
ROBUST MODEL MATCHING CONTROL APPLIED TO A CRANE 
 

Eduardo Luiz Lozano de Campos 
(a), Fabrizio Leonardi 

(b) 
 

 (a)(b) Centro Universitário da FEI, São Bernardo do Campo, Brazil 
 

(a) llcampos@uol.com.br, (b)
 fabrizio@fei.edu.br 

 
 
 
 
ABSTRACT 
This paper discusses the robust closed loop control 
design subject to parametric uncertainties applied to a 
crane during a maneuver. Usually crane trajectories are 
generated by formulating a minimum time optimal 
control in open loop. However, the optimality of the 
solution is not maintained due to variations in the plant 
over time. This work proposes the use of a model 
matching structure to reduce the problems related to 
model uncertainties thus trying to preserve the 
trajectory optimality. The robust compensator 
minimizes explicitly the matching error between the 
real plant and the reference plant. In this application the 
main uncertain parameter is the pendulum length and 
plays the role of the load lifting. To illustrate the 
application experiments were done using a lab scale 
equipment. The results observed are very close to those 
obtained from numerical simulation. 
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1. INTRODUCTION 
Cranes are common in various industry segments for 
transporting loads. These systems are considered 
efficient for their safety in transportation, mechanical 
robustness and reliability of loading and unloading 
tasks.  
 Even a crane manually operated need to be 
controlled accordingly but one should not expect great 
performance since human action can be inaccurate and 
not always the best path will be produced, which can 
generate, for example, swings that may endanger the 
operation, products, equipment, etc. When an automated 
system is used, it is reasonable to expect for better 
performance. In this case, the system is responsible for 
controlling all the variables subjected to the physical 
constraints, seeking minimum time, lower power 
consumption and minimal oscillation. (Puglia, Leonardi 
and Ackermann, 2011; Da Cruz and Leonardi, 2012). 
 As proposed by Sorensen, Singhose and Dickerson 
(2007), the control schemes of cranes may be grouped 
into three categories: time-optimal control, command 
shaping and feedback control. His own publication can 
be considered in the category of command shaping with 
a forward action used to determine the appropriate 
command signal in order to reduce the swing during a 
maneuver. The command shaping approach was also 
used by Lee and Choi (2001), who developed a way to 

determine the trajectory of the crane based on Lyapunov 
stability theorem. Another example is the work of Chen, 
Hein and Wörn (2007), where it is proposed an open-
loop control with the trajectory defined based on the 
principle of acceleration compensation. In the work of 
Lau and Pao (2001), he discusses about the equivalence 
of minimum time optimal control and command 
shaping for flexible systems. 
 Normally the minimum time problem is treated in 
open loop, but due to modeling errors and disturbances 
is necessary to use a closed loop control strategy to 
maintain the optimal trajectory with a certain precision. 
An example of this is the work of Hičár and Ritók 
(2006) which uses the pole allocation method by means 
of the Ackermann formulae to provide a robust control 
to a crane. 
 Different closed loop control structures, such as 
IMC, multiloop, model matching, etc., are somehow 
equivalent to each other in the sense that it is usually 
possible to represent the same control law on different 
topologies. However, the choice of a particular structure 
can make easy the analysis, design or even its 
implementation. This paper proposes the use of a model 
matching structure to perform the closed loop control 
law for a crane which must robustly maintain the 
optimal trajectory of both minimum time and minimum 
control effort. The optimal maneuver begins with the 
crane at rest and carries the load at a fixed distance, 
reaching the destination also at rest. The optimal 
trajectory does not consider the lift during the 
maneuver, and therefore, if this occurs, the trajectory is 
no longer optimal. The purpose of using the model 
matching is precisely for overcome that problem. The 
controller must make a closed loop to behave as the 
plant that was used to obtain the optimal trajectory, that 
is, without lifting. Thus, the controller must be robust to 
variations in crane cable length. 
 The optimal trajectory was generated in the similar 
way as in Puglia, Leonardi and Ackermann (2011). It 
takes into account physical constraints of the system, 
such as the maximum control effort. Notice that the 
design of the robust model matching controller must 
also take into consideration those constraints.  
 To easily incorporate constraints in the robust 
controller design, we have chosen to conduct the project 
in the time domain by means of a parametric 
optimization of the controller coefficients. 

A cart-pendulum lab system was used to illustrate 
the proposed approach.   
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2. METHOD 
The proposed methodology is based on a model 
matching control structure and its design is discussed in 
the sequence. This structure is used to robustly maintain 
the optimal trajectory of a crane during a maneuver. 
 
2.1. Model Matching 
Consider the standard closed loop control system 
diagram in the Fig. 1, where x(t) is the reference signal, 
y(t) is the controlled output, and d(t) an auxiliary 
exogenous signal. Respectively, F(s) and P(s) represent 
the transfer functions of the controller and the plant 
nominal model. 
 

 
Figure 1: Closed Loop Control. 

 
 In general, the goal of the control system is to have 
y(t) closely following x(t). If the nominal plant model is 
known and the inverse of its transfer 
function ( ) 1 ( )M s P s  exists, one can use the input 
d(t) as a feed forward action, as shown in Fig. 2. 
 

 
Figure 2: Closed Loop with Feed Forward Action. 

 
 In the absence of plant modeling errors the control 
system is reduced to an open loop, since y(t) = x(t). In 
the presence of modeling errors the controller F(s) need 
to compensate for the difference x(t)-y(t) by correcting 
the value of u(t). Even disregarding the modeling errors, 
often the inverse of the plant model may have issues for 
a practical application. For those cases M(s) can be 
taken as an approximation of the 1/P(s), and thus the 
controller F(s) will probably be required to compensate 
for higher deviations. When the plant exhibits constant 
gain at low frequency it is common to use a static N(s). 
 In an optimal control problem, typically, both the 
optimal trajectory y = y*(t) and the optimal control 
u = u*(t), are available. If it is necessary to keep the 
optimal trajectory with a closed loop control we can use 
the structure of the Fig. 2. However, one can achieve 
feed forward compensation without the use of M(s) 
explicitly, by simply using d(t) = u*(t) and x(t) = y*(t). 
In this scenario, the feed forward control action diagram 
can be redrawn in the equivalent form of the Fig. 3 
where the plant model appears explicitly ( ) ( )N s P s . 

 

 
Figure 3: Closed Loop Optimal Control. 

 
 In a more general scenario the diagram of Fig. 3 
can be used even when ( ) ( )N s P s  and may be 
applied in an attempt to make the closed loop transfer 
function ( ) ( ) ( )T s y s x s  aproach N(s). In fact, this 
appeal is more easily seen by drawing the diagram in its 
equivalent form of Fig. 4. 
 

 
Figure 4: Model Matching Structure. 

 
 The structure in Fig. 4 is known in the technical 
literature and has been used in some applications like 
the one by Jonckheere (1999) for controlling a crippled 
aircraft. Note that the error signal in this diagram is, in 
fact, the difference between the response of the plant 
P(s) and the response of the reference model N(s). If the 
controller F(s) can make this error small enough, then 
the response of the plant is about the same response of 
the reference model. This effect has been called 
approximate model matching. 
 The model matching control structure is used in 
this work in order to make the plant response following 
an optimal trajectory. The reference model N(s) is the 
model used to generate the optimal trajectory and P(s) 
represents all real plants. The differences between N(s) 
and P(s) may be due to variations in the plant over time 
which may even be deliberate. In this work this feature 
is used to compensate eventual load hoisting and 
lowering  during a maneuver. 
 
2.2. Mechanical Model 
A scheme of the cart-pendulum system used is shown in 
Fig. 5, where m  is the load mass, x  the cart position 
and   the load angle. 
 The equations of motion describing the dynamics 
of the cart-pendulum model can be, for instance, 
derived using the Newton-Euler formalism as described 
in Schiehlen (1997). 
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Figure 5: Cart-pendulum Scheme. 

 
 The resulting nonlinear model can be presented in 
the form of the following differential equation. 
 

 
 

 
 

2 2

2 2

( ) ( )
( ) cos ( )

d t d x t
L g sen t t

dt dt


    (1) 

 
where g is the gravity acceleration and L de pendulum 
length.   
 Considering that the kinematics of the cart can be 
imposed arbitrarily, we define the manipulated variable 
 

( ) ( )u t x t  (2) 
 
That allows also defining 
 

 2

2

( )
( )

d x t
a t

dt
   (3) 

 
 In handling anti-oscillatory problems, it is expected 
that the maximum oscillation angle be small. This 
condition leads to the approximations sen   and 
cos 1  . These approximations simplify the equations 
of motion to 
 

 
 

 2 2

2 2

( ) ( )d t d x t
L g t

dt dt


   (4) 

 
 Mapping it to the Laplace domain and taking null 
initial conditions, one obtains the transfer function 
 

2

2

( )

( )

Y s s

X s Ls g



 (5) 

 
where 
 

( ) ( )y t t  (6) 
 

to be consistent with the notation used in section 2.1. 
 The model does not incorporate the Coulomb 
friction. However, it can be easily included as an 
additional torque in the equation (1). In such cases, the 
design of optimal control signal should take this into 

account or the closed loop control must be robust in the 
presence of this modeling error. 
 
2.3. Optimality 
The model matching control system proposed in this 
work should be able to closely keep the solution of the 
optimization problem proposed by Puglia, Leonardi and 
Ackermann (2011). This problem is defined by the 
objective function (7) and the constraints (8). That is, 
should minimize the sum of the absolute control a 
(acceleration) in each sampling time (1,.., n), subjected 
to the plant dynamics N(s), initial state w(t0) and final 
state w(tf) of the maneuver, and the limits max|v| of the 
control effort. Besides, the optimal control a*(t) and the 
optimal trajectory y*(t) generated by Puglia, Leonardi 
and Ackermann (2011) also includes the time 
minimizing in the same optimization problem. Notice 
that the overall acceleration is minimized but the 
designer could add penalties related to each sampling 
time or even limit each value as an explicit constraint. 
 The optimal signal is used in the model matching 
control structure of Fig. 4 which is supposed to 
maintain y(t) close to the y*(t). 
 

n
a

aaaJ  211min  (7) 
 

)(sN ,  )( 0tw ,  ),( ftw  amax  (8) 
 
 We define here internal optimality of the model 
matching problem as the property of  a(t ), the input 
signal of the real Plant P(s), be an optimum control 
signal in the sense of the equations (7) and (8). That is, 
the value of J2 obtained by the solution of the 
optimization problem of equations (9) and (10) must be 
equal or less than J1. Besides, since the problem also 
includes time minimizing, the control signal must also 
be optimal in this sense. 
 

n
a

aaaJ  212min  (9) 
 

)(sP ,  )( 0tw ,  ),( ftw  amax  (10) 
 
 Note that typically P(s) ≠ N(s) and in general a(t) 
may not meet the requirements of internal optimality. 
That is, from the viewpoint of the real plant, the model 
matching structure can not preserve the optimality 
produced by Puglia, Leonardi and Ackermann (2011) 
since he applied the control to a plant P(s) = N(s). 
 Thus, it is defined here what we call external 
optimality. Since the transfer function y(s) to x(s) can 
match N(s) with a prescribed precision, so if we apply 
the optimal control signal  
 

 * *( )

t

u t a t dt    (11) 

 
to x(t), it sees a plant very close to N(s). Thus, the 
optimality of the original solution is preserved in an 
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approximate way. With this external point of view, both 
kinematics constraints and  control minimizing are 
aproximately preserved. 
 
2.4. Control Effort 
In the frequency domain it can be stated that the model 
matching problem is to find a compensator F(s) such 
that the absolute value of transfer function x(j) to 
e(j) = y(j)–y*(j) is below a certain prescribed value 
in the largest possible range of frequencies (Leonardi, 
2006). 
 For the system shown in Fig. 4, the following 
equations apply 
 

    )()()(1)()(1)()(
1

sxsNsFsPsFsPsy 
  (12) 

 
and  
 

    )()()(1)()(1)(
1

sxsNsFsPsFsu 
  (13) 

 
 Since it is considered here that N(s) is stable, 
stability of the system is determined solely by the 
closed loop which contains P(s) and F(s), wich is 
implicit assured once the performance is achieved. 
 Consider  > 0 (typically  << 1), a given number 
that expresses the desired precision associated to the 
model matching error in a certain range of frequencies, 
so that 
 

 )()( jxje . (14) 
 
 To ensure model matching we have the following 
sufficient condition, 
 






)()(
)()(

jNjP
jPjF


  (15) 

 
obtained from (12) to the typical case in which the loop 
gain and precision are respectively large, that is, for  
|F(j) P(j)| >> 1  and   << 1. This condition shows 
that the loop gain increases with either increasing the 
distance between P and N as the inverse of . 
 From equation (13) is immediate that 
 

    )()()()()(1)()()(
1

sxsPsNsFsPsFsxsu 
  (16) 

 
 Under approximate conditions given by  << 1 
and |F(j) P(j)| >> 1, then (16) leads to 
 

  )()()()()()( 1  jxjPjNjPjxju   , (17) 
 
From equation (17) it follows immediately that 
 

 )()()(
)(

)()(
1 




jPjNjP

jx

jxju



  (18) 

 

 This last equation shows that the relative increase 
in control effort is approximately the same as the 
relative difference between the plant and the reference 
model. Therefore, reference models that are distant 
from the plant model requires a high control effort to be 
followed. This is consistent with the condition (15) 
wich shows that the greater the distance between the 
plant and the reference model, the greater is the loop 
gain to ensure model matching.  
 
2.5. Robustness 
The modeling errors may be uncertainties in transfer 
function of the plant. However, classical margins of 
stability alone are unable to reveal the degree of 
robustness of a system because, even systems with 
favorable margins as [90º,  dB], may have its 
corresponding Nyquist diagram close to -1 + 0j, and 
therefore, are not robust (Da Cruz, 1996).  
 Model uncertainties can be classified as structured 
and unstructured. Unstructured uncertainties are usually 
associated to unmodeled parts of the plant that are 
frequency dependent such as negletec dynamics. The 
structured uncertainties are associated with parametric 
uncertainties such as the one in this work. 
 The main parametric uncertainty of the plant model 
(5) is the distance L from the load to the cart. in fact this 
uncertainty is intentional and represents the changes of 
L over time required during the maneuver. If the 
performance of the control system is robust to this 
variation Lmin ≤ L ≤ Lmax, the external optimality is 
approximately preserved. 
 This paper proposes to use the parametric 
optimization of the controller in order to include 
constraints, beyond the problem of robustness to the 
variation of L. The optimization is performed on a time 
range suitable for the maneuver and uses as a reference 
the optimal signal obtained by Puglia, Leonardi and 
Ackermann (2011), but using the model matching 
control structure of Fig. 3 or Fig. 4.  
 To incorporate the problem of robustness in the 
formulation of parametric optimization, the objective 
function  
 

2 2 2

1 2
0

[ ( ) ( ) ... ( )]
tf

mJ e t e t e t dt     (19) 

 
includes the sum of square of the matching error 
between each of the considered m real plant Pi(s), 
i = {1,.., m}, and the reference plant N(s). That is, the 
transfer function of each Pi(s) is considered here equal 
to N(s) but with a distinct value of L in the range of 
Lmin ≤ L ≤ Lmax. 
 Since in this parametric optimization problem we 
can easily add several type of constraints, any physical 
restriction of the problem are conveniently 
incorporated. It should be noted that limiting the control 
effort has been considered in generating the signals 
a*(t) and y*(t), however they were generated for the 
open loop and in the absence of modeling errors. By 
using the model matching to keep the trajectory y*(t), 
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there is no guarantee that the acceleration limit is still 
respected. Therefore, this restriction should be used 
again, now in the design of closed loop controller. 
 
2.6. Controller Selection  
Since the nominal plant model is open loop stable a 
wide class of controllers are candidate for the 
optimization problem. Although a purely proportional 
controller can stabilize the closed loop, it causes 
excessive noise amplification since the transfer function 
of the plant is just proper.  
 To allow attenuation for high frequency noise, the 
transfer function of the controller must be strictly 
proper. Thus, a good choice for the controller to this 
problem may be one with purely integral action.  
 The controller design methodology for robust 
model matching has been applied and the controller 
obtained has the following transfer function.  
 

12
( )F s

s
  (20) 

 
3. RESULTS 
The results presented in this section refer to the 
application of the robust model matching control using 
the controller of the equation (20) to a lab scale plant. 
The optimal signal was generated for a maneuver 
problem in minimum time and minimum control effort 
in a manner similar to the one that was obtained by 
Puglia, Leonardi and Ackermann (2011). The optimal 
control signal takes the pendulum from rest to the other 
end, away 0.25m from the start, also arriving at rest. 
 
3.1. Testing Apparatus 
The pendulum of the testing apparatus (see Fig. 6) 
consists of a 0.215kg mass connected to the cart by a 
rod. The mass can be fixed on the rod at different 
distances from the cart.  
 

 
 Figure 6: Bytronic Lab Equipment. 

  
The cart driver has a built in position control with 
tachometer compensation, as indicated in Fig. 7. Since 
that control system is quite precise over the frequency 
range that matters in this problem, its dynamics can be 
reasonably neglected and thus the cart position is 
considered the manipulated variable as it was admitted 
in the methodology section.  

 
Figure 7: Schematic Diagram of the Equipment. 

 
The robust controller used in this application has only 
an integral action. He was selected to be extremely 
simple and yet provide good robustness to parametric 
design, which in fact can be verified by the 
experimental results. 
 To implement the compensator it was used the 
Real-Time Target Windows™ (Mathworks, 2012) 

operating at a sampling frequency of 1KHz, the same 
rate used in the generation of the signals a*(t) and y*(t). 
  
3.2. Experimental Results 
The controller design was done by considering the 
variation in the length of the pendulum in the range 
0.15 m  L  0.25 m, and being 0.25m the nominal 
reference value. That is, the reference plant is 
 

2

2

( )

( ) 0,25 9.81

Y s s

X s s



 (21) 

 
 The plots of Fig. 8 show the performance in time 
domain obtained with the controller. The maneuver 
begins at t = 0 s and ends at tf = 1.3 s. 
 The value of the length L in the reference model 
was kept fixed at L = 0.25 m and the L values of real 
equipment were changed within the range considered. 
Fig. 8 shows the worst case where the real length 
Lreal = 0.15 m is most distant from the nominal 
L = 0.25 m. The figure contains two sets of plots. The 
first (a) shows the optimum position u* (red) and the 
experimental value of u position (blue). Note that since 
the position is the manipulated variable of the control 
system, deviations of u from the value u* represent the 
extra effort the control system needs to spend to 
perform the match.  
 In the second set of plots (b) it is shown the 
experimental angle (blue) that is expected to be close to 
the reference angle (red). To complete the analysis, it is 
also shown the angle behavior if the system is operating 
without control (black). 
 It can be seen that the integral controller, in fact, 
provides a robust performance to the control system. 
This is true since both the optimal control signal 
(position) and the optimal trajectory (angle), are close to 
their reference values even for huge variations of L. 
 In particular, note that in all plots the final cart 
position and the final angular position were achieved 
with small error. 
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Figure 8: Performance of the Integral Controller for 
Lreal = 0.15m. 

 
 The system begins at rest and reaches its 
destination in 1.3 s. It is clear from the plots that system 
remains at rest after 1.3 s 
 For the sake of comparison we also designed the 
controller using the H2 mixed sensitivity. The 
performance perceived is similar, but the resulting 
compensator is of order 5th with two extra resonances 
to the loop which might be undesirable. 
 
4. CONCLUSIONS 
This paper discusses the use of a model matching 
structure for closed loop control of the optimal 
trajectory of a crane. We discussed the design of the 
compensator to reduce the problems related to 
parametric uncertainties of the plant, thus preserving the 
optimality of the initial solution. The project was 
conducted by means of parametric optimization of the 
compensator and the objective function includes the 
matching error of a number of plants with different 
values of the pendulum length. 
  The practical results were obtained applying the 
methodology to a cart-pendulum lab scale equipment. It 
was found that the designed controller gives robust 
performance even for a large parametric Plant variation 
as expected during the design. 
 The overall methodology was developed for a 
dedicated application. However, it might be applied for 
linear systems with few uncertain parameters and for 
modeling errors below 100%.  
 As a proposal for extending this work the following 
investigations are suggested. 
 This study did not investigate the problem of 
rejecting external disturbances caused, for instance, by 
wind. Adding a disturbance input to the model matching 
structure we obtain a control law that has two degrees of 
freedom. That is, it is possible to tune the robust 
controller in order to balance between the requirement 
to follow the reference signal and to reject the 
disturbance. A current research is examining this issue 

to propose a design methodology that takes this into 
consideration.  
 This study also did not investigate the problem of 
sensitivity of the response in the face of measurement 
noise and possible offset in its calibration. The 
mentioned above research is also investigating how the 
control structure can be altered to minimize this effect, 
mainly the one from residual offset. The investigation 
also includes the definition of artificial measurable 
variables and how the optimal control trajectory of the 
crane needs to be modified to do so. Preliminary results 
show that it is possible to find necessary and sufficient 
conditions for this mapping. 
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