2. Modeling Wellbore Contact 
Use of lumped segments, rather than energy methods, 
simplifies the inclusion of wellbore contact.  Assuming 
a radial clearance of 2 cm between the collars and 
wellbore, stiff springs with discontinuous constitutive 
laws provide no effort until the radial deflection exceeds 
2 cm at Bodies 11 and 26, which are at the middle of 
their respective spans and thus most likely to collide 
with the borehole.  The velocities of points G11 and G26 
are expressed in the inertial frame, and integrated to 
determine their position and then angle, so that the 
wellbore contact spring force can be directed along that 
angle.  The spring is linear, with an arbitrary high 
stiffness value of 107 N/m.  This value can be refined, 
given knowledge of the specific rock type for uncased 
wells, or using contact mechanics models of steel-on-
steel for wells with a steel casing sleeve surrounding the 
drillstring.  The contact model does not include rubbing 
friction.  Future work will add such friction in addition 
to elastic restoring force, so that forward and backward 
whirl can be predicted.  Detection of wellbore contact 
and computation of force and angle are done using the 
following equations. 
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  (14-17) 

where  is radial deflection, o is maximum wellbore 
clearance, X and Y are absolute coordinates of the centre 
of gravity, F and kw are contact force and stiffness, and 
 is angle between the wellbore centre and the inertial X 
axis.  See Figure 5.   

 

G (X,Y)

O
Ф
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X

kw

 
 

Figure 5 – Wellbore Contact Schematic 
 

3.3. Modeling Sensors and Actuation 
Strain on the outer surface of the pipe is assumed to 
correlate with bending stress, and is thus used as the 
input to the lateral vibration controller.  Two pairs of 
actuators are modeled at the midpoints of the two spans.  
Figure 6 shows actuators that work as follows:  positive 
tensile strain at point C results in the controller applying 
a compressive force to expand the distance between 
points D on adjacent bodies.  An equal and opposite 
tensile force is applied at points C to create a moment 
about body-fixed y that opposes bending stress.  
Similarly, actuators at E and F will create a moment in 
response to strain at E.   

Ci+1
Fi+1

Ei+1Di+1

Ci

Fi
Ei

Di

Body i

Body i+1

Gi
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yi
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Figure 6 – Actuator Location Detail 
 

Strain at C is assumed proportional to the state 
(torsional deflection) of the bending spring component 
in the body-fixed y direction as shown in Figure 7.  
Lateral vibration-induced strain is assumed to be much 
larger than axial deformation strain.   

xi+1

yi+1

zi+1

(kbend)y

Фy

Body i

Body i+1

Ci+1

Ci

 
Figure 7 – Tensile Strain Computed at Points C 

 
Combining Hooke’s Law, Eq’n (3), and the 

relation between bending moment and beam curvature, 
the proportionality constant between spring state and 
strain is derived. 
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where the negative sign in Eq’n (20) comes from the 
right-hand rule applied to the y axis in Figure 7.   

An actuator submodel between Bodies 11 and 12 is 
shown in Figure 8. 
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Figure 8 – Actuator Generating Equal/Opposite Forces 
Between Points C and D on Bodies i and i+1 

 
3.4. Open Loop Tests and Verification 
Natural frequencies were calculated and compared to 
measured frequencies from the model to validate the 
lumped stiffness and inertia values.  An axial tensile 
load pulse of 10 kN, a torsional pulse of 1000 N-m, and 
a lateral step input of 10 N were applied, with first 
natural frequencies extracted from an FFT of the 
respective deflection time histories.  The explicit model 
was simulated using the Modified Backward 
Differentiation Method with tolerances of 10-6.  Natural 
frequencies are compared in Table 1. 

 
Table 1: First Natural Frequency and Damping Ratio 

 Nat’l Freq. [rad/s] ξ [%] 
 Calc. Meas.  

Axial 101.0 102.4 1.5 
Torsional 63.0 64.1 3.4 
Lateral 0.53 0.63 40.0

 
The lateral natural frequency in Table 1 was 

calculated assuming one 53.34 m span, whereas the 
measured frequency is for the pipe with spans of 53.34 
m and 26.66 m.  The second span in the model increases 
stiffness and frequency.  Static deflection of the beam 
was about midway between the values for a pinned-
pinned and fixed-pinned 53.34 m single span, as 
expected.  

Sample simulation output is given in Figures 9 and 
10 for a sinusoidal bit-rock displacement of 3 mm at a 
rotary speed of 20 rad/s, a 0.1 kg-m unbalance above 
the bit, and a nominal wellbore clearance of 2 cm.  The 
pipe hangs from a stiff spring of stiffness 109 N/m.  
Contact eventually occurs at the middle of the longer 

span.  Lowering the supporting spring stiffness will 
increase the severity of lateral vibration, as static 
buckling causes pipe sections to move further off-axis 
and act like more severe rotating unbalances. 

 

 
Figure 9 – Lateral Motion, Middle of Long Span 
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Figure 10 – Radial Deflection and Contact Force at 
Middle of Long and Short Spans 

 
4. ACTIVE LATERAL VIBRATION CONTROL 
As described in Section 3.3, the first investigation of 
lateral control focused on applying a control actuator 
couple about a bending axis in response to axial strain.  
A simple proportional controller is used with a gain kp 
of 109.  This gain will generate a control force on the 
order of kilonewtons for microstrain output of the 
simulated strain gauge.  The controller is very simple 
and at risk for instability; however, as part of a 
feasibility study of the potential effect of a chosen 
number and location of actuators on vibration, it gives 
valuable insight into system response.  The versatility of 
the model for such “virtual experimentation” of a 
physical realization of a controller is the primary focus 
here.  Promising results would then necessitate design 
of a more sophisticated and stable controller, along with 
inclusion of features such as actuator dynamics. 
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4.1. Controller Performance 
Actuators are placed near the midpoints of both the 

long and short spans.  Figure 11 compares the onset of 
lateral vibration at the long span midpoint with and 
without the controller.  The upper plot is uncontrolled, 
showing vibration peaking at 15 mm radial 
displacement and arriving at a steady-state level of 
approximately 8 ± 5 mm.  The middle plot is with the 
high-gain proportional controller that allows each 
actuator to apply unlimited compressive or tensile 
forces.  The unrestricted actuator force approaches 5000 
N, with low power requirements as shown in Figure 12.  
A simulated actuator that could only generate 
compressive forces, and is restricted to 5000 N, 
generates the vibration shown in the lower plot of 
Figure 11.  Figure 13 compares power output for the 
unrestricted and restricted actuators.  The actuators must 
provide power equal to the magnitude of the values in 
Figure 13 (negative power refers to effort and velocity 
in opposite directions).  The model indicates that 
restricting actuation direction and peak force 
significantly decreases control effect while increasing 
power requirements.  Results for actuators C-D are 
shown, but actuators E-F behave similarly. 

 

 
Figure 11 – Open- and Closed-Loop Vibration Levels, 
System Starting From Rest 
 

 
Figure 12 – Actuator Force 

 
Figure 13 – Actuator Power 

 
If the controller is switched on during steady-state 

uncontrolled vibration, the radial deflection of both 
spans is reduced as shown in Figure 14.  Top span 
vibration is reduced, strain is dramatically reduced, 
actuator power peaks at a higher value of 400 W 
compared to when control is initiated at startup; and 
peak actuator force (not shown) is 26 kN.  Radial 
deflection of the bottom span is reduced slightly, but is 
small even without control. 

 

 
Figure 14 – Controller Switched On After 25 Seconds 
 
4.2. Discussion 
The use of only two actuators, one on each span, results 
in high proportional gains and very few actuation sites.  
While the controller is stable for the scenarios shown, it 
exhibits instability when actuator delays are introduced.  
Lowering gains to 106 restores stability, but control 
benefit is lost.   Figure 14 shows that vibration is not 
reduced in proportion to strain near the actuator, when 
only one actuator per span is used.  This underactuation 
means that it is possible to reduce strain, say at point C 
in the middle of the long top span, to zero without 
restoring the radial position of the cross section to the 
middle of the wellbore.  The actuator can create a local 
region of zero bending in a pipe section that is pressed 
against the wellbore, and subjected to rubbing and 
repeated collision forces.  Figure 15 shows such 
behavior when the controller is switched on during a 
more severe vibration than in Figure 14.  Figures 15 and 
16 show repeated and prolonged excursions of the pipe 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2013 
ISBN 978-88-97999-25-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds.                                          

75



to the wellbore wall for both spans, and no reduction of 
vibration despite reduction of strain.  More actuation 
sites, with lower gains, are suggested by the model in 
order to stably control lateral motion using strain 
feedback. 

The separate controllers for the two orthogonal 
lateral directions are, in this preliminary study, single 
input-single output.  More sophisticated controller 
design would require a study of the coupling between 
the orthogonal modes and the potential benefits of a 
multiple-input approach to the design and tuning of 
each controller. 

A three-dimensional model, as opposed to a planar 
model, is necessary for exploratory simulations of the 
potential of a vibration suppression system such as the 
strain-based proportional feedback controller.  Axial 
and lateral vibrations could be studied in a decoupled 
manner by simple modal expansion or lumped segment 
models, and a multibody approach could be done much 
more simply with motion restricted to a single lateral 
plane, to simulate strain-feedback actuation.  However, 
the rotation of a drillstring or similar shaft introduces 
centrifugal excitations and moves the actuators in and 
out of a given lateral plane.  The model described herein 
is a physically intuitive and easily-reconfigured 
representation of a rotating beam with the required three 
dimensions. 

 

 
Figure 15 – Controller Pushing Pipe into Wellbore, Top 
Span 

 
Figure 16 – Controller Pushing Pipe into Wellbore, Top 
Span 
 
5. CONCLUSIONS AND FUTURE WORK 
A rotating shaft, in this application an oilwell 
drillstring, has been modeled using a succession of rigid 

bodies moving in three dimensions and constrained by 
shear, torsional, bending, and axial stiffness elements.  
Thirty segments are used to model a two-span rotating 
beam with a bit-rock displacement axial boundary 
condition, rotating unbalance, and contact with an 
exterior surface (wellbore) at the midpoint of each span.  
The model is useful not only for predicting coupled 
axial, torsional, and lateral vibrations due to unbalance 
or external excitation, but also for preliminary design 
and implementation of vibration controllers.  Mid-span 
strain gauges and actuators are simulated, with high-
gain proportional feedback showing potential for 
vibration suppression.  The model indicates that more 
than two actuation sites are required, to prevent the 
actuators from locally straightening the shaft to 
eliminate bending strain without reducing lateral 
deflection.  The model is easily reconfigurable to study 
alternate control strategies such as active unbalance 
masses that could apply transverse control forces more 
directly.  Future work will be directed towards more 
robust control using these two approaches, as well as 
validating the model against finite element models and 
measured data from actual oil wells.  Important model 
extensions include sliding friction from wellbore 
contact, fluid friction, and a bit-rock interaction 
submodel to predict axial displacement and reaction 
torque with higher fidelity. 
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