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ABSTRACT 
In this paper, the problem of partial asymptotic 
stabilization of the nonlinear autonomous under 
actuated airship (AUA) by various feedback laws is 
investigated. It has been shown that the AUA’s is not 

stabilizable via continuous pure-state feedback. This is 
due to (Brockett 1983), necessary condition. In order to 
cope with this difficulty, we propose in asymptotically 
eleven components in finite-time or exponentially, 
while the remaining one converges.    

 
Keywords: Airship, attitude control, discontinuous 
controllers, finite-time partial stabilizability. 

 
1. INTRODUCTION 

Control problems of aerospace engineering have 
recently drawn considerable attention in the control 
community. The rigid spacecraft, the rigid aircraft and 
the airship are examples of such systems. These systems 
are presented in cascade structure and have fewer 
actuators than the system degree of freedom. 
For this reason, the tools from linear control theory are 
not sufficient, and stabilization techniques need to be 
reconsidered. Indeed, it has been proved by (Sontag and 
Sussmann 1980), that all nonlinear controlled systems 
in dimension one cannot be stabilized by continuous 
feedback laws. As a solution for this problem, the 
authors proposed piecewise continuous feedback laws. 
This obstruction to stabilizability in dimension one is 
generalized for nonlinear control systems by a number 
of authors. The first one was given by (Brockett 1983), 
for all controllable systems and (Ryan 1994), only for 
continuous control systems and (Coron and Rosier 
1994), for the stabilizability of systems with drift. 
(Ryan 1994), proved that Brockett’s condition is still 
necessary for stabilizability by discontinuous feedback 
laws in Ryan’s sense. Also, (Coron and Rosier 1994), 
proved that Brockett’s condition is still necessary for 
the stabilizability of systems with drift by means of 
discontinuous feedback laws and the solutions are 
defined in Filippov’s sense. A strong homology 
necessary condition for stabilizability by dynamic 
feedback laws was given by (Coron 1990). 

An article traced by (Samson 1991), has proved 
that continuous time-varying feedback laws can be 
interesting to stabilize many systems which cannot be 
stabilized by continuous pure-state feedbacks. This has 
been demonstrated by Coron’s results in the famous 
paper (Coron 1995), which established that most STLC 
-small-time locally controllable- systems can be 
stabilized in finite time by continuous time-varying 
feedback. The obtained result leads to rich research in 
this area, namely: 

 
 Time-varying periodic controllers: (Beji, 

Abichou, and Bestaoui 2004; Coron 1992;  
Coron 1995; Coron 2007; Coron and  
d’Andréa Novel 1992; Coron and  Keraï 1996; 
M’Closkey and Murray 1997; Morin 2004; 

Morin and Samson 1997; Morin, Samson, 
Pomet, Ping, and Jiang 1995; Pettersen and  
Egeland 1996; Pettersen and Egeland 1999 ; 
Pettersen and Nijmeijer 2001; Samson 1991; 
Samson 1995), and the references therein,  

 discontinuous controllers: (Astolfi 1996a; 
Astolfi 1996b; Coron and Rosier 1994; Sontag 
and Sussmann 1980; Sussmann 1979), 

 the partial asymptotic or finite-time 
stabilization by continuous or discontinuous 
feedback laws: (Jammazi 2008a; Jammazi 
2008b; Jammazi 2010; Jammazi 2011) 

In this paper, we will focus our attention on the third 
approach. It consists of the concept of the Partial 
Asymptotic Stabilization (PAS). This concept means 
the asymptotic stabilization with respect to the 
maximum components of the system; while the 
remaining components are convergent and not 
necessarily toward an equilibrium point. 

In (Jammazi 2008b), we have developed the 
backstepping techniques for the partial asymptotic 
stabilizability. This result was used to solve the partial 
asymptotic stabilization of many controllable cascaded 
systems that do not satisfy Brockett’s necessary 
condition. Differentiable stabilizing feedback laws for 
the rigid spacecraft and for the ship are derived. For 
both systems, these stabilizing feedbacks make five 
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components asymptotically stable and one component 
converges; in particular we have improved the (Zuyev 
2001), feedbacks for the rigid spacecraft which states 
that the angular velocity of the third axes is only 
bounded, and for the ship system we have improved 
(Wichlund, Sørdalen, and Egeland 1995), feedbacks 
which states that the yaw angle is only bounded. 
Moreover, in (Jammazi 2010), we have provided a 
rigorous formulation of the theory of asymptotic partial 
stability, respectively, the finite-time partial stability of 
continuous autonomous systems. Sufficient conditions 
are derived with applications in control design. For 
example, we have proved in (Jammazi 2010) that the 
partial stabilization of the ship can be achieved in finite-
time by continuous or discontinuous bounded state 
feedback laws. 

In (Jammazi 2011), we have studied the finite-time 
partial stability of a prototype system of nonholonomic 
control systems which is the benchmark knife edge or 
the unicycle robot system called also the Brockett’s 

integrator. We have proposed various feedback 
controllers that achieve the partial asymptotic 
stabilizability, or the finite-time partial stability of the 
mobile robot. These feedbacks are Hölderian for the 
rational partial stability, continuous and homogeneous 
of negative degree or discontinuous and quasi-
homogeneous of negative degree for the finite-time 
partial stability. 

The airship is the subject of numerous papers and 
thesis; (Hygounenc 2001), (Hygounenc 2003), (Zhang 
and Ostrowski 1999), (Beji and Abichou 2005; Beji, 
Abichou, and Bestaoui 2004), (Bestaoui 2006) and 
(Samaali, Abichou, and Beji 2007), and references 
therein. 
As cited in (Samaali, Abichou, and Beji 2004), the 
problem of adding physical parameters of the blimp into 
the image plane for the performance of vision-guided 
control is discussed in (Zhang and Ostrowski 1999). 
In (Beji and Abichou 2005), the problem of tracking 
control for ascent and descent flight with only three 
controllers is addressed. The authors supposed that roll 
is totally unactuated. 
In (Bestaoui 2006), the problem of generation of 
characterization nominal trajectories (flight path) to be 
followed by an autonomous airship is addressed. In 
(Samaali, Abichou, and Beji 2007), the authors have 
studied the stabilization with respect to longitudinal and 
horizontal planes. By using iterative backstepping 
techniques combined with Lyapunov theory, 
homogeneity and averaging theorems, the authors have 
shown that the stabilization is possible via continuous 
time-varying feedback laws. 

In this paper, our objective is to solve the 
stabilizing control problem of attitude and position for 
underactuated airship using only three available 
controls: the main and tail thrusters and the tilt angle of 
the propellers. The roll is totally unactuated. The same 
input controls both pitch and surge, while yaw and sway 
are related.  

It was shown in (Beji, Abichou, and Bestaoui 2004), 
that the stabilization problem of autonomous airship by 
regular state feedback laws in the usual sense is not 
possible. As a solution of this problem, the authors have 
proposed time-varying feedback laws. The proposed 
method uses the averaging method and homogeneous 
exponential stability developed in (Morin and Samson 
1997). 
Note that all papers (Beji and Abichou 2005; Beji, 
Abichou, and Bestaoui 2004; Bennaceur 2009; Bestaoui 
2006; Samaali, Abichou, and Beji 2007) cited here have 
treated the LSC’AS200 airship (Figure 1). 

 In fact, introducing the time in these feedback 
laws produces “undesirable” oscillations of the system 
around his equilibrium point, ( Beji, Abichou, and 
Bestaoui 2004; Coron 1992 ; M’Closkey and Murray 
1997; Morin and Samson 1997; Morin, Samson, Pomet, 
and Ping Jiang 1995; Pettersen and Egeland 1996; 
Samson 1991; Samson 1980), for more general systems. 
To get around the problem of impossibility to stabilize 
the autonomous airship by pure and regular feedback 
laws, and to overcome the drawback of the time 
dependence of these feedback laws, the stabilization of 
the airship should be solved via static feedbacks in 
partial asymptotic stabilizability sense. 
The obtained results show that we can ensure the 
asymptotic stabilizability of eleven states of variables, 
and convergence of the remaining one. In the first 
approach, by using the backstepping techniques and 
partial asymptotic stabilizability developed in (Jammazi 
2008a), we have shown that the LSC’AS-200 blimp can 
be stabilized partially exponentially by linear feedbacks. 
In the second approach, we have proved that the blimp 
can be stabilized partially in finite-time by means of 
continuous state feedback laws. However, the airship is 
an example of system with drift in which the (Coron 
and Rosier 1994), condition fails to be stabilized by 
discontinuous feedback laws. For this reason, to get 
around this obstruction, we have developed 
discontinuous state feedback laws that make the blimp 
stable in finite-time with respect to six components 
(which are the position           of the blimp in the 
inertial frame, and the linear velocities          in 
surge, sway and heave decomposed in the body-fixed 
frame), this leads by linearization to exponential 
stability of five components (which are           
angular velocities in roll, pitch and yaw decomposed in 
the body-fixed frame, and (     ) the orientation of 
principal axis         ) and therefore the convergence 
of the orientation angle    with respect to axis   . The 
stabilization by discontinuous feedback law appears 
significant, despite the presence of chattering 
phenomenon (Orlov 2009). 

This paper is structured in this way: The section 2 
contains some mathematical preliminaries. The 
stabilization strategies of the model of airship by 
various state feedback laws are the subject of Section 3. 
The theoretical results are confirmed by simulations in 
Section 4 and the conclusion is given in Section 5. 
Throughout the paper,      denotes the Euclidean norm 
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in   , ║.║denotes the Euclidean norm in      defined 
by,                 for                    

     is  the symbol of transposition and sgn is the 
function “sign” and     means A is diffeomorph to 
B. 
 
2. PRELIMENAIRES 

The double integrator is a key system that can 
appears in all underactuated dynamical systems. For this 
reason, the stabilization of such system is an interesting 
area of many works (Bhat and Bernstein 1998; Hong, 
Yang, Cheng, and Spurgeon 2004; Huang, Lin, and 
Yang 2005; Orlov 2005; Orlov 2009). In this section, 
we begin with review some results concerning the 
stabilization in finite-time of the double integrator 

 
          
            

          

                                                            
The system (1) can be stabilized by two classes of 
feedbacks: continuous and discontinuous state static 
feedback laws which are presented in the following 
lemmas. 
Lemma 1: (Bhat and Bernstein 1997) The system (1) is 

finite-time stabilizable under the continuous feedback 

                             
 

   ,          
 

Lemma 2: (Orlov 2009) the system (1) is finite-time 

stabilizable under the discontinuous feedback 

                                  
 

3. PARTIAL ATTITUDE CONTROL OF 
AUTONOMOUSUNDERACTUATED 
AIRSHIP SYSTEM 
This section is devoted to studying the complete 

system of underactuated airship which is the AS-200 by 
Airspeed Airships, see (Beji and Abichou 2005; 
Bestaoui 2006), for more details. It was shown in (Beji, 
Abichou, and Bestaoui 2004) that no continuous time-
invarying feedback law which makes the origin of the 
airship asymptotically stable exists, because the latter 
system does not satisfy Brockett’s condition (Brockett 
1983). In order to overcome the Brockett’s obstruction, 
the stabilization of the airship is treated in partial 
asymptotic stabilization sense. 

 
Equation of motion: The autonomous 

underactuated airship is a complex nonlinear system 
described by 
twelve variables of state and three controls. The model 
was found in (Beji and Abichou 2005; Beji, Abichou, 
and Bestaoui 2004): 
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The constants     and      are the coefficients of the 
inertia matrix M supposed to be symmetric and positive 
definite. 
The constants                       are the 
aerodynamic coefficients. The vector   
               denotes the linear velocities in surge, 
sway and heave, and the angular velocities in roll, pitch 
and yaw, decomposed in the body-fixed frame. 
Define the vector           where             is 
the position of the airship in the inertial frame. The 
vector                   is defined as follows: the 
vector                 defined the unit quaternion (i.e. 
  
    

    
    

    ), the component    is supposed 
non negative and given by       

     
    

    
    The vector                

denotes the control forces decomposed in the body-
fixed frame. 
As in (Beji and Abichou 2005), the lighter than air 
platform used in this paper is the AS-200 by Airspeed 
Airships (Figure 1), for more description of this type of 
blimp the reader is referred to (Bestaoui 2006). The 
blimp’s parameters are as follows in the International 

System Units: 
 

 blimp’s total mass:       , the nacelle 
mass    =1.58, 

 added masses                    

                           
 inertial parameters around the principal axes of 

inertia:                        

       and         
 inertial terms                     

                          =27.63, 
                   

   term:   =                       
 positions of input forces     and   :     

   and      =-3, 
 aerodynamic coefficients:             

       =-10 
 buoyancy and gravity magnitudes:    89 

 and        and          
 

 
Figure 1: The AS-200 Airship (Bestaoui 2006). 
 
 

     Consider the function               
  defined by 

                       
    

    
                    

where        is the open ball of   . A Taylor’s 

expansion on the neighborhood   of     of   gives 
                                                           

where   is a smooth function on the open ball        
satisfying       . 
Since         and  

                   
    

    
                 

then             
and we get                                                        
Thus, the system (2) can be transformed as follows: 

                 
where       is the state and      the control. The 
function        contains the linear terms of the system 
(2) where   contains the nonlinear part of the rest of the 
system. 
We begin by studying the system           
 which is given by 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
       

 

   

                     

    
 

   

                     

     
 

   

                  

    
 

 
                                    

             

   
 

   
              

      

   
 

 
                                 

        

      
      
      

    
 

 
  

    
 

 
  

    
 

 
  

 
                                                                                                         

  

 
3.1. Obstruction to stabilizability 

We show that (6) cannot satisfy the Brockett’s 

necessary condition for stabilizability. 
Proposition 1: There is no continuous state feedback 

that can stabilize asymptotically the system (6). 
Proof: Let    be the feedback transformation defined 
by 

 
               

this means that the term         is crushed by a 
component of control   , and the airship is at position 
  above the ground. With the new input    , the system 
(6) 
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becomes            

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   
                    

 

   
                   

 
 

   
           

   

 
                                  

     
    

 
 

   
              

    

 

 
                               

  
       
 
 
 
 

 
 

 

 
 

 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
All points    in the form                            
where     are not in the image of  . Indeed, if it was 
the case, the equation           admits a solution. 
So, by combining the equation 2 and the equation 4 we 
get              and               

       
then 2             

             which implies 
          then                 

        . 
We obtain a contradiction.                                                               
3.2. First strategy: Partial exponential stabilizability 

To get an adequate form of the system (6), we 
adopt the following transformation 
      

 

   
                      

    
 

   

                     

    
 

   

                  

Then (6) is equivalent to 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

       
        
        

   
 

 
                                  

       

          
                 

   
 

   
             

            

               
              

   
 

 
                               

       

           
                 
      
      
      

    
 

 
  

    
 

 
  

    
 

 
  

                                                                                              

  

 
 In the sequel, we will be interested in system (7) with 
respect to                            

   In order to 
apply the backstepping techniques in partial asymptotic 
stabilizability developed in (Jammazi 2008b), we start 
by studying the reduced system which is given by  

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
     

 

 
                          

    
                             

    
 

   
              

              

             

   
 

 
                                

          

                                   
       
            
       

    
 

 
  

          
 

 
  

                                                                                         

  

Stabilization of the system (2) 
Proposition 2: Let             three nonnegative 

reel numbers. Then, with the action of the following 

feedbacks 
             ,                
             ,                                                                                                                                                                                     
where   is large enough, the system (2) is eleven locally 

partially exponentially stable. More precisely, the 

partial state                            
      is 

locally exponentially stable and    converges. 

Proof: The proof of the proposition comes from 
((Jammazi 2010), Corollary 7) which states that if the 
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linearized system is p-partially exponentially stable then 
the initial system is p-locally exponentially partially 
stable. In closed loop, the linearization of (2) with 
respect to   around the equilibrium point is given by the 
system 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

              
              
                

    
 

 
                         

  
              

  
                         

    
 

   
             

           

    
                     

   
 

 
                             

    
            

   
                         

      
      
      

    
 

 
  

    
 

 
  

                                                                        

                                             

 
Clearly the system (10) is exponentially stable with 
respect to                 The linear system (10) 
with respect to                     admits the 
following set of eigenvalues which are with negative 
real parts 

                               
                              and    
         
 Straightforward computations show that (10) is 
exponentially stable with respect to. Clearly nonlinear 
part of (2) with respect to   vanish when the 
"uncontrolled part"    is zero. Then, by using, 
((Jammazi 2010), Corollary 7), the system (2) is locally 
exponentially stable with respect to  . 
Consequently, there exists     and     such that 

                                                        
In particular, we get 
 
                                                                      
                                                                      (12) 
Since    =

 

 
                 

    
    

    and  

     
    

    
   , then we get  

                      
 

 
                      

From (13) we easily deduce that    (t) is Lebesgue 
integrable and therefore    converges. This completes 
the proof.                                                           □ 
3.3. Second alternative: Finite-time partial 

stabilizability 
In this section, we give other strategies to stabilize 

the airship. This alternative is based on the theory of 

partial stabilization and on continuous feedback laws 
given in Lemma 1 (respectively, discontinuous 
feedback laws given in Lemma (2). We begin with the 
continuous finite time stabilizing feedback laws. 
Proposition 3: Let be        , then under the 
following feedback laws 

                           
 

     
 

                           
 

     
 

                                        
 

    , 
                                                                             (14) 
the underactuated system (2) is finite-time stable with 

respect to               and locally exponentially 

stable with respect to              
  which implies that 

   converges. 

Proof: We consider the system (2) and taking the 
feedback transformation 
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(                  

     
     

                              ),                          (15)                        
                                                
                                                                        
then the dynamic of the states     and   become 
  =   ,   =   , and         Then by taking the time 
derivative respectively of       and    we get 
                             
                

    
                        

                                                                                                                 
                 

    
       + {nonlinear terms}.  (16) 

 
Let    be the smooth function defined by          
    

    
    Since            then there exists a 

neighborhood    of zero such that          for 
all      . In this case, the system (16) is locally 
feedback equivalent to 
 
       =    where           

    
       + {nonlinear 

terms}.                                                                 (17) 
Since the functions              

    
   and 

              
    

   satisfies 
                 by the same above argument, 
the dynamic of   and   are locally equivalent to 

 
             

    
        + {nonlinear terms}. 
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        + {nonlinear terms}.  
                                                                                            (18) 
Here, these nonlinear terms vanish in the equilibrium 
point. To summarize, the dynamic equation of         
is now in the following double integrator form: 

 
       
      
       

                                                                             (19) 
Then, according to Lemma 1, by choosing feedbacks 
given in (14), we get easily     and   are stable in finite 
time and       and    are too, which give also     and    
are stable in finite-time. Then there exists a settling time 
  such that        

                                 
In this case, the system (2) becomes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
     

 

 
                     

      
    

                              

           
    

    
                  

                        
       

    
 

   
            

                      

           
    

    
              

   
            

    
 

 
                     

      
  

                               

           
    

    
  

          
                      

     
 

 
       

    
    

           

    
 

 
           

    
    

          

    
 

 
                 

    
    

    

                                                                                   

  

The system (20) can be expressed as: 

 
              

                    
                                              (21) 

where                
     and   represent higher 

order nonlinear terms and vanish when    . 
The linearized system of (20) with respect to   is given 
as follows: 

 

 
 
 
 
 
 
 

 
 
 
 
 
 

   

    
 

 
                             

             

                                                                       

     
 

   
              

                              

   
 

 
                            

                  

                                                                             

    
 

 
                                                                                      

    
 

 
                                                                                 

             

By using MATLAB Toolbox, the linear system 
(22) around the partial equilibrium point 
             

               admits the following 
eigenvalues                          
                                   Clearly the 
linearized system is asymptotically stable, and therefore 
by using partial exponential stability and linearization 
theorem (Jammazi 2010), the initial system (21) is 
locally exponentially stable with respect to  .  

Since the function   satisfies the property 
           then the state    converges. 
Moreover, we have       

    
    

     then the state  
      and    are Lyapunov stable. Therefore, the system 
(20) is locally exponentially stable with respect to the 
partial state                 stable with respect to 
                  and the "uncontrolled" state 
   converges. This achieves the proof.                    □ 

   The airship is an example of system with drift in 
which the Coron and Rosier’s condition fails to be 

stabilized by discontinuous feedback laws (Coron and 
Rosier 1994). In order to overcome this obstruction, the 
next proposition introduces the finite-time partial 
stabilizability by discontinuous feedback laws. By the 
same argument as in the proof of Proposition 3 we show 
the following proposition. 
Proposition 4: Let be        , then under the 
following feedback laws 

 

     

                                                                   

                                                              

                                                                      
                                                                                 

   

 

where        , the underactuated system (2) is 

finite time stable with respect to                and 

locally exponentially stable with respect to 

             
  and therefore    converges. 

Now, we are ready to give the open question. 
Open Question: Is the feedbacks proposed in the 

section 4 are robust with respect to measurement noise 
on the state variables and with respect to unmodeled 
dynamics ? 
4. SIMULATION RESULTS 

The performances of our feedback laws are tested 
by numerical simulations on the nonlinear model of 
airship. The advantage our method resides in obtaining 
a static stabilization. Moreover, the state variable, which 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2012
ISBN 978-88-97999-12-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds. 235



 

is not “controllable” converges, which makes it possible 

to avoid the oscillation of the system in the 
neighborhood of the equilibrium point. For space 
reason, the simulations of the exponential stabilizability 
are omitted. Only the simulations of the finite-time 
partial stabilizability by continuous feedbacks are 
considered. 
4.1. Second approach: Finite-time partial 

stabilizability by continuous feedback laws. 
In this strategy we have used the initial condition: 

                              
    

    
   

                                                        
and the feedbacks 
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This simulation shows the finite time stability of 
                The asymptotic stability of 
               and convergence of              

 

 
Figure 2: Velocities u and v and w 

 
 
 
 

 
Figure 3: Velocities p and q and r. 

 

 
Figure 4: Positions x and y and z. 

 
 

 
Figure 5: Positions e1, e2 and convergence of e3. 

 
 
5. CONCLUSION 

The model of airship cannot be stabilized by 
continuous pure state feedback laws, this due to 
Brockett necessary condition. To overcome this 
problem, various controllers are proposed to study the 
position and the partial attitude of the airship; 
summarizing, these feedbacks makes eleven states of 
variables asymptotically stable once only one variable 
remains convergent. In the airship model, the 
"uncontrolled part “  ” is the yaw angle which leads the 
system to revolve around the axis    attached to the 
frame airship. We have shown with the action of our 
feedback that the airship is asymptotically stable 
without taking into consideration its orientation with 
respect to axis   , since the latter angle converges. 
Clearly this stabilization seems sufficient. 
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