
MECHANICAL ANALYSIS OF 2D-BRAZED JOINT USING A NEW HYBRID “MAX-
FEM” MODEL  

 
A. IFIS(a), F. Bilteryst(b), M. Nouari(c)  

 
(a) Laboratoire d´Energétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563, GIP-InSIC, 27 rue 

d’Hellieule, 88100, Saint Dié des Vosges, France 
(b) Laboratoire d´Energétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563, GIP-InSIC, 27 rue 

d’Hellieule, 88100, Saint Dié des Vosges, France 
(c) Laboratoire d´Energétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563, GIP-InSIC, 27 rue 

d’Hellieule, 88100, Saint Dié des Vosges, France 
 

(a)abderrazzaq.ifis@gmail.com (b)francois.bilteryst@insic.fr (c)mohammed.nouari@insic.fr 
 
 
 
ABSTRACT 

This work deals with the performance of a new 
approach combining the numerical eXtended Finite 
Elements Method ‘X-FEM’ and the analytical method 

of Matched Asymptotic Expansions ‘MAE’. The 
proposed new “MAX-FEM” model is well adapted for 
studying and modeling the mechanical behavior of 
mediums containing singularities such as thin layers or 
adhesive joints without any required mesh refinement in 
their vicinity. The methodology consists of the 
construction of enrichment parameters with the ‘MAE’ 

technique and their integration into the ‘XFEM’ 

formulation. Correction matrix of stiffness is then 
defined and integrated in the FEM computation 
algorithm. To describe the mechanical behavior of a 
proposed structure with 2D brazed joints, the “MAX-
FEM” hybrid model has been implemented as an UEL 
subroutine under Abaqus implicit. Compared with the 
classical FE method, the obtained results in terms of 
stress field, strains and displacements show a good 
accuracy without any required mesh refinement. 
Keywords: hybrid technique, thin layers, Matched 
Asymptotic Expansions, X-FEM, correction matrix, 
UEL ‘MAX-FEM’ subroutine.   

 
1. INTRODUCTION 

During the last decade, several methods have been 
introduced for modelling singular problems such as thin 
layers, adhesive joints, coating, etc.. Analytical 
approaches based on asymptotic assumptions such as 
Matched Asymptotic Expansions (MAE) give at two 
different-scales an approximation of the main solution 
in structures containing singularities (M. Van Dyke, 
1975; P. Schmidt, 2008). As shown by the work of 
Leguillon and Abdelmoula (2000), the MAE method 
has been used to analyse brazed joints in order to 
describe the crack propagation process at the interface 
between the joint and the bonded substrates. However 
the difficulty of the numerical implementation of this 
method makes its use very complicated and limited to 
some simple cases.  

In the other side, the numerical methods headed by 
the Finite Element Method (FEM) struggle with 
singular problems, where a mesh refinement is required 

in order to take into account singularities. Besides, in 
order to overcome this limitation, particular numerical 
methods have been introduced to deal with this 
difficulty. These methods allow to give a multi-scale 
analysis in discontinuous mediums as assembly 
structures, welded mediums, etc.. Two possibilities are 
given by these approaches: the first procedure consists 
in making a local analysis and then project the 
information about the singularity behaviour at the large 
scale. The homogenization and the Arlequin methods, 
described by (T.I. Zohdi, J.T. Oden and G.J. Rodin, 
1996) and (P.T. Bauman and H. Ben Dhia, 2008) 
respectively, are based on this principle and are used in 
several works, especially to analyse composites 
materials. The second procedure consists in defining a 
correction of the classical FE method. The information 
about the singularity is then stored in an added part 
called “enrichment”. Thereby, the local analysis is not 

required. X-FEM (N. Moes, J. Dolbow and T. 
Belytschko, 1999; H. Bayesteh and S. Mohammadi, 
2011) and G-FEM (I. Babuska, U. Banerjee and J. 
Osborn, 2004) are two partition of unity (PUM) (I. 
Babuska and J.M Melenk, 1999) methods that are used 
in several works in order to solve various types of 
problems especially crack problems. 
 
2. STATE OF THE ART: METHODS USED FOR 

SINGULAR PROBLEMS  
 
2.1. X-FEM approach: 

 Problems with singularities have been firstly 
treated using FE method by updating the mesh 
‘topology’ in order to match the geometry of the 

singularity. However, the introduction of X-FEM 
circumvents this problem by enriching a standard 
approximation with special additional functions. The 
form of the enriched approximation follows the 
partition of unity. The geometry of the singularity is 
then involved by updating the enrichment scheme; no 
remeshing of the domain is required. The only 
interaction between the mesh and the geometry of the 
singularity involves the construction of the enriched 
basis functions. The classical X-FEM formulation is 
given by: 
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 Where Nenr is the enrichment terms number,  u x  

the approximated function,  
i

N x  the standard FEM 

functions for node i, 
i

u  the unknown of the standard 

FEM part at node i, 
k

  the enrichment function and 
k

b  
the enrichment parameter. 

 
2.2. MAE approach: 
MAE approach has been firstly used for fluid 

mechanics (M. Van Dyke, 1975). It shows its efficiency 
in treating perturbed problems and boundary layers. 
This method based on asymptotic assumptions has been 
applied for adhesive joint problems as illustrated in 
Figure 1.  

 

 
 
Figure 1. Two-scales partition of ‘Matched Asymptotic 

Expansions’ approach. 
 
It consists in solving problems at two different 

scales (Figure 1) by introducing two different 
asymptotic expansions, the outer (Equation 2) and the 
inner (Equation 3) expansions.  
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With 
2

x  is the stretched variable 
2 2

/ 2x x  and 

(.)  denotes the displacement values at the both sides 

of the interface (
2 2

0x x  ). 
Each expansion is constituted of two main parts: 

the leading terms 0
u  and 0

v  which are the classical 
solutions obtained by finite element method while the 
second part is considered as a correction given by a 
perturbed terms 1

u  and 
1

v depending on  ; the 
characteristic thickness of the brazed joint. 

In the works of (D. Leguillon and R. Abdelmoulab, 
2000; D.H. Nguyen et al., 2008), the MAE has been 
used to compute the jumps expressions of displacement 
field across the interface of discontinuity defined by the 
outer domain. This algorithm is based on simultaneous 
resolution of classical equations of the model 
(equilibrium equations, constitutive laws, continuity 
conditions) for each order, and a matching process 

(Equation 4) for both expansions at their respective 
limits (i.e. 

2
0x  ) for the outer expansion, and 

2
x    for the inner expansion).  
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Using this algorithm, the jump u  of 

displacement (D. Leguillona and R. Abdelmoulab, 
2000; D.H. Nguyen et al., 2008) is computed and 
expressed by: 
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As it will be presented in the next section, this 
value has been used in the setup of the MAX-FEM 
model. 
 

2.3. Proposed hybrid MAX-FEM Model 
In this work, the hybrid MAX-FEM model has 

been introduced for the thin layers modelling to release 

mechanical analysis of a 2D-brazed joint. The MAX-

FEM model is a Partition of Unity Method (PUM) 

where the main solution is formulated using two main 

parts: a classical FEM discretization and the enrichment 

terms. The proposed PUM formulation exploits the 

Matched Asymptotic Expansions (MAE) in the 

definition of the enrichment parameters. This procedure 

links the two main parts of the PUM formulation to give 

a corrected form of the standard FEM where correction 

matrix is introduced to compute the stiffness matrix. 

 
3. MAX-FEM SETUP 

 
3.1. MAX-FEM Principle  

 By analysing the shapes of the X-FEM and MAE 
approaches, it is notable that these two methods share 
the common subdivision of the unknown solution at two 
different parts: the classical solution and the correction 
terms (Figure 2). Thereby the MAX-FEM model feats 
the similarity between the two methods to define a new 
procedure describing the brazed joint behaviour. In fact, 
the joint is assimilated to a discontinuity interface 
which creates a jump of displacement field. The new 
configuration containing the introduced singularity is 
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described using a specific MAX-FEM formulation 
while the enrichment parameters are defined using the 
jumps computed by the MAE approach (Equation 5). 
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Non-perturbed 
term correction term

Figure 2. Identification of leading and correction terms 
using MAX-FEM model. 

 
3.2. Problem position 

 The main purpose here is the setup of the MAX-
FEM model for a 2D-brazed joint under mechanical 
loading (see Figure 3). The adhesive joint and substrates 
are considered as elastic domains. 

 

Adhesive
 thin layers

Thikness e = 0,1mm
Mechanical propreties 
(BNi-2):
 E2= 74 Gpa , v2=0,33

B=100 mm

L
=

1
0

0
 m

m

Steel: 

E1= 200 Gpa , v1=0,33 

U2=0,4 mm

X , U1

Y , U2

 Figure 3. 2D brazed joint under mechanical loading 
 

3.3. MAX-FEM formulation 
 The MAE outer expansion (Equation 2) crushes the 
thin layer. The latter is turned to an interface of 
discontinuity ( 0  ) which completely crosses the 
width of the assembly (see Figure 1). As a result, the 
problem is assimilated to the strong discontinuity 
problem with presence of displacement jump across the 
interface. Herein, the MAX-FEM will consider the 
formulation (Equation 1) and adapts it to the considered 
application. In this context, the formulation proposed in 
equation (6) uses the same strategy as the outer 
expansion of MAE while keeping the basic shape of X-
FEM: 
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Where 
k

b and are the enrichment parameters 

which must be defined and  H  is the Heaviside function 

defined in the point 1

2

x

x

 
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x  by: 
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 Instead of using nodal values of the global field 
i

u  
as used in formulation (Equation 1) and in the work of 
Nguyen et al. (2008), this approximation (Equation 6) 
integrates the continuous solution 0

u . 
 The similarity between the outer expansion 
(Equation 2) and formulation (Equation 6) is employed 

to identify the enrichment parameters  k

k

a

bk
b . The 

algorithm of identification is illustrated for linear 
structural element containing the joint position (Figure 
4): 

 

 
Figure 5. Linear structural enriched element containing 

the joint position 
 

  Equations (6) and (2) are used to compute the nodal 
values of the global fields (Equation 7) and (Equation 8) 
as follow: 
Firstly, by using the formulation (Equation 6): 
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 And secondly, by using MAE outer expansion 
(Equation 2): 
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 Then, the displacement difference between two 
nodes located on the same ridge and crossing the joint 
position is computed with the two approximations 
(Equation 7) and (Equation 8) as follow. 
Firstly, by using the formulation (Equation 7): 
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Secondly, by using MAE outer expansion (Equation 8): 
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 The equality between Equations (9) and (10) gives 
the conditions that the enrichment parameters have to 
satisfy: 
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 To compute these parameters values, it is not 
necessary to have an explicit expression of the 
perturbed term 1

u  in each node. In fact, by using the 
MAE algorithm introduced in works (D. Leguillona and 
R. Abdelmoulab, 2000; D.H. Nguyen et al., 2008) the 
term ( ( ) ( )) 

1 1

4 1
u x u x for nodes 1 and 4 (respectively 

( ( ) ( )) 
1 1

3 2
u x u x  for nodes 2 and 3) are approximated 

to 1 4
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1

 
u  and 2 3

1
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respectively. h is the height of the enriched element 
while 1 4

1
( ,0)x

1

 
u  (respectively 2 3

1
( ,0)x

1

 
u ) denotes the 

displacement jump crossing the interface  in the 
common abscissa  between nodes 1 and 4 (respectively 
2 and 3). 
 Taking into account the previous approximation, 
the expression proposed for the parameters 

k
b  is given 

bellow: 
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3.4. Stiffness matrix 

 The expression (Equation 5) shows a linear 
dependence between the jump and the leading 
derivative terms. From this dependence rises a transfer 
matrix between the jump and the unperturbed strain 
vector: 
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By integrating this result in the enrichment 

parameters expression, the latters are linked to the 
leading term nodal values as shown in (Equation 14). 
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[C] is the enrichment matrix defined in (Equation 

13) and [B] is the strain matrix linking the strain vector 
to the nodal values of the leading term. 

The expression (Equation 14) is injected in the X-
FEM formulation (Equation 6) creating then a transfer 
matrix between the global nodal displacement values 
 u  and the leading term one  0u : 
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 

8,8
I is the identity matrix and  H  is called 

“Heaviside matrix” and expressed below: 
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By considering that the global problem and the 

leading outer one are assumed under the same exterior 
loading    0( )F F , the global stiffness matrix  K  is 

linked to the one of the leading problem   
0

K  as 
follow: 
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Consequently, the global stiffness matrix can be 

defined as a correction of the standard FEM stiffness 
matrix using a “correction matrix”  CM defined by: 
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       
1

18,8

1
( ,0)

2
x



 
 
 
 

CM I H C B               (17) 

 
 
Finally, the linear system to consider is: 
 

    u FK                 (18) 
 

The enrichment parameters 
k

b  and the leading 

term 0
u  of the finite elements formulation (Equation 6) 

do not appear explicitly in the final system (Equation 
18). This is due to the MAE results which reveal a 
linear dependence liking the enrichment parameters to 
the leading term derivatives. Also, the continuity of the 
finite elements formulation (Equation 6) allows to 
define a correction matrix  CM  (Equation 17) and to 

link the global stiffness matrix  K  to the standard one. 

The computation of the leading term 0
u  and the 

enrichment parameters is then not needed, and the 
global displacement field u  is directly computed by 
numerical resolution of the system (Equation 18). It can 
be noted that only the correction matrix  CM is 
computed and then injected in a standard FEM program.  

The obtained solution covers the outer domains. 
This means that only the influence of the thin layer on 
the global structure is characterized. In this work, the 
local analysis of the thin layer is not considered. 
However, if necessary, the model can take into account 
the complex behavior in the vicinity of the joint, 
including crack, delamination or other nonlinear aspects 
for example. This can be possible by resolving the inner 
problem (Equation 3) of the MAE. Following this 
approach, the local analysis is restricted in the enriched 
elements which are expanded to zoom on the joint and 
the contact interfaces. The resolution of the inner 
problem can be performed by using the existing 
methods (FEM, X-FEM, etc.) 

 
4. NUMERICAL IMPLEMENTATION OF MAX-

FEM MODEL 

 This section provides a validation study for the 
proposed MAX-FEM hybrid model. The obtained 
results are compared to those given by the standard 
FEM by meshing finely the thin layer. In this work, 
ABAQUS code is used to implement the model using 
an UEL subroutine. The same code is also used to 
compute the reference solution (FEM) for 2D-brazed 
joint in figure 3 

 
4.1. Numerical implementation 
The model developed here has been implemented 

in ABAQUS as a user element using the UEL 
subroutine. The procedure of the development of this 
subroutine is based on a previous work introduced by 
Giner et al. (2009). The model starts from a 

combination of X-FEM and MAE, and will give as a 
final result the corrected form of standard FEM. This 
correction is presented by the matrix  CM  (Equation 
17) which stores the required information for the joint 
behavior. As a result, the structure of the program 
(Figure 4) will be constituted by the standard FEM 
while the correction matrix will be computed in an 
internal subroutine depending on the considered 
application. 

 
 

Standard FEM 

program

Correction 

matrices

Corrected 

jacobien 

AMATRX

Corrected effeort  

RHS

· Gauss points

· Shape functions

· Shape Matrix]

· Standard stifness, conductivity, capacity matrix

· Standard RHS

· Stifness,  correction

· Correction

· Capacity correction

· Effort correction

Stiffness, conductivity and capacity matrices

Stiffness correction

Conductivity correction

 
Figure 5. Algorithm structure of the implemented UEL 

“MAX-FEM” subroutine 
 
The results given in the setup of the model are 

implemented in the UEL “MAX-FEM” subroutine 

following the structure presented in Figure 6. The 
correction matrix  CM  (Equation 17) and the 
corrected stiffness matrix (Equation 16) are computed 
for the 2D-brazed joint presented in Figure 3. 

The computation is limited to 2D plane stress state. 
Thereby, the enrichment matrix  C  (Equation 13) 
needed for the computation of the correction matrix 
 CM  (Equation 26) is written as: 

  1
0 0 1

( 1)
1 0

2

E

E



 

 
 
 

C                (19) 

By resolving the system (Equation 18), the 
displacement field is obtained. Then, other mechanical 
fields are deducted. The results given by the UEL 
“MAX-FEM” subroutine are compared to ones obtained 
by standard FEM under the same code. The considered 
mesh, displacement, stress, strain and error are 
presented for the two methods. 

(i) Mesh  
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MAX-FEMFEM

 Figure 6. Overview of the classical FEM discretization 
and the MAX-FEM meshing 

 
 User elements are not represented by ABAQUS 
post-processor. However, in order to reach this aim, a 
post-processing subroutine should be required. This will 
be performed in forthcoming developments. 

The comparison between the two mesh strategies is 
summarized in Table 1: 

 
Table 1. FEM and MAX-FEM mesh data 

 FEM MAX-
FEM 

Ratio (FEM/MAX-
FEM) 

Nodes 
number 7242 2652 2,73 

Elements 
number 7052 2550 2,76 

Minimum 
element size 0,1 mm 2 mm 20 

 
From Table 1, it can be noted that the model 

presents an important mesh optimization. This should 
be more notable in forthcoming transient analyses 
where the time increment for such computations 
depends on the size of elements. 

(ii) Stress 
 

                    FEM                               MAX-FEM

 Figure 7. FEM and MAX-FEM stress distributions 
 

(iii) Displacement  
 

                         MAX-FEM                         FEM

 Figure 8. FEM and MAX-FEM displacements 
 

By analyzing these results, it can be noted that the 
model reproduces the outer displacements and stress 
fields given by the FEM method. In order to give an 
accurate comparison, a plot of the displacements in the 
section x = 20 mm are presented in Figure 13: 

 

U1_ ABAQUS
U1_ MAX-FEM
U2_ ABAQUS
U2_ MAX-FEM

U2_ ABAQUS
U2_ MAX-FEM

 Figure 9. FEM and MAX-FEM displacements in the 
section x = 20 mm 

 
Figure 8 shows that the curve given by the model 

fits the one obtained by standard FEM from the first 
enriched node. Consequently, a single MAX-FEM 
element reproduces the same solution given by several 
FEM elements. The line linking the two enriched nodes 
is a linear interpolation and does not present the 
solution in the vicinity of the joint. The latter can be 
obtained by the resolution of the inner problem of 
MAE. 

To analyze the accuracy of the model, three error 
expressions are computed taking the FEM solution as 
reference:  

· Relative error:  

i i

FEM MAX FEM

relative i

FEM

u u
err

u




  

· Maximum error: 
max

 max( )
i i

FEM MAX FEM
err u u


   

· Norm L2: 2
  ( )

i i

FEM MAX FEM
err u u


   

These expressions are used to estimate the error 
into the section x = 20 mm by using the previous results 
of Figure 8 

 

(%
)

 
Figure 10. Relative error  in the section x = 20 mm 

 
Table 2. error approximation 

 max( )relativeerr  maxerr  err
 

U1 1,6 % 0,0039 1,339 10-7 
U2 1,36 % 0,00128 1,295 10-7 

 
By analyzing these error approximations, it 

becomes trivial that the hybrid model presents accurate 
results without meshing the thin layer. However, the 
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accuracy of the model depends on several parameters 
and the model can have some limitations and critical 
points. 

Among these limitations, there are boundary 
problems which affect the results accuracy near to 
boards. These problems are especially due to the MAE 
method. The rules used to link the outer and inner 
solutions still available in an infinite inner domain. 
However, in the boards, the solution has to satisfy the 
boundary conditions. The enrichment strategy used in 
this work cannot then reproduce the solution in the 
vicinity of boards. 

In addition to board problems, other parameters 
may affect the model accuracy. The three points below 
are the most important: 

1. The ratio /h e  linking the element height and 
the joint thickness. Actually, more this ratio is 
smaller; more the results highlight a good 
accuracy. 

2. The number of enriched elements: in this work, 
a single element is enriched in the joint 
thickness direction. However, it is trivial that 
increasing that number will increase the model 
accuracy. Besides, a new enrichment strategy 
has to be developed. 

 
5. CONCLUSION 

 
 The hybrid model introduced in this work combines 
the MAE technique which is used to define the 
enrichment parameters and the X-FEM formulation. 
This new approach called ‘MAX-FEM’ model has been 

established and used to solve the mechanical singular 
problem of two-dimensional brazed joints. The ‘MAX-
FEM’ approach leads to a corrected form of standard 

FEM where a correction matrix is used to compute the 
main solution in the whole structure.  
 Once set up, the model has been implemented 
under ABAQUS code using the UEL subroutine. The 
results given by the model are compared to those 
obtained using standard FEM for the 2D- brazed joint. 
From this application, it is notable that “MAX-FEM” 

model provides accurate results in terms of 
displacement and temperature fields without any 
required mesh refinement in the vicinity of the thin 
layer. 
 However, the model has its limitations near to 
boards where the proposed enrichment is not available. 
New enrichment strategies have to be developed in 
future work to deal with this limitation. Also, even if it 
is not developed here, the model can take into account 
other behaviors of the joint such as damage, cracks and 
delamination. These behaviors have to be considered in 
the computation of jumps using MAE approach. 
Besides, if it is necessary, the local behavior of the joint 
can be described by the resolution of the inner problem. 
Thereby the analysis can be developed in two scales 
instead of the global analysis presented in this work. 
Finally, it can be said that the model needs to be 

enhanced and generalized to be used for more 
complicated applications.  

 
REFERENCES 

 
I. Babuska, J.M Melenk, The partition of unity finite 

element method, Int. J.Numer.Meth.Engrg.40 
(1997) 727-758 

I. Babuska, U. Banerjee, J. Osborn, Generalized finite 

element methods: Main ideas, results, and 

perspective, Int. J. Comput. Methods 1 (1) 
(2004) 1-37  

P.T. Bauman, H. Ben Dhia, N. Elkhodja, J.T. Oden, S. 
Prudhomme, On the application of the 

Arlequin method to the coupling of particle 

and continuum models, Comput. Mech., 42 
(2008) 511–530. 

H. Bayesteh, S. Mohammadi, XFEM fracture analysis 

of shells: The effect of crack tip enrichments, 
Computational Materials Science, 50 (2011) 
2793–2813 

Giner E, Sukumar N, Tarancon JE, Fuenmayor FJ. An 

Abaqus implementation of the extended finite 

element method. Eng Fract Mech., 76 (2009) 
347-368. 

D. Leguillona, R. Abdelmoulab, Mode III near and far 

fields for a crack lying in or along a joint, 
International Journal of Solids and Structures, 
37 (2000) 2651-2672 

N. Moes, J. Dolbow, T. Belytschko, A finite element 

method for crack growth without remeshing, 
Int. J. Numer. Meth. Engrg. 46 (1999) 131–

150. 
D. H. Nguyen, F. Bilteryst, M. Lazard, P. Lamesle, G.  
  Dour, Coupling of the eXtended Finite  

  Element Method and the matched asymptotic  

  development in the modelling of brazed  

  assembly, International Journal of Material  
  Forming, 1, 2008, pp. 1119-1122 
P. Schmidt, Modeling of adhesively bonded joints by an 

asymptotic method, International Journal of 
Engineering Science, 46 (2008) 1291–1324 

M. Van Dyke, perturbation methods in fluid Mechanics              
  (1975) 
T.I. Zohdi, J.T. Oden, G.J. Rodin, Hierarchical  

  modeling of heterogeneous bodies. Computer  
  Methods in Applied Mechanics and  
  Engineering, 138 (1996) 273-298, 

 
 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2012
ISBN 978-88-97999-12-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds. 102


