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ABSTRACT 

The contribution describes an application of the 

algebraic µ-synthesis to the control of a real plant with a 

nonlinear characteristic. The controller design is 

considered as a problem of minimization of the peak of 

the structured singular value denoted µ . The algebraic 

approach consists of the pole placement principle based 

on the polynomial Diophantine equations and 

Differential Migration procedure used for optimization. 

The results are compared with other controllers 

designed via the D-K iteration, synthesis in the ring of 

proper and stable functions and the Naslin method. 

 

Keywords: robust control, evolutionary computation, 
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1. INTRODUCTION 

Intensive research activity performed in the robust 

control theory during the recent years has brought new 

methods considering the parametric, dynamic and mixed 

structured uncertainties. Some of the methods are based 

on the H∞ approach in the ring of stable and proper 

transfer functions denoted RPS. These methods provide a 

measure that indicates the robustness of designed 

controller. However, this measure evaluates only the 

robust stability. On the other hand, methods based on the 

Zames’ small gain theorem (Zames 1981) yield both the 

robust stability and performance conditions. One of them 

is the structured singular value denoted µ  (Doyle 1982, 

Packard and Doyle 1993) treating the robust stability and 

performance objectives simultaneously. Two methods 

for the µ-synthesis were derived: the D-K iteration 

(Doyle 1985) and µ-K iteration (Lin et al. 1993). The 

D-K iteration yields a suboptimal controller minimizing 

the peak of the upper bound for µ-function. However, 

the controller has usually a high order transfer function 

due to the scaling matrices D, D
-1

 and for further 

application it is simplified via some kind of 

approximation. If the simplification is too substantial it 

can cause degradation of the frequency properties of the 

controller and the whole feedback loop. In some cases, 

the scaling matrices cannot be approximated with the 

desired precision and the resulting controller can be far 

from the optimality. Moreover, the state-space formulae 

for the H∞ suboptimal controller require the stability of 

the performance weighting function (Doyle et al. 1989). 

These problems can be resolved using the algebraic 

µ-synthesis (Dlapa et al. 2009, Dlapa and Prokop 2010) 

presented in this contribution, which overcomes both the 

approximation of the scaling matrices D, D
-1

 and the 

impossibility of integrating behaviour of the 

performance weighting function. In this method the 

controller is designed through the algebraic pole 

placement principle applied to the nominal plant and the 

position of the nominal closed-loop poles is tuned 

through an evolutionary algorithm with evaluation of the 

upper bound for µ. The problem of instability of 

performance weighting function is treated by setting the 

nominal closed-loop poles to the real axis in the left half-

plane. 

 

2. PLANT DESCRIPTION AND IDENTIFICATION 

The control of heating systems has been an important 

field in the control theory for decades. There is a 

number of applications of temperature control involving 

nonlinear and time-delay systems present in the 

electrical and heating industry as well as in technology 

processes (e.g. Fiser 2002 or Liu 2003). 

The problem of nonlinear control can be treated by 

adaptation to parameters changes or by using a robust or 

nonlinear controller. The usage of the adaptive control 

is limited by recursive identification, which has not 

satisfactory results when the input to the controller is 

subject to noise or if there are other factors, such as time 

delay or external disturbances causing inaccuracy of 

measured signals. The algebraic µ-synthesis presented 

in this contribution is more versatile than common 

methods for the robust control and can consider the 

effects of noise, nonlinearity and time delay as well as 

the influence of external disturbances. However, the 

usage of this method is limited to the models fitting in 

the linear fractional transformation (LFT) framework. 

In order to describe nonlinearity of controlled plant the 

parametric uncertainty is used and transformed to LFT 

interconnection which does not increase conservatism 

of the plant model. 

The air-heating set considered in this contribution 

has three input and seven measured quantities. The 

input signals are the voltage on bulb and the main and 
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adjacent fan. The circuit was controlled by a standard 

IBM PC computer, which communicates via serial link 

(RS232) with the CTRL unit (see Figure 1). The CTRL 

unit converts the digital data to unified analogue 

signals. In the transformation and unification unit the 

unified analogue signals are transformed to the voltage 

on a particular actuator. Similarly, the measured signals 

are transformed to the unified voltage 0-10 V (Table 1). 
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Figure 1: Plant Scheme 

 

Table 1: Input and Output Channels of CTRL Unit 
Inputs Sensor Outputs Actuator 

y1 sensor of bulb radiance u1 voltage of bulb 

y2 
sensor of temperature near 

bulb T2 
u2 

voltage of main fan 

(speed control) 

y3 
temperature of envelope of 

the bulb T3 
u3 

voltage of adjacent fan 

(speed control) 

y4 
temperature at output of 

tunnel T4 
 

 

y6 thermoanemometer TA6   

y7 fan flowmeter   
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Figure 2: Inputs and Outputs of Plant 
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Figure 3: Step Responses of Bulb Temperature 

 

The step responses of the measured quantity y3 

(bulb temperature) for the step of u1 (bulb voltage) and 

constant speed of the main fan (u2 = 2V) are depicted in 

Figure 3. It is clear from the figure that the step 

responses have a nonlinear behaviour. The plant acts as 

if it has a short time constant at the beginning and it 

slows down at the end of history. Hence it should be 

taken into account that the time constant will vary in a 

large range. It follows from the steady-state load 

characteristic that the gain varies in the range of 0.42 to 

0.54. The family of transfer function from u1 to y3 at 

u2 = 2V is: 
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

∈∈
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This means that both the numerator and denominator in 

(1) are interval polynomials. 

 
 

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12
V

u1

V

y3

 
Figure 4: Steady-State Load Characteristic 

 

3. OUTLINE OF POLE PLACEMENT DESIGN 

The pole placement principle is one of the well-known 

methods for the controller design (e.g. Kucera 1991, 

Kucera 1993, Prokop and Corriou 1997, Prokop et al. 

1992, Vidyasagar 1985) which is simple for derivation 

and tuning. Consider a simple feedback loop (1DOF) 

structure depicted in Figure 5 with two external inputs – 

the reference w and disturbance v, respectively. The 

output and tracking error is according to Figure 5 in the 

form 
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where 

 

dbqafp =+   (4) 

 

is the characteristic polynomial of the closed-loop system 

in Figure 5. 

 

 

p

q

f

1

a

b

a

c

- 

+ 

+ 

+ 

w

w

f

h
w =

v

v

f

h
v =

u~ u yue

 
Figure 5: Structure of 1DOF system 
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It can be proven that the asymptotic tracking of the 

reference is achieved if and only if the polynomial pfa is 

divisible by the unstable part of fw and v is rejected if 

pfa is divisible by the unstable part of fv so that the 

result is a finite polynomial. As a consequence, the 

polynomials p, q are the solutions to Diophantine 

equation (4). It is also desirable that the transfer 

function 
fp

q
 is proper. Analysis of the polynomial 

degrees in (4) for the most frequent case fw = f = s (the 

stepwise reference) gives 

 

ad deg2deg =   (5) 

 

A standard choice for the polynomial d is 

 

.)()(
deg

1

∏
=

+=
d

i

issd α   (6) 

 

where αi > 0 are the tuning parameters of the controller 

and d is a stable polynomial which ensures the internal 

stability of the nominal system. 

With respect to (1) a nominal plant transfer 

function can be expressed by the transfer function 
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and 
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Then equation (4) has the form 

 

01

2

0100 )()( dsdsqsqbsas ++=+++  (10) 

 

and by simple equating the coefficients at the like 

power of s at the left and right of (10) it can be obtained 

 

000

0011 )(

bdq

badq

=

−=
  (11) 

 

Then the resulting controller is proper and has the 

traditional PI structure in the form 

 

s
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4. PRINCIPLES OF µ-SYNTHESIS 

The parametric uncertainty in 31

~
P  can be treated via the 

LFT framework by using the additive and quotient 

uncertainty. Define the nominal plant 
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Plant family 31
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P  is then equivalent to 
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then 
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Expression (16) is represented by the LFT 

interconnection depicted in Figure 6. 

The LFT interconnection for the µ-synthesis which 

considers the performance objectives and noise 

suppression is in Figure 7. 
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Figure 6: Structure of 1DOF system 

 

Weight W1 for the performance evaluation was 

chosen as 
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for the D-K iteration and algebraic approach, 

respectively. 

The weight for the D-K iteration cannot have 

integrating behaviour because all weights must be 

stable. Moreover, it causes uncontrollable states in the 

closed-loop system. The instability and 

uncontrollability of the closed-loop in Figure 7 does not 

make the resulting feedback loop unstable if there is a 

guarantee that the poles of the nominal feedback loop 

are in the left half plane. Controllability is a necessary 

condition for using the state space formulae giving the 

H∞ suboptimal controller (Doyle et al. 1989) as well as 

stability of all weighting functions. Thus it is impossible 
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to use these formulae in this case. The algebraic 

approach overcomes the problem by setting the nominal 

closed-loop poles to the left half-plane. Therefore, it is 

possible to use performance weights with poles at the 

imaginary axis, which guarantee the asymptotic 

tracking. 
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Figure 7: Structure of 1DOF system 

The weight of noise is a band-pass filter, which 

takes into account high frequency noise emerging in 

sensors 
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Let S denote a perturbed transfer function from the 

reference input w to the tracking error e. Let W1 denote 

the weighting function and define the performance 

condition as 

 

11 ≤
∞
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If the condition (19) holds then behaviour of the 

closed loop can be changed through W1. 
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Figure 8: Transformed Closed-Loop System 

The closed-loop feedback system in Figure 7 can 

be transformed to that in Figure 8, where M is a linear 

fractional transformation on G(s) and controller K(s), 

i.e., 
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where G(s) is the generalized plant including the 

nominal plant and weighting functions, which can be 

parted to 
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where the rows and columns of G11 correspond to dynamic 

perturbations (22) and G22 corresponds to the controller 

structure. The other element of the system is mixed 

structured uncertainty which forms the diagonal matrix 
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The algebraic µ-synthesis is applied to the 1DOF 

system for the interconnection depicted in Figure 7. The 

D-K iteration is applied to the same structure with W1 

without integrating behaviour. 

The structured singular value of a matrix M, 

denoted ( )M
∆
~µ , is defined as 
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and if no such ∆
~

 exists which makes ∆−
~

MI  singular, 

let 0)(~ =
∆

Mµ  (Balas and Packard 1996), where )
~

(∆σ  

denotes the maximum singular value. The control 

objective is to find a stabilizing controller K 

minimizing the H∞ norm of )(~ M
∆

µ , i.e., 
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The following result is used for the robust 

performance test (Balas and Packard 1996): 

 

Theorem 1: The feedback system with 1∆~ <  has the 

robust performance, i.e., expression (19) holds and the 

perturbed feedback loop is internally stable, if and only if 

 

1)(~ ≤
∆

Mµ   (25) 

 

at all frequencies, where |⋅| denotes the absolute value. ■ 

 

In the algebraic approach the nominal closed-loop 

poles are the tuning parameters and the quality of the 

controller is evaluated by the upper bound for µ, i.e. as 

)(inf 1−

∈
DMD

D
σ

D

 for each frequency. The poles are 

constraint to the real axis in the left half-plane so that the 

stability of the nominal feedback loop is guaranteed. As 

the cost function defined by (24) as well as the upper 

bound has more than one local minimum an algorithm for 

global optimization is desirable. In this contribution 

Differential Migration (Dlapa 2009) was used for the 

optimization with high efficiency in finding the global 

minimum. Differential Migration is an evolutionary 

algorithm based on migration of individuals in the space 

of tuning parameters giving significantly higher 

robustness (in the sense of ability of finding the global 

minimum) than other algorithms of this class. The usage 

of this algorithm can shorten the computational time and 

increase the probability of finding the optimal pole 

placement. 
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5. CONTROL OF AIR-HEATING PLANT 

Experimental studies have been carried out in order to assess 

the performance of the algebraic µ-synthesis method. The 

set-point temperature profile provides a reference which 

comprises 800 iterations. It consists of an initial soak at 3V 

for 480 iterations followed by a step to 4V which is held 

constant for 300 iterations. Sampling period is 1 s and 

adjacent fan voltage is ketp zero for all experiments. 

The experimental trials are aimed at evaluating the 

performance of the PI controller obtained via the 

algebraic µ-synthesis against the D-K iteration, 

synthesis in the RPS with the poles in one point and the 

Naslin method. 
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Figure 9: µ-Plot for D-K Iteration (dashed) and 

Algebraic µ-Synthesis (solid) 
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Figure 10: Control of Real Plant for Algebraic 

Approach 

Performance indices. In order to draw comparisons 

between different control schemes an index or measure 

of performance is required. The measure of 

effectiveness which is adopted consists of three factors, 

these being the amount of energy, the variance of the 

controlled actuators and the accuracy of set-point 

tracking. This may be expressed as 

 

ρ

∑
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where ρ is the number of iterations. 

In cases where there is an increased variance in the 

control signals to the actuator this can lead to 

correspondingly increased costs due to maintenance and 

down time due to failure. The variance of the controlled 

actuator may be expressed in the form 
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The resulting controller quality arising from 

control action may be expressed in terms of the 

accuracy of set-point tracking. Using the integral of 

absolute error the deviation of the system response y(t) 

from the set-point r(t) is given as 
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Figure 11: Control of Real Plant for D-K Iteration 
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Figure 12: Control of Real Plant for Synthesis in RPS 
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Figure 13: Control of Real Plant for Naslin Method 
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In order to provide a basis for comparison the 

controllers were tuned to give satisfactory overall 

performance across the complete temperature profile. 

The controllers designed in the ring of proper and stable 

functions (RPS, see Prokop and Corriou 1997 or Prokop et 

al. 1992) and by the Naslin method were used as a 

reference (Figure 12 and 13). It is clear from Figure 9, 

10, 11, 12, and 13 showing the system response and 

control input that the algebraic approach produces more 

favourable results. An improved accuracy in set-point 

tracking as well as lower energy consumption of the 

algebraic µ-synthesis (Figure 10) was achieved via 

increased control effort to the system resulting in higher 

variance in the control signal. The set-point, actuator and 

measured signals are in the unified voltage 0-10V of the 

CTRL unit. Performance indices are given in Table 2. 

 

Table 2: Comparison of Performance Indices 

Method 1∈  2∈  3∈  

Algebraic µ-synthesis 6.30 0.24 8.33 

D-K iteration 6.37 0.23 9.07 

RPS 7.72 0.17 13.42 

Naslin method 7.10 0.22 11.02 

 

6. CONCLUSION 

The contribution presents an application of the algebraic 

µ-synthesis to an air-heating set, where the temperature 

of bulb was controlled by its voltage. The controlled 

system had a nonlinear behaviour in both the steady-state 

and dynamic characteristics. The nonlinearity was treated 

via parametric uncertainty, which was transformed to the 

LFT framework. In order to achieve asymptotic tracking, 

performance weighting function with pole at the 

imaginary axis was used. The instability of the nominal 

feedback loop was treated by setting its poles to the left 

half-plane via pole placement technique and by choosing 

the PI structure of the controller which treats the unstable 

pole of the general closed-loop interconnection. The 

algebraic µ-synthesis was applied to the LFT 

interconnection including performance weight with 

integrating behaviour and the results were compared with 

standard methods for robust controller design - the D-K 

iteration, synthesis in RPS and the Naslin method. Finally, 

it was shown that the algebraic µ-synthesis had better 

frequency properties in terms of µ-function and faster set-

point tracking than the reference methods. 

The algebraic µ-synthesis provides exploitable 

benefits for a wide range of industrial applications. In 

contrast to the D-K iteration, it can tune simple controllers 

in a more natural way and guarantee asymptotic tracking, 

which is desirable in most of the control tasks emerging in 

technology processes. The only drawback is the fact that 

an algorithm of global optimization is used leading to 

longer computational times. 
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