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ABSTRACT 
 It is seen that methodology for diagnosis of uncertain 
systems using the Bond Graph (BG) model in Linear 
Fractional Transformation (LFT) form is an effective 
way to detect the fault by systematic generation of 
robust adaptive thresholds. There are limitations 
associated, many of which are imposed due to the 
manner uncertain parameters can be treated. In this 
work, a new method of generating robust and adaptive 
thresholds is developed, where uncertain parameters can 
be treated as intervals that vary between  certain upper 
and lower bounds. The developed method proposes to 
generate the envelopes, using the interval extension 
form of Analytic Redundancy Relations (ARRs) in 
continuous time domain. The interval extensions of 
ARR functions are obtained by replacing the uncertain 
parameters with their interval equivalent. A very 
optimum range of such a function can be obtained by 
taking into account parameter variation in the interval. 
Superior and inferior values of the range determine the 
thresholds that form the envelope. The methodology 
developed is then implemented over an uncertain model 
of DC Motor wherein cases of parameter deviation with 
time, multiple uncertain parameters are considered. 

 
Keywords: Uncertain parameters, Bond-Graph, BG-
LFT, Interval, Fault diagnosis. 
 
1. INTRODUCTION 
Dynamic systems can be represented by continuous 
state space models as in (1), 
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where nx ℜ∈ , mu ℜ∈ , Id ℜ∈ , ry ℜ∈ , pℜ∈θ , 
denote respectively the state vector, the control input 
vector, the disturbance vector , the output vector and the 
vector regrouping the model parameters. 

The system parameters may vary around their 
nominal value in certain range. For example, a resistor 
element R, of nominal value 10Ω, may have 
manufacturing tolerance as 10Ω±1Ω. A mechanical 
friction coefficient will increase from its nominal value 

(which may be zero or otherwise), to a value 
permissible for normal functioning of the system 
because of thermal effects and ageing of the materials. 

To represent uncertainty in a parameter, different 
forms can be used. Additive uncertainty as represented 
in (2) is equivalent to (3) in an interval form. As 
generalization, a non symmetrical interval of this form 
is represented as in (4). Multiplicative uncertainty can 
be represented as shown in (5). 

  
[ ]21, θθθθθ Δ+Δ−= nn  

with  
01 ≥Δθ , 02 ≥Δθ 21 θθ Δ≠Δ  

 (4) 

 

)1( δθθθ ±= n , nθ
θδθ Δ±=       

(5) 
Robust diagnosis of uncertain systems has been an 

interesting, widely studied area of recent research works 
(Patton et al. 1989, Djeziri et al, 2007). Efficient and 
optimal methods for robust fault detection and isolation 
are required. Dauphin-Tanguy et al (1999), Djeziri et al 
(2006, 2007) highlight the method of using Bond Graph  
in Linear Fractional Transformation (LFT) approach as 
a powerful tool for this purpose. When using Analytical 
Redundancy Relationships (ARRs) for Fault Detection 
and Isolation (FDI), uncertainties in parameters 
generate envelopes around the nominal trajectories 
defining a domain corresponding to thresholds inside 
which the behaviour of the system can be considered as 
“normal” or “non-faulty”. To avoid false alarms, the 
thresholds must be formed accurately and optimally. 

The determination of ARRs on a bond graph model 
in preferred derivative causality is done by elimination 
of unknown variables contained in the structural 
constraints of junctions 0 and 1. The equations of power 
balance on the junctions constitute the ARRs candidate 
(Ould Bouamama et al. 2005). The bond graph model in 

θθθ Δ±= n , 0>Δθ    (2) 
  

[ ]θθθθθ Δ+Δ−= nn ,       (3) 
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LFT form, obtained from multiplicative form of the 
uncertainties, allows the generation of the ARRs rj, with  
j=1,2…nr. The residual rj, is composed of two 
completely separated parts:  

• a nominal part 
nj

r , of  the residual rj ,with  
j=1,2…nr, as shown in (6). Here nr is the 
number of residuals. 

 where TFn and GYn are respectively the 
nominal values of TF and GY moduli. Rn; Cn; 
In and RSn are the nominal values of elements 
R; C; I and RS, De and Df being the measured 
variables and Dem and Dfm are the dualised 
signal sources. The method is well developed  
in Djeziri et al. (2006)). 

• an uncertain part bj, serves for the calculation 
of adaptive thresholds and sensitivity analysis, 
as  shown in (7) and (8). 
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where, δR ,δI, δC, δRS, δTF, δGY  are values of 
multiplicative uncertainties as shown in (6). 

The threshold being defined on residual rj
equation (9), it generates an envelope around 
nominal residual as in equation (10). 
 

(8) 

 ∑= || ij wa     (9) 
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(10) 

Because of the definition of the thresholds itself as 
in Eq. (9), using the absolute values, the envelope 
determines a domain around the nominal trajectory with 
symmetrical upper and lower frontiers which is efficient 
when the uncertain parameters are defined as 

θθθθθ Δ+≤≤Δ− nn  (case of manufactured 
components with a defined tolerance). It may induce an 
overestimation of the envelope if the bounds are not 
symmetrical as 21 θθθθθ Δ+≤≤Δ− nn  with

21 θθ Δ≠Δ  , or when the uncertainty appears in one 
side only as in case of irreversible deviation with 

θθθθ Δ+≤≤ nn  (case of time deviation). 
It is seen, even though BG-LFT approach offers an 

effective method for fault detection by adaptive 
threshold generation that it is not successful in 
accounting all various types of uncertainty found 
commonly. As such, treatment of uncertain parameters 
as intervals offers much scope and better methods for 
FDI.  

In this work, the objective is to treat the uncertain 
parameters as intervals and use them to generate 
adaptive thresholds. The new method presented here 
generates adaptive thresholds and forms envelopes, 
using the interval extension form of the ARRs in 

continuous time domain which helps in fault detection 
and identification. Besides this section of Introduction, 
paper is divided into four other sections. Section 2 
introduces the method of treating the uncertain 
parameters, features of INTLAB as the software tool to 
carry out simulations is given, interval extensions of 
real functions are briefly discussed to introduce the 
interval extensions of ARRs which are subsequently 
used to generate the thresholds. Further, the 
methodology is proposed .In section 3, the methodology 
is implemented over a model of standard direct current 
(DC) motor example. Section 4 contains the simulations 
and results. Finally, conclusions are drawn in the final 
section 5. 

 
 

2. INTERVAL APPROACH FOR ROBUST 
DIAGNOSIS 

The interval analysis was initially developed to hold 
account on the inaccuracies of the numbers. These 
inaccuracies come from data resulting from a chain of 
instrumentation or from computing tool. Interval 
analysis in the past one decade has been exploited to a 
great extent in many disciplines of engineering. Because 
of interval arithmetic’s power to bound ranges of 
functions, interval arithmetic has been most successful 
in solution of nonlinear systems and global optimization 
(Hansen E.R, 1992). Much information can be found in 
the literature available, concerned with many disciplines 
of science and maths where it is used to obtain rigorous 
proofs or results (Jaulin, Keiffer, Didrit and Walter, 
2001). 

Early work on treatment of uncertain parameters as 
intervals and subsequent usage for diagnosis is found in 
works of Adrot et al, (2000). The approach, called 
bounded approach, represented these uncertainties by a 
set of possible values for which only their bounds were 
known. Ragot et al., (1997) proposed an interval 
technique for the detection and the isolation of sensor 
faults in the case of a static linear model .The case is 
treated for dynamic systems by Armengol. et al, (2003). 
D. Maquin and J. Ragot (Ragot et al, 2003a) treated the 
problem of data validation in the case of certain systems 
with uncertain measurements through interval approach. 
A method of data validation is developed based on 
bounded approach, for dynamic uncertain linear 
systems, where all the state variables of the system are 
measured (Ragot et al, 2003b). Here the proposed 
method treats the case where the state variables of the 
system are partially measured. The state estimation 
method is described which uses interval approach. 
Finally, the method is used to detect, isolate and correct 
the data affected by faults. In the works of Fagarasan 
(2004), Rinner and Weiss (2004), interval calculation 
laws are used to generate the exact estimate of the 
output, bounds of the estimates are computed using 
traditional numerical integration techniques from the 
uncertain parameter interval vertices, assuming that 
monotonicity property holds. Thus, the envelopes 

⎭
⎬
⎫

⎩
⎨
⎧

Φ=
nn

nnnnmm
jj RSGY

TFICRDfDeDfDeSfSe
r

n ,
,,,,,,,,,,  (6) 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2012
ISBN 978-88-97999-12-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds. 240



generated, are primarily by the estimation of state or 
parameter. 
 
2.1.  INTLAB – The Choice 
Many software tools are successful in implementation 
of interval arithmetic, prominent of them being, 
INTLAB (Rump, 1998), Sun’s Forte C++ compilers 
with interval support (Sun Microsystems, 2001), filib++ 
(Lerch et al, 2000) and C-XSC (Hofschuster, 2001).Our 
choice to implement the interval computations and carry 
out simulations is INTLAB.  

INTLAB (Rump, 1998; 1999) is a well-designed 
interval toolbox for the interactive programming 
environment MATLAB (The Math Works, 2001). It is 
integrated with MATLAB, providing immediate access 
to an extensive range of tools that lets us develop 
algorithms, analyze and visualize simulations. It allows 
the more traditional infimum-supremum as well as the 
midpoint-radius representations of intervals. That is to 
say, parameter variation with different value of 
deviations may be treated by declaring it as an interval 
by infimum-supremum .Variations with same deviations 
may be declared using ‘midrad’ notation. As example 
θ= [ θn- Δθ1, θn+ Δθ2  ] may be declared as infsup (θn- 
Δθ1, θn+ Δθ2  ). When θ= [ θn- Δθ, θn+ Δθ ], interval 
may be declared in midpoint-radius format as 
midrad(θn, Δθ). Here nominal value θn is the centre and 
deviation Δθ is the radius in positive and negative 
direction. 

Every computation using INTLAB is rigorously 
verified to be correct, including input and output. All 
the algorithms written in INTLAB, may be 
implemented in MATLAB. Since it is implemented in 
MATLAB, it can also be used by SIMULINK for 
simulations. Mathematical routines written in 
MATLAB code can be modified and run in INTLAB.  
INTLAB offers predefined problem solving routines for 
dense and sparse systems of linear and nonlinear 
equations and eigenvalue problems. A multi precision 
interval arithmetic, a slope arithmetic as well as routines 
automatic differentiation are also included (Hargreaves, 
2002). The main features of INTLAB can be explored 
through demo files included as .m files in the package. 
To work with  systems in real time, Real-Time 
Windows Target™(RTWT) provides a real-time engine 
for executing Simulink® models on a Microsoft® 
Windows® PC .Thus, using INTAB will facilitate easy 
interfacing of systems involving interval computations 
with Simulink and thus, in real time with RTWT. 
However as direct libraries for interval variables are not 
available in SIMULINK, its execution in RT-WT for 
real-time application may face some major difficulties.  

 
2.2. Interval Value Extensions of Real Functions 
Interval-valued functions are obtained by selecting a 
real-valued function f and computing the range of 
values f (x) takes as x varies through some interval X.  
By definition, the result is equal to the set image f (X). 
Now, interval valued extensions of functions are 
obtained by extending a given real-valued function f  

by applying its formula directly to interval arguments 
(Moore, 1966). 

Consider the real-valued function f given by (11). 
The entity is a formula, not a function. Now the formula 
(12) is taken that describes function (11) and applied  to  
the interval arguments. The resulting interval-valued 
function is the interval extension of the function as in 
(13).  

 
This way the domain is enlarged to include non-

degenerate intervals and the degenerate intervals  
x=[x, x]. F = F (X1 ,..., Xn ) is called inclusion 
isotonic (Jaulin et al,2001)  if equation (14) is satisfied 
when 
 Yi  ⊆ Xi  for i = 1,...,n   
 F (Y1 ,..., Yn ) ⊆ F (X1 ,..., Xn ).                          

 
(14) 

 
 If F is an inclusion isotonic interval extension of 

f, then according to the Fundamental Theorem of 
Interval Analysis (Moore, 1979), 

 
f (X1 ,..., Xn )  ⊆   F (X1 ,..., Xn ) (15) 
 

This theorem is never violated in cases of 
inclusion isotonic functions. Now, all rational interval 
functions are inclusion isotonic. Thus, an interval value 
of F contains the range of values of the corresponding 
real function f when the real arguments of f lie in the 
intervals.    

This forms a mean for the finite evaluation of 
upper and lower bounds on the ranges of values of real 
rational functions. 

 
2.3. Interval Extensions of the Analytic Redundancy 

Relations (ARRs)-The Approach 
The finite evaluation of upper and lower bounds on the 
ranges of values of real rational functions becomes very 
useful to find the range of interval extension of ARRs 
and thus, generate the thresholds. The analytic 
redundancy relations (ARRs) are essentially functions 
of measurement of state variables with physical 
parameters as coefficients. They are treated as rational 
functions, then their interval extension obeys the above 
relation as in Eq. (15). 

 Our approach is based on the above principle. The 
ARRs are obtained from bond-graph model in a 
preferred derivative causality. These ARRs are 
functions of known variables (sensor measurements, 
control inputs) with system uncertain parameters as 
coefficients. Consider an ARR as, 

),,( njj uyfr θ=  (16) 

  with j=1,2…..nr , where nr is the total number of ARRs.   

f (x) = 1 − x,  x ∈ R. 
f (x) = 1 – x      
F(X) = 1- X,    X=[X, X]                             

(11)
(12)
(13) 
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The interval extension of the ARRs is obtained by 
treating the ARR as a rational polynomial and putting 
intervals of the coefficient uncertain parameters as, 

])[,,( θuyFR jj =  (17) 

The upper bound and lower bound of jR are evaluated 
as the value of θ varies within the interval [θ] and from 
Eq.(15), give the envelope such that 

jr  ⊆ jR ,  whenever    θ ∈ [ θn- Δθ1, θn+ Δθ2 ] (18) 

These upper and lower bound values form the 
thresholds and hence, the envelope is generated. 

Remarks: 

• The envelope generated by jR guarantees to 

contain the residual jr  only when all the 
considered parameters are within their 
respective interval bounds.  

• If the residual jr goes out of the envelope then 
it surely means that either one or more of the 
uncertain parameter has gone beyond its 
considered interval range. 

• When one or more, but not all considered 
parameters go beyond their interval range,            
the residual may remain inside the envelope. 
So, the envelop guarantees to contain the 
residual only when all the parameters 
considered in ARR as intervals are within their 
bound. 

Thus, in case of multiple parameter uncertainties, set of 
combination of envelops should be considered on 
various ARRs to identify the fault occurred. 

3. APPLICATION ON DC MOTOR 
This section presents the application of the proposed 
approach on a DC Motor model with uncertain 
parameters. Firstly, the specification of DC motor is 
given after which, BG model of same in derivative 
causality is used to generate the ARRs. Intervals 
extensions of ARRs are considered to generate the 
robust envelop. Importantly, cases of parameter 
deviation, ageing, or a catastrophic fault are considered 
through simulations. 

 
3.1. Description of the DC Motor System 
The model parameters are as  resistance of stator, R = 
2.4 Ω; inductance of the  stator, L = 0.44 H; coefficient 
of  couple, ek = 0.14; moment of inertia of rotor, J = 
0.08 kg m2; coefficient of friction of motor shaft, f = 
0.01 NS/ m  ;the inputs being the voltage of the inductor 
U(t)=220 V, the load torque )(tτ =5 Nm;  and the 
observed outputs being current of inductor im(t) and  
angular velocity of the motor shaft )(tmω . 

 
Figure 1: DC motor system representation. 

The system can be modelled by bond graph in integral 
causality and can be represented in state space form as: 

۔ۖەۖ
൥ۓ iሶ

ωሶ ൩ ൌ ቎െ ோ௅ி೗௃        െ ி೗௅െ ௙௃ ቏ ቈ i
ω ቉ ൅ ቎ଵ௅ 00 െ ଵ௃቏ ቂܷ߬ቃ

ݕ ൌ ൥ ݅
m݉ω ൩ ൌ ቂ10       01ቃ ቈ i

ω ቉             (19) 

 

3.2. Derivation of Analytic Redundancy Relations  
The bond graph model of the system in derivative 
causality (BGD) is given in Fig.2. The electrical motor 
is characterized by the resistance R and inductance L. 
The mechanical part of the motor is characterized by 
friction f, inertia J and the load torque τ. The conversion 
of electrical energy into mechanical energy is 
represented by a transformer GY. 

 
Figure 2: Bond graph model of DC motor in derivative 
causality with dualized sensors. 

Here, the sensors have been dualized as 
corresponding sources of signal (SS). For simulation 
purpose, the measurements of sensors can be obtained 
from the BGI model, Eq.(19). But for unknown variable 
elimination to generate an ARR, the initial point is the 
source of signal. This covering of causal paths leads to 
well known oriented graphs. Any ARR candidate can be 
derived very easily from this model by considering the 
balance of powers on both junctions. The algorithm can 
be consulted in (Samantaray and Ould Bouamama, 
2008).They are obtained as equations (20) and (21). 
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0:1 =−−− men
m

nmn k
dt

di
LiRUr ω

        
(20)

 

0:2 =−−− τωω
dt

d
Jfikr m

nmnmen
        

(21) 

 

Note that here all the parameters considered are with 
nominal values. 

3.3. Interval Extensions of the ARRs 
Next, the interval extension of 1r  and 2r  are considered 
by replacing the nominal parameters by their interval 
counterparts.  

1
( ): [ ] [ ] [ ] 0m

m m
d iR U R i L ke

dt
ω− − − =  (22) 

2
( ): [ ] [ ] [ ] 0m

m m
dR i k f J

dt
ωω τ− − − =  

(23) 

Here, [θ] denotes [ θn- Δθ1, θn+ Δθ2  ] and 
deviations in either direction may be equal (a special 
case). Interval bounds are considered on all the 
parameters. This can be done selectively too, depending 
upon which parameter we want to consider for 
envelope. Thus, R1 as Eq. (22) and R2 as Eq. (23) are the 
interval extensions of 1r  and 2r . They are evaluated by 
INTLAB in offline mode.  

By definition, R1 and R2 are not rational 
polynomials as they have terms with differential 
operator such as 

dt
dim  in R1 and 

dt
d mω  in R2. However, if 

the values of such a term (say 
dt

d mω ) is obtained 

externally, then they can be directly substituted in the 
expression during evaluation by INTLAB. In our case, 
such expressions are evaluated “externally” in 
SIMULINK where the differential operation on mi in 
(22) and on mω in (23) is done in continuous time 
domain. The obtained values are then “sent” to 
INTLAB where the interval expressions (22) and (23) 
are evaluated as a rational expression.  

R1 and R2 can thus be treated as rational interval 
polynomials. This is essential, to have them inclusion –
isotonic which is a necessary condition to satisfy the 
fundamental theorem of interval analysis.  

4.  SIMULATIONS AND RESULTS 
Parameters are considered selectively, in different cases 
with each having interval bound as   θ = [ θn- Δθ1, θn+ 
Δθ2  ] or θ ∈ [ θn- (0.1*θn) , θn+ (0.1*θn) ], for normal 
(non-faulty functioning).In following cases, 
Δθ1=Δθ2=Δθ. But, in general such is not the case.  
Other cases when Δθ1≠Δθ2 can also be treated similarly 
and efficiently. It is not done here for sake of clarity. 

Note: In the following cases parameter deviation 
such as Δθe denotes the parameter deviation considered 

to form the envelopes (subscript ‘e’ denotes deviation to 
form envelopes) and is always considered as  

Δθe =0.1*θn . 

4.1.   Case 1: Only one parameter uncertain for   
envelope generation 

The envelope is generated by considering interval on 
frictional parameter, f only. Thus, the interval extension 
of residual r2 is obtained as R2 in (24). 

2
( ): ( ) [ ] 0m

m m n
dR i ke t f J

dt
ωω τ− − − =  

(24)
 

The parameter deviation for envelope generation Δfe, is 
taken as Δfe =0.1* nf  so that, 
[f ]= [f n- Δfe, fn + Δfe]. The envelope in Fig.3, Fig.4 and 
Fig.5 is deduced from the interval extension expression 
(24). Nominal parameters are considered.  

In Fig 3, residual 2r  corresponds to Δf =0, the 

ideal condition, residual is zero. In Fig 4, residual 2r
corresponds to Δf =0.08* nf  , parameter deviates but 

below interval bound of envelope (Δfe =0.1* nf ), 
residual is below upper threshold and bound by the 
envelope. In Fig 5, residual 2r  corresponds to Δf =0.15*

nf , the damage (faulty) condition, residual is well 
above the threshold, beyond the envelope. 

 
Figure 3: Residual 2r with Δf =0 

 

Figure 4: Residual 2r with Δf =0.08*fn 
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Figure 5: Residual 2r  with Δf =0.15*fn 

 

4.2.   Case 2: A Parameter (friction) variation with 
time 

In this case, the parameter is considered to vary with 
time. So, after a finite time, it goes outside the 
permissible limit. It is shown in Fig.6. Envelope is built 
by considering interval on frictional parameter, 
Δfe=0.1*fn. The residual corresponds to situation when 
the parameter is time varying, and goes out of interval 
limit after a certain time ie. f=Θ(t). It can be seen, if and 
when a parameter deviates outside its interval limit. 
This way, a slow ageing (a case of slow parameter 
variation with time) of a parameter can be identified. 

 
Figure 6: Parameter variation with time, Residual r2 in 
blue.                        

4.3.     Case 3: Abrupt-sudden change in a parameter 
We consider the friction here to show a sudden, non-
called for variation. A pulse is introduced as  variation 
in friction (something similar associated with dry 
friction behaviour). The pulse variation can easily be 
detected by the residual. If the pulse amplitude is 
greater than that of interval limit, then it causes the 
residual to go outside the envelope. It is depicted in 
Fig.7. Here, the pulse is introduced at time 0.5 sec 
approx. in the frictional parameter, f. It is well reflected 
in the residual, causing it to go outside the envelope 
depending on the amplitude. Thus, fault is detected at 

instant t=0.5 s. At t=0.82 s, the pulse amplitude is just 
equal to the threshold limit 

 
Figure7: Abrupt behaviour of a parameter 

4.4.   Case 4: Two parameters uncertain for envelope 
generation 

In such cases, envelopes are built considering all the 
parameters that are likely to deviate. Envelope is built 
by considering interval on both friction f and ke. This 
generates the envelopes as seen in Fig.8 and Fig.9. In 
both figures envelope is generated considering,  
Δkee =0.1 * ken, and Δfe =0.1 *fn.  

In Fig 8, residual 2r  corresponds to Δf =0, Δke =0 the 
ideal condition, residual is zero. In Fig.9, the residual 
corresponds to, Δke =0.08 * ken, and Δf =0.08 *fn (both 
below the interval limit.) The residual remains 
successfully inside the envelope. In Fig.10, the residual 

2r  is drawn for Δke =0.15 * ken, and Δf =0.15 *fn (both 
above the interval limit.) The residual goes outside the 
envelope. So, it is seen that when both parameter go 
outside their limit, then residual goes out of the 
envelope too. 

 
Figure 8: Residual 2r  with  Δf =0, Δke =0        

 
The envelope generated, guarantees to contain the 

residual, only when all the considered parameters are 
within their interval bounds. Its converse is however, 
not true. 

Conversely, (a) if one of them goes beyond its 
interval limit (say friction f. not ke ) , then the residual 
might go outside. and equivalently,(b) one of the 
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parameter may go beyond its interval limit(say ke, not 
friction), yet the residual may be inside the envelope. 

The former situation (a) is alright, as it however, results 
in fault detection as residual goes out. But, latter 
situation (b), can result in missed alarms.  

 

Figure 9: Residual 2r with Δke =0.08 * ken, Δf =0.08 *fn 

 

Figure 10: Residual 2r with Δke =0.15 * ken, 
 Δf =0.15 *fn 

In Fig.11, envelope is generated by considering, the two 
parameters friction f and ke (like in previous three 
figures.).One of the parameter, ke goes faulty, Δke 
=0.12 * ken and friction f   is nominal. Δf =0 *fn. The 
residual however, remains inside. This is due to the 
relative influence of the parameters and is linked to 
their order of magnitude. 

 
Figure11: Envelope considers both f and ke (Δkee =0.1 * 
ken, and Δfe =0.1 *fn). Residual 2r  corresponds to 

situation when, Δke =0.12 * ken ,  Δf =0 *fn. 
 

To diagnose such cases, set of envelopes are built as 
shown in Fig.12.Env 1- by considering only ‘suspected’ 
variable that will deviate ke and Env 2- by considering 
both ke and f. Then, as shown in Fig.12 the residual will 
not be included in Env 1- showing ke deviates and is 
included in Env -2, showing f doesn’t deviate. 

 
Figure 12: Env 1-considers only ke as Δkee =0.1 * ken,  
Env-2 considers both ke and f as Δkee =0.1 * ken, and 
Δfe =0.1 *fn. Residual 2r  has Δke =0.12 * ken ,  Δf =0 
*fn. 

 

5. CONCLUSIONS 
This method of fault diagnosis by generation of 
thresholds from the interval value extensions of 
analytical redundancy relations (ARRs) is robust and 
efficient. There are no limitations in terms of 
nonlinearities. The envelopes guarantee to contain the 
residual when all the parameters considered for the 
envelope, vary within their interval range. System with 
single or multiple uncertain parameters can be dealt 
effectively, by creating a series of envelopes. 
Parameters are treated as intervals for threshold 
generation, and thus a parameter with variations 
different in either side or with deviation that varies with 
time, can be treated easily, which is not possible with 
the BG-LFT approach. This renders a much more 
freedom in treating the uncertain parameters accurately. 
This results in efficiently optimized envelopes. 
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