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ABSTRACT 

The present paper investigates a bond graph tool to 

design full-order proportional-integral (PI) observers for 

a robust fault detection purpose. The proposed method 

allows the calculation of the gain matrix graphically 

through covering causal paths and loops based on the 

pole placement techniques for linear systems. The 

robust residuals are further generated from an uncertain 

bond graph model in linear fractional transformation 

(LFT) form so as to detect actuator faults in presence of 

parameter uncertainties. Simulation tests on a hydraulic 

system show the dynamic behavior of system variables 

and the robustness of the PI observers in the presence of 

modeling errors. The effectiveness of the proposed 

robust fault detection estimator is later illustrated via a 

DC motor. 

 

Keywords: Bond Graph, Proportional-Integral observer, 

Robust fault detection, Linear fractional transformation, 
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1. INTRODUCTION 

Bond graph approach has been developed in recent 

years as a powerful tool for modeling dynamical 

systems. It essentially focuses on the exchange of 

energies between the system and its environment and 

between different elements within the system. 

Robust fault diagnosis has been the subject of 

several researches, due to the increase of system 

complexity, and the industrial requirement around the 

safety and the yield (Isermann 1993). In this context, 

due to the structural and causal properties of 

quantitative graphical approaches, the bond graph is 

more and more used for modeling and fault diagnosis. 

Bond graph representation can be used for monitoring 

ability (i.e. ability to detect and to isolate faults) and 

supervision system’s design via the generation of 

formal Analytical Redundancy Relations (ARRs) in a 

systematic way (Djeziri, Merzouki, Ould Bouamama 

and Dauphin Tanguy 2007). In his works, Djeziri dealt 

with the generation of fault indicators in the presence of 

parameter uncertainties by using a bond graph 

representation in linear fractional transformation (LFT) 

form. Since diagnosis using (ARRs) is more common in 

practice, in this paper we will particularly focus the 

attention on the design of graphical PI observers for 

robust fault detection issue. 

For the general case of systems modeled by the 

bond graph tool, little has so far been achieved in the 

development of associated FDI graphical observers. 

Abderrahmène (Sallami, Zanzouri and Ksouri 2012) 

integrated a method of robust diagnosis based on 

observers for systems with parameter uncertainties 

modeled by the bond graph. Hence, the observer design 

is obtained by using graphical methods and referring to 

structural properties (Sueur and Dauphin Tanguy 1989). 

For this reason, the main interest of the present 

paper is to build a robust bond graph observer (RBGO) 

in proportional-integral form (Pichardo-Almarza, 

Rahmani, Dauphin-Tanguy and Delgado 2003) for 

linear systems based on causal and structural properties 

for graphical approach (Bond Graph). It consists to 

generate residual signals from linear BG-LFT models to 

take into account the presence of parameter 

uncertainties in multiplicative form. 

The outline of the paper is as follows: Section 2 

presents the graphical PI observers design for linear 

systems while section 3 deals with the robust residual 

generation. Illustrative examples of a hydraulic system 

and a DC motor are developed in section 4 and show 

the efficiently of the proposed robust fault detection 

estimator. 

 

2. DESIGN OF A GRAPHICAL PI OBSERVER  

 

2.1. Conventional PI observer  

The Luenberger observer is itself a linear dynamic 

system. Its input values are the values of measured 
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outputs from the original system, and its state vector 

generates missing information about the state of the 

original system. The observer can be regarded as a 

dynamic device that, when connected to the available 

system outputs, generates the entire state. However, 

the idea of a proportional integral observer, Fig.1, is to 

use additionally the integral of the error as follows: 

 

0
ˆ ˆ( ( ) ( ))

t

w y Cx d      (1) 

 
Figure 1: Proportional Integral Observer’s diagram. 

 

Then, the PI observer for the model is written 

using this set of equations: 

 

ˆ
ˆ ˆ ˆ( )

ˆ
ˆ

p I

dx
Ax Bu K y Cx K w

dt

dw
y Cx

dt


    


  


 (2) 

 

where x in  n, y in  q, and u in  m are respectively 

the state, the measurement output and the control input 

vectors. A, B and C are constant matrices of proper 

dimensions. KI and KP are respectively the integral and 

proportional gains. Hence, the error equation ( ˆ
xe x  

and ˆ
we w ) is defined as: 

 

0

x

xp I

w w

de

eA K C Kdt

de C e

dt

 
      

    
    
 
 

 (3) 

 

 

2.1.1. Bond Graph PI observer 

 

The algorithm presented in this section is dedicated to 

fault detection observers for linear systems, in which 

bond graph tool is used. 

 

 Step 1: Checking the existence of any 

redundant outputs The existence of 

redundant outputs is the first condition to 

check for the observer construction. The 

interest of this step is to avoid unnecessary 

calculations. Indeed, the selection of the non-

redundant outputs allows the computing of the 

gain K with minimal size. This condition can 

be verified by calculating the rank of the 

observation matrix C (difference between the 

number of detectors De and Df, and the 

detectors which cannot be dualized in the bond 

graph in integral causality). 

 

 Step 2: Checking the structural 

observability of the model 

 

 Property 1: From a Bond Graph point of view 

proposed by Sueur and Dauphin-Tanguy 

(Sueur and Dauphin Tanguy 1989) a bond 

graph model is structurally observable if and 

only if the following conditions are met: 

1. On the bond Graph model in integral 

causality, there is a causal path between all 

the dynamic elements I and C and a detector 

De or Df. Or, 

2. All dynamic elements admit a derivative 

causality in the derivative bond graph model. 

If there are dynamic elements remaining in 

integral causality, the dualization of detectors 

De and Df is necessary.  

 

 

 Step 3: Construction of the Luenberger 

bond graph observer The objective of this 

stage is to design the BGO equivalent to the 

conventional Luenberger observer equation 

defined as: 

 

  
ˆ( )

ˆ ˆ

x Ax Bu K y y

y Cx

   



 (4) 

 

The BGO is composed of the integral bond graph model 

to which the term ˆ( - )K y y is added. Figures 2 and 

3 represent the linear output injection in the dynamic 

components I and C, by using modulated flow sources 

for an element I and modulated effort sources for an 

element C. 

Kj

MSe 1

I
y-ŷI

 

 
Figure 2: Linear output injection: case of an I element. 
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C
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Figure 3: Linear output injection: case of a C element. 

 

 Step 4: Construction of the bond graph PI 

observer The Bond Graph model is defined 

with the changes described in the below 

figures. In the same way, modulated effort 

sources (respectively flow sources) are used 

when the state variable is associated with an I-

element (respectively a C-element) to apply the 

integral action in the observer. 

 
Figure 4: Linear output injection: case of an I element. 

 

 
 

Figure 5: Linear output injection: case of a C element. 

 

3. ROBUST RESIDUAL GENERATION  

Inspired from BG-LFT representation introduced by 

(Dauphin and Djeziri 2006), graphical PI observers are 

used to generate robust residual signals by following 

these steps: 

 Verify that the uncertain bond graph model in 

LFT form of the system is reachable and 

structurally observable; 

 Construction of the BG PI observer; 

 The residual signal (residual output estimation) 

is deduced from this equation: ˆr y y  . 

 
In the next section, we will illustrate the effectiveness 

and the performance of the developed graphical PI 

estimator comparing to Luenberger one (Saoudi, EL 

Harabi and Abdelkrim 2012; Saoudi, EL Harabi and 

Abdelkrim 2013) via a hydraulic system with two tanks. 

Robust fault residuals are tested through a DC motor 

with parameter uncertainties under multiplicative form. 

 

4. SIMULATION AND DISCUSSIONS 

 

4.1. Hydraulic System with two tanks 

Consider the sketch of the studied system where its 

characteristic values are presented in Table 1. From the 

bond Graph model in integral causality (see Figure 7), 

the associated graphical PI observer is deduced 

verifying these steps: 

 

R1 R2
A1

A2

h1
h2

qi

q1 q2

Figure 6: Hydraulic system with two tanks. 

 

0

  C:A1

1    Sf :qi

  R:R1

0

  C:A2

1

  R:R2

h1
h2

q1 q2

De

 

Figure 7: Bond Graph model of the system in integral 

causality. 

 

Table 1: Parameter Values 

Elements 

Parameter Symbol Value 

Section Area of 

tank 1 

A1 1m
2 

Section Area of 

tank 2 

A2 2m
2
 

Hydraulic 

Resistance 1 

R1 10m(m
2
s

-1
)

-1
 

Hydraulic 

Resistance 2 

R2 20m(m
2
s

-1
)

-
 

 

 Step 1: Checking the existence of redundant 

outputs. This step is unnecessary in this case 

study, since the model has only a single 

detector. 

 Step 2: Verification of the structural 

observability. As it is mentioned previously, 

the structural observability, can be easily 

obtained using structural analysis of the 

,derivative bond graph model (DBG) (See 
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Figure 8). All the dynamic elements admit a 

derivative causality; hence, the model is 

structurally observable. 

 

0

  C:A1

1    Sf :qi

  R:R1

0

  C:A2

1

  R:R2

h1
h2

q1 q2

De
 

 

Figure 8: Bond Graph model in derivative causality. 

 

 Step 3: Construction of the Luenberger BG 

observer. It is possible to construct a 

Luenberger observer from the bond graph 

model by using linear output injection cited 

above. 

MSf :qi 0

0 C :A1

1

R:R1

0

0 C :A2

MSf
MSf 

1

R:R2

K2

K1

 y-ŷ

 

Figure 9: Bond Graph model of the Luenberger 

observer. 

 Step 4: Construction of the PI observer-

based bond graph (BGO). The proposed BG 

PI observer is described in Fig.10 after 

modifying the bond graph model. 

 

 
Figure 10: Bond graph model of the graphical PI 

observer. 

 

 Step 5: Gain calculation of the BG PI 

observer. We calculate Kp as the gain of the 

Luenberger observer. We choose the poles of 

the observer and such that they are slightly 

faster than the poles of the model and non-

oscillating. 

 

1

2

0.318

0.032

s
s

s

   
    

  
                                            (5) 

 

This selection gives the following desired characteristic 

polynomial: 
2( ) 0.35 0.01dP s s s                                 (6)

                                                  

with these coefficients and after the calculation of 

causal cycles of order 1-2, we obtain Kp as 

2

0.15
Kp

 
  
 

                                           (7) 

 

Then, we can apply the same method to calculate KI 

using the calculated values of KP for the Luenberger 

observer, with the following poles selection: 

 

0.318

0.032

0.0033

s

 
 

 
 
  

                            (8)                                                      

Furthermore, the desired polynomial for the PI observer 

is: 
3 2( ) 0.3533 0.1115 0.00003dP s s s s      (9)

                                                         

with these coefficients, we obtain now three equations 

depending on the components of KI and KP . We use 

the values of KP2 calculated for the Luenberger observer 

and after the calculation of the family of causal cycles 

of order 1-3 , we can calculate the new KP1 and KI 

vector that generate the coefficients of the desired 

polynomial. 

Finally, we obtain the following gains: 

1

2

0.2467

0.15

Kp
Kp

Kp

   
    

  
                      (10)   

 

1

2

0.00373

0.00718

I

I

I

K
K

K

   
    

  
                           (11)                                           

 

The initial conditions of the BG model states in integral 

causality are considered null. Simulation tests were 

implemented in 20-sim software. In this part, The 

performance of the Luenberger and PI observers are 

evaluated in presence of modeling errors. Thus, let’s 

consider that the hydraulic resistance parameter R2 for 
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the OBG have a variation of -10% in comparison with 

the parameters of the BG model. 

 

 
Figure 11: Estimation error via the Luenberger BG 

observer. 

 

 
 

Figure 12: Estimation error via the BG PI observer. 

 

We conclude that the estimation error converges to zero 

despite the presence of modeling errors in the 

observer’s parameters unlike to the graphical 

Luenberger observer (see figures 11 and 12). 

 
Now, Let’s use the BG PI observer for a robust fault 

detection purpose. 

 

4.2. DC motor 

 The DC motor is a combination of electrical and 

mechanical fields. The electrical part corresponds to an 

RL circuit. It is composed of an input voltage source 

Ualim, an electrical inductance La and an electromotive 

force feedback represented by a gyrator (GY) (with a 

constant k). The mechanical part is characterized by a 

rotor inertia J, a viscous friction parameter b and 

transmission axle rigidity. 

 

The nominal characteristics and parameter values of the 

DC motor are defined in Tables 2 and  3. 

 

Table 2: Nominal Operation Of The Dc Motor 

DC Motor Characteristics 

Power 1KW 

Velocity (w) 452tr/mn 

Current (Ia) 1.8A 

Voltage (Ualim) 47.3V 

 

Table 3: Parameter and Uncertainties Values Of The 

DC Motor 

Parameter and Uncertainties Values 

Symbol Parameter Value Uncertainty 

Ra Armature 

Resistance 

8Ω 0 

La Rotor  Inductance 0.129 H δ La=0.0002 

k Constant Torque 0.07745 0 

J Constant Inertia 0.02Kg.m
2 

δ J=0.00035 

b Fluid Friction 0.0218 Nm/s 0 

 

 

 
Figure 13: Bond graph model of the DC motor with 

permanent magnet. 

 

To this bond graph model of the DC motor (see Fig.13), 

we will apply the method described in section 2 in order 

to design the graphical PI observer. 

 

The bond graph model of the studied system (see 

Fig.14) is structurally observable (steps 1 and 2 are 

verified). 

 

 
Figure 14: Bond graph model in derivative causality. 

 

 Step 3: Construction of the Luenberger BG 

observer. The bond graph model of the 

proportional observer is deduced as seen in 

Fig.15. 
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GY 1 Se :-Tch

R Ra R b

k

1I La I J

MSe MSe

K

K

k1

k2

Mse 

Ua

y-ŷ

 

Figure 15: Bond graph model of the Luenberger 

observer. 

 

 Step 4: Construction of the BG PI observer. 
PI observer deduced from BG model is 

presented in Fig.16. 

  

 
Figure 16: Bond graph model of the PI observer. 

 

 Step 5: Calculation of the observer gain (KP 

and KI). It is determined using the bond graph 

models of the observers. Applying the same 

technique to calculate the gains of the previous 

observer, from Fig.16 we obtain the 

corresponding families of causal cycles (see 

Table 4). 

 

ai Causal Cycle families Gains 

 

 

β1 

 ( 1). a
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a
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L s
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2
( 1).

p

c

k
G

Js


 
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k k
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3

.
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Finally, we obtain the following gains: 
 

2.3

0.3642

5.217

10.998

p

I

K

K

 
  
 

 
  
 

                                         (11)                 

 

The input signal Ualim and the load torque Tch, in normal 

situation, are illustrated respectively in figures 18 and 

19.Moreover, the estimated states iaest and west when a 

PI observer is used are shown in figures 20 and 21. The 

observer error is near zero. In this case, it is able to 

estimate states. Thus, the obtained estimator can be used 

to generate residual signals. 

 

 
Figure 18: Input signal evolution. 

 

 
Figure 19: Load torque evolution. 

 

The figures 20 and 21 show a clear precision of 

estimation of the systems state variables. We observe, 

also, that the pace of the estimated variables iaest and 

west and the state variables ia and w are 

indistinguishable. 

 
Figure 20: Estimation of the Induced current via the BG 

PI observer. 

 

 

 
Figure 21: Estimation of the velocity via the BG PI 

observer. 

 

The estimation errors are null as it is shown in figures 

Fig.23 and Fig.24. 

 
Figure 22: Estimation error of the induced current. 

 

 
Figure 23: Estimation error of the velocity. 

 
In LFT bond graph representation, parameters 

uncertainties are represented under multiplicative form 

at the level of bond graph component, which represent 

respectively, the inertia J and the rotor inductance La in 

the DC motor. The graphical linear PI observer is 

depicted in Fig.24. Indeed, the proportional-integral 

observer provides a more robust estimation against 

parameter uncertainties as it is shown in figures 25 and 

26. The estimation errors are practically null. Thus, the 

robustness of the graphical PI observer against 

modeling errors. 
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Figure24: BG-LFT model with multiplicative 

uncertainties of the system and its observer.

 
Figure25: Estimation error of the induced current in 

faulty free case (in presence of parameter uncertainties). 

 

 
Figure 26: Estimation error of the velocity in faulty free 

case (in presence of parameter uncertainties). 

 

Hence, it improves the performance and the efficiency 

of the bond graph PI observer. Now, it can be used to 

generate fault indicators. 

However, DC motor failures can be classified as 

electrical and mechanical faults and the residues are 

obtained from the linear graphical PI observer. 

 

The fault scenario considers the occurrence of the 

actuator fault (partial blocked rotor), with subtractive 

amplitude of 20 Volt between the instants 3s and 4s 

(abrupt failure), while the motor is operating in charge. 

  

From figures 27 and 28, we observe that the state 

variables are affected by the occurrence of this default 

and drawn aside from their nominal values. 

 
Figure 27: Velocity evolution in faulty case. 

 

 
Figure 28: Induced current evolution in faulty case. 

 

Figures 29 and 30 show that residues are different 

from zero during the appearance of the actuator failure. 

Then, the graphical PI observer able guarantee a 

robustness to parameter uncertainties and a sensitivity 

against faults. 

 

 
Figure 29: Residual response in abnormal situation (r1). 

 

 
Figure 30: Residual response in abnormal situation (r2). 

 

 

5. CONCLUSION 

In this paper, a robust fault detection procedure using a 

proportional-integral observer based on bond graph 

model for linear systems has been addressed. This 

approach is based exclusively on the causal handling 

operated on a bond graph representation. The 
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implementation of graphical PI observers improve the 

residual generation. In fact, the obtained fault indicators 

are robust to the multiplicative parameter uncertainties 

and the modeling errors. The major interest of this 

approach lies in the fact that the bond graph model has a 

true physical direction and gives access to many flow 

and effort variables. Due to graphical proportional-

integral observer’s limits, future works will focus on an 

unknown input observer design so as to ensure more 

robustness against disturbances. 
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