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ABSTRACT
This paper presents a structural approach for the state and 
unknown input estimations of linear systems when the 
classical matching condition is not verified. At the analysis 
step, the finite and infinite structures of the model are studied 
from the bond graph representation. At the synthesis level, 
the observer is directly implemented from the initial model 
with some additives terms and can be represented by a bond 
graph model. An illustrative example which considers a real 
system is included.

keyword: Unknown Input Observer, bond graph, linear 
models, structural approach

1. INTRODUCTION

Consider a linear perturbed system described by a state space 
equation defined in (1), where x ∈ ℜn is the state vector, z ∈ 
ℜp is the vector set of measured variables (also output 
variables to be controlled in this paper). The input variables 
are divided into two sets u ∈ ℜm and d(t) ∈ ℜq which 
represent known and unknown input variables respectively.

{
ẋ(t) = Ax(t)+Bu(t)+Fd(t)
z(t) = Hx(t) (1)

Generally, the state vector x(t) cannot be entirely measured
and the system is often subject to unknown inputs d(t)
(disturbance or failure...) which must be estimated. The
unknown input and state observability problem (UIO) is a
well known problem. Different approaches give solvability
conditions and constructive solutions for this problem.

At the analysis step, before design, must of the approaches
require the analysis of the structural invariants of the model
which play a fundamental role in this problem. The infinite
structure of the model is also often related to solvability
conditions. They have been extensively studied in many
papers and books [2], [24], [26], [18], [14], [19]. The
knowledge of zeros is an important issue because zeros are
directly related to stability conditions of the observer and of
the controlled system.

For LTI models, constructive solutions with reduced order
observers are first proposed with the geometric approach
[15], [3], [2]. Constructive solutions based on generalized
inverse matrices are given in [22] and then in [23] and [17].
Full order observers are then proposed in a similar way
(based on generalized inverse matrices) in [8] and [7], but
with some restriction on the infinite structure of the model

(known as observer matching condition), which is a rather
restrictive condition.

The algebraic approach is proposed in [29] and in [5]
for continuous and discrete time systems, without restriction
on the infinite structure of the model. When this condition
(matching condition) is not satisfied [13] proposed unknown
input sliding mode observers after implementing a procedure
to get a canonical observable form of the model. New
output variables are defined with some derivatives. In this
approach, sliding mode observers combined with a high-
gain approach are often proposed [20]. New developments
are now proposed with an observer based approach for
some classes of nonlinear systems with a fuzzy approach
[30], fuzzy systems with time delays [28] or with uncertain
systems [4].

This work makes the following contributions: extension of
a previous work [31] when the classical matching condition
is not verified and simple synthesis of an UIO with output
variables’ derivatives. In section 2, the previous UIO design
is recalled with the different steps for design and synthesis.
An extension without the matching condition is proposed
in section 3. In that case, the UIO is a bond graph model,
close to the bond graph model of the physical system. At
the analysis step, a graphical approach is proposed and as
for many estimation and control problems, the invariant zeros
are of great interest in the analysis. An illustrative example
which considers a real system is included in section 4, and
we conclude in section 5.

2. UIO WITH MATCHING CONDITION
In the literature, the different proposed approaches con-sider 
first the finite structure of Σ(H,A,F) and then its infinite 
structure. The finite structure gives some stability conditions 
on the UIO and the infinite structure some con-ditions on the 
existence of the UIO.

2.1. Finite and infinite structures of Σ(H,A,F)
The concepts of strong detectability, strong* detectability and 
strong observability have been proposed in [16] for sys-tems 
with unknown inputs d(t). The strong detectability of system 
with only the unknown input vector d(t) corresponds to the 
minimum-phase condition, directly related to the zeros of 
system Σ(H,A,F) (finite structure). The system Σ(H,A,F) in 
(1) is strongly detectable if and only if all its zeros s satisfy 
Re(s) < 0.
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The infinite structure of multivariable linear models is
characterized by different integer sets. {n′i} is the set of
infinite zero orders of the global model Σ(H,A,B) and {ni}
is the set of row infinite zero orders of the row sub-systems
Σ(hi,A,B). The infinite structure is well defined in case of
LTI models [9] with a transfer matrix representation or with
a graphical representation (structured approach), [10].

The row infinite zero order ni verifies condition ni = min{
k|hiA(k−1)B ̸= 0

}
. ni is equal to the number of derivations

of the output variable zi(t) necessary for at least one of the
input variables to appear explicitly. The global infinite zero
orders [12] are equal to the minimal number of derivations
of each output variable necessary so that the input variables
appear explicitly and independently in the equations.

In order to solve the UIO problem for systems in (1), a
necessary condition called observer matching condition for
the existence of observers is often required (see [22]; [8]):
rank[HF ] = rank[F ]. For a SISO model, the infinite zero
order of model Σ(H,A,F) is equal to 1. When this condition
is not satisfied [13] proposed unknown input sliding mode
observers after implementing a procedure to get a canonical
observable form of the model. This method can also be
extended in the nonlinear case. Necessary and sufficient
conditions are that system Σ(H,A,F) is left invertible and
minimum phase.

2.2. Bond graph models
In a bond graph model [21] and [25], causality and causal

paths are useful for the study of properties, such as control-
lability, observability and systems poles/zeros. State space
and transfer representations can be directly written from a
bond graph model, thus properties of these mathematical
representations can be derived before any calculus with a
causal analysis. Bond graph models with integral causality
assignment (BGI) can be used to determine reachability
conditions and the number of invariant zeros by studying
the infinite structure. The rank of the controllability matrix
is derived from bond graph models with derivative causality
(BGD).

A LTI bond graph model is controllable iff the two
following conditions are verified [27]: first there is a causal
path between each dynamical element and one of the input
sources and secondly each dynamical element can have a
derivative causality assignment in the bond graph model with
a preferential derivative causality assignment (with a possible
duality of input sources). The observability property can be
studied in a similar way, but with output detectors. Systems
invariant zeros are poles of inverse systems. Inverse systems
can be constructed by bond graph models with bicausality
(BGB) which are thus useful for the determination of invari-
ant zeros.

The concept of causal path is used for the study of
the infinite structure of the model. The causal path length
between an input source and an output detector in the bond
graph model is equal to the number of dynamical elements
met in the path. Two paths are different if they have no
dynamical element in common. The order of the infinite zero

for the row sub-system Σ(hi,A,B) is equal to the length of
the shortest causal path between the ith output detector zi
and the set of input sources. The global infinite structure
is defined with the concepts of different causal paths. The
orders of the infinite zeros of a global invertible linear bond
graph model are calculated according to equation (2), where
Lk is the smallest sum of the lengths of the k different input-
output causal paths. {

n′1 = L1
n′k = Lk −Lk−1

(2)

The number of invariant zeros is determined by the infinite
structure of the BGI model. The number of invariant zeros
associated to a controllable, observable, invertible and square
bond graph model is equal to n−∑n′i.

2.3. UIO synthesis
The model Σ(H,A,F) is supposed to be a SISO model in

order to simplify the presentation. It can be easily extended
to MIMO models using for example the same procedure as
for the input-output decoupling problem with the concept of
row and global infinite structures from a structural point of
view in the analysis step. If a somewhat physical approach
is proposed, some assumptions are also possible for the
state space model deduced for example from a bond graph
representation.

Asumption 1. It is supposed that the SISO system
Σ(H,A,F) defined in (1) is controllable/observable and that
the state matrix A is invertible.

With Asumption 1, a derivative causality assignment is
possible for bond graph models (physical model without
null pole). The extension to models with non invertible state
matrix is straight for bond graph models, because a graphical
approach can be proposed in that case. It is not proposed in
this paper.

The state equation (1) is now rewritten as (3).

{
x(t) = A−1ẋ(t)−A−1Bu(t)−A−1Fd(t)
z(t) = HA−1ẋ(t)−HA−1Bu(t)−HA−1Fd(t)

(3)

If matrix HA−1F is invertible (Model Σ(H,A,F) has no
null invariant zero), the disturbance variable can be written
in equation (4) and then the estimation of the disturbance
variable can be written in equation (5). The extension to
models with HA−1F = 0 is straight and not proposed in this
paper.

d(t) = −(HA−1F)−1[z(t) −HA−1x˙(t) +HA−1Bu(t)]            (4)

dˆ(t) = −(HA−1F)−1[z(t) −HA−1x˙ˆ(t) +HA−1Bu(t)]         (5)

From the state equation (3), estimation for the state vector
is defined in equation (6), which can also be written as
(7), which is similar to a classical estimation, but with a
difference in the last term. It needs the derivation of the
measured variable. Matrix K is used for pole placement.
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x̂(t) = A−1 ˙̂x(t)−A−1Bu(t)−A−1Fd̂(t)+K(ż(t)− ˙̂z(t)) (6)

x˙ˆ(t) = Axˆ(t) + Bu(t) +Fdˆ(t) − AK(z˙(t) − z˙ˆ(t))          (7)

In this approach [31], the state equations for the model
and the observer are the same, with only an extra term for
the observer. This observer is simple and take into account
the control inputs, which is not always true in the literature.

The convergence of the disturbance variable can be veri-
fied with equation (8), obtained from (4) and (5).

d(t)− d̂(t) = (HA−1F)−1HA−1(ẋ(t)− ˙̂x(t)) (8)

The estimation of the disturbance variable converges to the
disturbance variable only if (ẋ(t)− ˙̂x(t)) converges asymp-
totically. Convergence of the state estimation must be proved
with the study of the observer fixed poles.

Matrices NBO and NBF are introduced in (9), in order to
simplify notations.

{
NBO = A−1 −A−1F(HA−1F)−1HA−1

NBF = A−1 −A−1F(HA−1F)−1HA−1 −KH
(9)

From previous equations, with e(t) = x(t)− x̂(t) it comes
(10).

e(t) = NBF ė(t) (10)

This observer requires the matching condition defined in
some well known approaches [16], [7] and in that case, fixed
poles of the estimation error are all the invariant zeros of
system Σ(H,A,F) [31], which means that this system must
be strong* detectable .

3. UIO EXTENSION
For many physical systems modeled by (1), the observer 
matching condition is not satisfied. To overcome the restric-
tion imposed by this condition, an observer has been pro-
posed in [13] using the infinite structure of model ∑(H,A,F), 
and the derivatives of input and output variables.

An extension of the state and unknown input estimations
is proposed in this paper without the observer matching
condition in the SISO case. It can be easily extended to
the MIMO case using the global infinite structure of model
∑(H,A,F). Only some derivatives of the output variables are
needed for this new observer.

3.1. UIO synthesis
Let r be the infinite zero order of the SISO model ∑(H,A,F). 
It is the smallest positive integer such that HAr−1F ̸= 0.

The estimation of the disturbance variable is still written
as in equation (5) and the estimation of the state vector
is now written as (11). This new observer is very close to

the previous one, with a matrix K used for pole placement
multiplied by the rth output variable derivative.

x˙ˆ(t) = Axˆ(t) + Bu(t) +Fdˆ(t) − AK(z(r)(t) − zˆ(r)(t))   (11)

From (3) and (11), the state error estimation equation
e(t) = x(t)− x̂(t) is given by (12), where NBFr is defined
in (13) (Proof in Appendix).

e(t) = NBFr ė(t) (12)

NBFr = A−1 −A−1F(HA−1F)−1HA−1 −KHAr−1                         (13)

Matrix NBFr can be written in an easy way (obtained from
x(t)− x̂(t)). The difference between matrix NBF defined in
equation (9) and matrix NBFr defined in equation (13) is due
to the output derivative and is just associated to the extra
matrix Ar−1.

If the state equation (1) is written from a bond graph
model, it is possible to draw a bond graph model for the
state estimation defined in (11) because equation (11) is very
close to the initial state equation. Some signal bonds must
be added for the disturbance equation defined in (5). The
structure of the observer is proposed in Fig. 1, with BGI for
the bond graph model and BGO for the observer bond graph
model.

Figure 1: Structure of the observer based on bond graph 
model

With Fig. 1, it is possible to estimate unknown variables
(disturbance inputs or actuators faults) in an easy way.

3.2. Properties of the observer
In equation (12), conditions for pole placement are studied.
If matrix NBFr is invertible, a classical pole placement is
studied, and the error variable e(t) = x(t)− x̂(t) does not
depend on the disturbance variable. The conditions for (12)
to be an asymptotic state observer of x(t) is that NBFr must
be an Hurwitz matrix, i.e., has all its eigenvalues in the left-
hand side of the complex plane. Properties of the observer
are studied.

A necessary condition for the existence of the state esti-
mator is proposed in Proposition 1.

Proposition 1: A necessary condition for matrix NBFr de-
fined in (13) to be invertible is that HAr−1F ≠ 0.

Proof In Proposition 1, matrix NBFr F is equal to [A−1 −
A−1F(HA−1F)−1HA−1−KHAr−1]F , thus it can be rewritten
as NBF F = A−1F −A−1F(HA−1F)−1HA−1F −KHAr−1F =
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KHAr−1F . If condition HAr−1F ̸= 0 is not satisfied, the
Kernel of matrix NBFr is not empty, which means that matrix
NBFr is not invertible and that this matrix contains at least
one null mode, thus pole placement is not possible (all its
eigenvalues are not in the left-hand side of the complex
plane).�

Condition defined in proposition 1 is an extension of the
well-known matching condition defined in [16] and [7]. It
means that the infinite zero order between the disturbance
variable d(t) and the measured variable z(t) can be greatest
than 1, equal to r with this observer.

It is now supposed that HAr−1F ̸= 0 is satisfied. Two
properties are proved. First, it is proved that for matrix NBFr ,
r poles can be assigned and that the other poles (fixed poles)
are the inverse of the invariant zeros of system Σ(H,A,F).

Proposition 2: In matrix NBFr defined in (13), r poles can
be chosen with matrix K.

Pole placement for matrix NBFr is equivalent to pole place-
ment for system Σ(HAr−1,NBO). The observability property
of this system must be studied, and particularly the rank of
the observability matrix which is equal to the number of
poles which can be assigned.

The n rows of the observability matrix of system
Σ(HAr−1,NBO) are HAr−1, HAr−1.NBO,...,HAr−1.Nn−1

BO . Each
row is calculated.



HAr−1

HAr−1.NBO = HAr−1.(A−1 −A−1F(HA−1F)−1HA−1)
= HAr−2

HAr−1.(NBO)
2 = HAr−3

...
HAr−1.(NBO)

r−2 = HA
HAr−1.(NBO)

r−1 = H
HAr−1.(NBO)

r = 0
...
HAr−1.(NBO)

n−1 = 0
(14)

The rank of this observability matrix is r because model
Σ(H,A) is observable and the non null rows calculated in
(14) are thus linearly independent. This proved that r poles
can be assigned in equation (12) and that the observer has
n− r fixed poles.�

Now it is proved that the fixed poles are the inverse of the
invariant zeros of system Σ(H,A,F).

Proposition 3: The eigenvalues of matrix NBO defined in
(9) are the inverse of the invariant zeros of system Σ(H,A,F)
(n− r modes) plus r eigenvalues equal to 0.

Proof: Appendix�
Proposition 4: The fixed poles of the estimation equation

error defined in (12) are the invariant zeros of system
Σ(H,A,F).

Proof From Proposition 3, the eigenvalues of matrix NBO
are the inverse of the invariant zeros of system Σ(H,A,F)
with r eigenvalues equal to 0, and since NBF is invertible
and only r poles can be chosen, all the fixed poles are the
non null eigenvalues.�

4. EXAMPLE
The previous procedures are applied on a real hydraulic 
system modeled by bond graph. At the analysis step, pro-
posed methods on bond graph models do not require the 
knowledge of the value of parameters, because intrinsic 
solvability conditions can be given and a formal calculus 
can be proposed at the synthesis level.

4.1. Bond graph model

Figure 2: Hydraulic system with two tanks

Figure 3: Process diagram to study

Consider for illustration the two coupled tanks depicted
in figure 2 and 3. The aim of the two tanks is to provide
a continuous water flow to a consumer via the valve V2.
The process consists of two tanks R1 and R2 connected
by a valve V3. The connection pipe between the tanks is
placed at the bottom of the tanks. T1 is filled by a controlled
pump P1 modeled as source of flow Qp to keep water level
constant. The pressures (image of levels) at the bottom of
each tank are measured by sensors P1m and P2m respectively.
The electro valves V E1 and V E2 can be used to simulate a
leakage (as a disturbances). In the faultless mode V E1 and
V E2 are closed. The three ways valve V4 is used to connect
inlet flow through the coil (to introduce a time delay) or
directly to the tank R1 in Fig. 2. The BGI model of the
system with a disturbance signal is given in Fig. 4, and
the state-space equations are presented in (15), with (x1,x2)

t

the state vector. It corresponds to the volume in the tanks.
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u = Qp is the control input variable (flow) and z1 = h2 is
the output vector. It corresponds to the height of liquid in
second tank. In order to use classical bond graph rules, a
parameter k is added before the output detector, Fig. 4, with
k = 0.0102m2s2kg−1. d is the disturbance input variable (if
the second valve V2 is closed, R2 =∞. d is an unknown input
if tap valve R2 is open). The input u(t) is a step function,
i.e. u(t) = 4.36 ·10−4m3s−1.

Figure 4: BGI model of the hydraulic system with the 
disturbance


ẋ1 =−

(
1

C1R3
+ 1

C1R1

)
x1 +

1
C2R3

x2 +u

ẋ2 =
1

C1R3
x1 − 1

C2R3
x2 +d

z1 =
k

C2
x2

(15)

The bond graph model is controllable and observable
(a derivative causality can be assigned). The numerical
values of system parameters are shown in Table I. Sim-
ulations and control of this system are implemented with
MATLAB R⃝Simulink.

Table 1: Numerical values of system parameters
C1 C2 R1 R3

7.78×10−7 m4 ·s2

kg 8.01×10−7 m4 ·s2

kg 4.21×107 pa·s
m3 5.78×107 pa·s

m3

The valve V2 is opened with start time 300s and end time
330s. Then the disturbance variable d and it’s estimate d̂ and
the estimation errors for the state variables are drawn.

4.2. Observer with matching condition
The design of the observer proposed in the previous 

section can thus be redesigned from a bond graph approach. 
The causal path length between the output detector De : z1 

and the disturbance input S f : d is equal to 1, path De : 
z1 →C : C2 → S f : d, thus the matching condition is verified, 
and there is an invariant zero in the system Σ(H,A,F).
After calculation, the invariant zero is s = − 1

C1
( 1

R3
+ 1

R1
)

which verifies the minimum phase condition. The bond graph
representation of the observer is drawn in Fig. 5 in a general
form without values for parameters.

For the considered hydraulic system, the two poles of the
second order model are approximatively equal to −0.064 and
−0.0103. In the state estimation equation defined in (10),
matrix K = (k1,k2)

t is used for pole placement. The first

Figure 5: Observer with the bond graph representation

one is a fixed pole equal to s1 =−0.0527. The second one is
chosen at s2 =−0.6, thus k2 = 1.3x10−6 because with some
formal calculus, the second poles of matrix N−1

BF defined in
the state estimation error equation is s =−C2

k2
.

The two estimated variables ĥ2 and d̂ are very close to the
real variables, Fig. 6 and Fig. 7. The different figures prove
the accuracy of this UIO.

Figure 6: Water level in the second tank h2 and it’s estimate 
hˆ2

Figure 7: The disturbance variable estimate dˆ
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4.3. Observer without matching condition
In a second step, a new sensor z2 is used to estimate the 
disturbance variable, as shown in Fig. 8. The state-space 
equations are presented in (16).

Figure 8: BGI model of the hydraulic system with the 
disturbance


ẋ1 =−

(
1

C1R3
+ 1

C1R1

)
x1 +

1
C2R3

x2 +u

ẋ2 =
1

C1R3
x1 − 1

C2R3
x2 +d

z2 =
k

C1
x1

(16)

In this case, the same parameters of the hydraulic system
are used. The unknown input is a perturbation (opening of
the valve R2 with start time 720s and end time 750s). The
causal path length between the output detector De : z2 and
the disturbance input S f : d is equal to r = 2, the infinite zero
order (path De : z2 →C : C1 → R : R3 →C : C2 → S f : d). The
classical matching condition is not verified. The extended
observer is used, equation (17)

˙̂x(t) = Ax̂(t)+Bu(t)+Fd̂(t)−AK(z̈(t)− ¨̂z(t)) (17)

The model order is equal to 2, thus there is not any
invariant zero and all poles can be assigned in the error
estimation equation. The state error estimation is given by
(10) with NBF2 = A−1−A−1F(HA−1F)−1HA−1−KHA. The
two poles are chosen at s1 = −0.5 and s2 = −0.6, thus the
observer gains in matrix K = [k1,k2]

t are k1 = 3.44 ·10−6 and
k2 = 3.44 ·10−6.

Figure 9: The water level in the first tank h1 and it’s estimate 
hˆ1

Experimental results (fig. 9 - 10) show that the observer
reproduces closely the output value of the water level in the

Figure 10: The disturbance variable estimate dˆ

tank y = h1 and the unknown input. In this experimental sys-
tem, the unknown input is not only a perturbation (opening
of the valve R2) but also noise, mostly at the beginning of
the experiment, which can be pointed out at the beginning
of the estimation, Fig. 10.

Numerical differentiation of a signal is an old problem in
automation and many problems have been solved (estimation,
control...) with approximation of derivatives. Different ap-
proaches use an interpolation technique [11]. In other works,
the authors apply a cubic spline interpolant method, [1] and
[6].

In this case study, simulations are performed using the
software Matlab-Simulink. For numerical differentiation of
the real signal, a block ”Discrete Derivative” is used. From
the simulation results and experimental results presented in
this paper, it should be noted that these differentiations are
possible in this experiment.

5. CONCLUSION
In this paper, an extension of an unknown input observer is 
proposed when the classical matching condition is not 
verified. The necessary condition to obtain a stable solution is 
that invariant zeros belong to the left half complex plan 
(Hurwitz condition). A bond graph approach with classical 
graphical conditions is used. The approach is proposed for a 
real hydraulic linear system. Experiments have shown that the 
proposed observer is accurate. In the future this method will 
be extended to nonlinear systems.
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APPENDIX
Proof of equations (12) and (13)
Equations (12) and (13) are proved for r = 2. The exten-

sion for any integer r is simple are straight.
First, write z = Hx. A first order derivative is ż = Hẋ =

H(Ax+Bu+Fd) = HAx+HBu with HFd = 0. Thus z̈ =
Hẍ = HAẋ+HBu̇. The same equation is written for ẑ, thus

¨̂z=H ¨̂x=HA ˙̂x+HBu̇. From these two expressions, a new one
is written: z̈− ¨̂z = HAẋ+HBu̇− (HA ˙̂x+HBu̇) = HA(ẋ− ˙̂x).

With an easy extension, it is proved that z(r) − ẑ(r) =
HAr−1(ẋ− ˙̂x), which proves equations (12) and (13).

Proof proposition 3
First, the observability property of model Σ(HAr−1,NBO)

is studied. The non observable poles are the roots of the
invariant polynomials obtained from the Smith form of
matrix N(s) defined in (18). With matrix HAr−1, only r
modes of matrix NBO can be assigned, because the rank of the
observability matrix of system Σ(HAr−1,NBO) is equal to r.
Structurally, with s = 0, the rank of matrix (18) degenerates.
The non observable modes are all the null modes.

N(s) =
(

sI −NBO
HAr−1

)
(18)

The fixed poles of the state estimation error defined in
(10) are thus the r null non observable poles of model
Σ(HAr−1,NBO). Now, some equivalent transformations are
proposed for the Smith matrix S(s) of system Σ(H,A,F)
defined in (19).

S(s) =
(

sI −A −F
H 0

)
(19)

S(s)∼
(

sA−1 − I −A−1F
H 0

)
∼

(
sA−1 − I −A−1F

H + sHA−1 −H −HA−1F

) (20)

∼
(

sA−1 − I A−1F(HA−1F)−1

sHA−1 I

)
(21)

∼
(

sA−1 − I −A−1F(HA−1F)−1(−sHA−1) 0
sHA−1 I

)
(22)

∼
(

sNBO − I 0
0 I

)
(23)

Since det(pI − NBO)=pndet(I − NBO/p), with s = 1/p it
comes det(pI − NBO)=(−1)ns−ndet(sNBO − I) which is a
polynomial of degree n with variable p and of degree −n
with variable s. But, detS(s) is a polynomial of degree n− r,
thus from a simple mathematical analysis it is proved that
the polynomial det(pI −NBO) has r null roots and that the
roots of the polynomial det(sNBO − I) are the inverse of the
non null roots of polynomial det(pI−NBO) since (p = 1/s).
In that case the non null poles of matrix NBO are the inverses
of the invariant zeros of model Σ(H,A,F).

The non observable modes of system Σ(HAr−1,NBO)
are thus all the inverse of the invariant zeros of system
Σ(H,A,F). They are the fixed modes of the state estimation
error equation.
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