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ABSTRACT
This paper brings contributions on the proposal of use of
translational motions of sliding masses to minimize vi-
brations induced by the rotational motion of a light flex-
ible manipulator (rotating arm). This system is inspired
by rotating cranes used to transport loads. Optimal con-
trol methods have been used to generate the slider tra-
jectories while the flexible manipulator performs a rota-
tional maneuver from a fixed to other fixed configura-
tion. This approach has led to good solutions even in
case of quite quick maneuvers, as, for example, a 90o

beam rotation in just 1 second, using 1 or 2 sliders (Ter-
ceiro, 2002). In the present paper, the complete mo-
tion equations for any number of masses are firstly pre-
sented, in order to emphasize the complexity of the cou-
pled elastic-rotational-translational motions. Simplifying
assumptions are pointed out and the corresponding opti-
mal control problems (OCP) are obtained. Optimal tra-
jectories, generated according to different Indexes of Per-
formance and different problem parameters, are analysed
and compared in order to get feasible movements for the
set.

Keywords: Optimal Control, Vibration Control,
Flexible Robotics, Lightweight Structures, Composed
Motion

1 INTRODUCTION
For many applications, structural flexibilities must be
considered in early design stages in order to assure good
vibration attenuation in modern machine design. The
problem of flexible structures has worried many authors,
today’s literature on the subject is extensive. We can cite
as authors interested: (Junkins and Kim, 1993) dealing
with the problem of dynamic and flexible control struc-
ture and (Meirotvitch, 1980), (Meirotvitch, 1990) that
contributed to the disclosure of the issue of flexible struc-
tures.

Based on the examples of rotating cranes and rota-
tional/prismatic joint robots, this work explores simulta-
neous rotating/translational motions to minimize vibra-
tions on a light one-link manipulator that performs large
rotational maneuvers. The basic question investigated is
how the motion of independent parts may contribute to
reduce the vibration levels of the whole system. As the
results achieved are encouraging, it seems feasible to ex-
tend the research to other more complex applications.
Then, the objectives here are the achievement of suit-
able system models for a very light flexible manipulator
and the synthesis of optimal controllers using the torque
applied to the hub where the flexible arm is fixed and
the forces applied to the sliding masses as control vari-
ables. The case of a single sliding mass has brought sur-
prising results, as shown in (Fleury and Oliveira, 2004).
The investigation has been extended to model a mecha-
nism which include any number of sliders and structural
modes (Terceiro, 2002). The full approach is firstly in-
troduced in this paper. In all cases, the dynamical mod-
els of the structural system have been derived through
the Extended Hamilton Principle resulting in a set of
coupled integro-differential non linear equations where
system parameters are time and space dependent due to
changes in the inertia terms. Using substructuring tech-
niques, arm and sliders motions have been separated and
systems responses have been expanded in products of
spatial and time functions. Many Control techniques
(LQR, for example) have been used in order to mini-
mize vibrations induced by the rotational movements, but
this reduction resulted dependent on the prescribed mo-
tions of the sliders. A bad choice for the slider move-
ments can lead to larger vibrations amplitudes when com-
pared to a situation where the masses remain fixed on
the rotating arm (Fleury and Oliveira, 2004). An Opti-
mal Control line of investigation became mandatory to
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understand the very influence of the composed torque-
sliders position controls on the elastic vibrations. Slider
trajectories become control variables, among hub torque
leading to Optimal Control Problems (OCP). The re-
sulting models are non linear and time variant and an-
alytical solutions are not feasible. Then, optimal arm
and slider trajectories are investigated through the use
of RIOTS’95 (Schwartz et al, 1997), a computational
package based on the Consistent Approximation Theory
(Schwartz, 1966). Among many already simulated cases,
the results presented in this paper demonstrate the impor-
tance and influence of the choice of Objective Functions
in System performance. Early results appear in the work
of (Oliveira, 2000) when the problem was treated with
only one mass sliding. Then, in (Terceiro, 2002) problem
has been generalized to different masses has been estab-
lished, and then using the RIOTS’95 was simulated prob-
lem with two sliding masses. In a research work hard,
many results have appeared as shown in (Terceiro and
Fleury, 2008). Sometimes, the differences seem subtle,
and are basically set the simulation time, the performance
criterion and the initial guess necessary for the simula-
tion. Even these few changes have produced a wealth of
results that are now published and others that need to be
studied further. The numerical difficulties inherent prob-
lems of this size are increased by the large number of
parameters available for analysis. Just a few results are
presented and refer to the most interesting cases selected
from a broader set of results that were obtained by the
choice of all parameters involved and discussed in the
previous paragraph.

2 SYSTEM FULL MODEL
As shown in Figure 1, system is composed by a long,
slender, flexible beam (the arm) that can rotate in an hor-
izontal plan driven by the torque delivered in a rigid hub.
Angular acceleration and disacceleration of the flexible
arm should cause large amplitude vibrations. Here, we
propose to move some masses (sliders) simultaneously
to the arm motion, thus changing rotational inertia prop-
erties to minimize arm vibrations, represented by the arm
tip excursions. In order to use Hamiltons Extended Prin-
ciple, kinetic and potential energies of each component,
hub, arm and masses must be calculated. Then, the elas-
tic potential energy of the flexible arm, U(t), is given by:

U(t) =
1
2

∫ L

0
EIv

(
∂2e
∂x2

)2

dx (1)

with e the deformation of the arm at a generic point
x, Iv is the moment of inertia, b is the width h the height
of a tipical section. L is the length of the flexible arm.
The total kinetic energy of the arm, TB,is:

Figure 1: Flexible Arm Model

TB =
∫ L

0

1
2

ρ(eθ̇)2dx+
∫ L

0

1
2

ρ(ė+ ẋθ)2dx (2)

with ρ arm linear mass density, θ the angular dis-
placement and θ̇ the angular velocity.

The kinetic energy of the two masses, TM , is given
by:

TM =
1
2

2

∑
i=1

Mi

(
(l̇i− eiθ̇)

2 +(ėi + liθ̇)2
)

(3)

li is the location on the mass of each mass over the
arm.

The kinetic energy of the hub, Tc is:

Tc =
1
2

McL2
c

2

(
dθ

dt

)2

=
1
2

Jc

(
dθ

dt

)2

=
1
2

Jcθ̇
2 (4)

LC is the radius of the hub, MC its mass and JC is its
moment of inertia of the cube.

The work of the nonconservative forces, W , is given
by:

δW = τδθ+F1δl1 +F2δl2 (5)

The first term refers to the virtual work of the ap-
plied torque, the other two terms refer to the virtual work
of the tangent forces applied to the masses m1 and m2
respectively.

Explicitly, τ is the torque applied by the motor to
produce rotational movement of the flexible arm, and F1,
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F2 is the force applied by the sliders m1, m2 to reduce the
vibration of the flexible arm

The Extended Hamilton’s Principle states that be-
tween two instants t1 and t2the system energy follows:

∫ t2

t1
(δLg +δW )dt = 0 (6)

with Lg, the Lagrangian of the system, is given by:

Lg = T −U = TB +TM +TC−U (7)

That is true for the system:

∫ t2

t1
(δTB +δTM +δTC−δU +δW )dt = 0 (8)

The application of the principle leads to the follow-
ing model

∫ L

0
ρ(−xë− (x2 + e2)θ̈)dx

+M1

∫ L

0
(e1 l̈1− l1ë1− e2

1θ̈)∆l1dx

+M2

∫ L

0
(e2 l̈2− l2ë2− e2

2θ̈)∆l2dx

−(M1l2
1 +M2l2

2 + Jc)θ̈+ τ = 0∫ L

0
ρ(ë− xθ̈+ eθ

2)dx−
∫ L

0
EIv

∂4e
∂x4 dx = 0

M1

∫ L

0
(−ë1 + e1θ̇

2 +−l̇1θ̇)∆l1dx = 0

M2

∫ L

0
(−ë2 + e2θ̇

2 +−l̇2θ̇)∆l2dx = 0

M1

∫ L

0
[e1θ̈+ e1θ̇

2]∆l1dx+M1(l1θ̇
2 l̈1)+F1 = 0

M2

∫ L

0
[e2θ̈+ e2θ̇

2]∆l2dx+M2(l2θ̇
2 l̈2)+F2 = 0

(9)

with boundary conditions:

e
∣∣∣
x=0

= 0
∂2e
∂x2

∣∣∣
x=l

= 0

∂e
∂x

∣∣∣
x=0

= 0
∂3e
∂x3

∣∣∣
x=l

= 0

(10)

3 SUBSTRUCTURE SYNTHESIS
The difficulties of the mathematical analysis of the above
problem, which involves all the terms of the interac-
tion energy of each of the parties established because re-
quires solving the equations 9 with boundary condition
10 where all parts of the structure appear mixed when
to implementing Extended Hamiltons Principle which in-
volves all the terms of the interaction energy of each of

the parties established then the strategy was to consider
a system consisting of several substructures, determine
the motion equations that govern these substructures and
then consider the interaction of each structure with the
others and their effects on the structure as a whole. This
approach is known as Substructure Synthesis and its roots
can be found in papers like (Meirovitch and Kwak, 1991).
In our case, the arm-hub has been considered as one sub-
structure and each sliding mass as another ones. Hamil-
tons Extended Principle has been rewritten for each sub-
structure. After many algebraic manipulations, which in-
clude disregarding quadratic terms (Terceiro, 2002), the
substructured model is given by:

∫ L

0
ρ(−xë− (x2 + e2)θ̈)dx− Jcθ̈+ τ = 0

∫ L

0
ρ(ë− xθ̈+ eθ

2)dx−
∫ L

0
EIv

∂4e
∂x4 dx = 0

ë1 + l1θ̈+2l̇1− e1θ̇
2 = 0

ë2 + l2θ̈+2l̇2− e2θ̇
2 = 0

(11)

with the same boundary conditions as in equation
10.

The free vibration of the arm, after disregarding
some second order terms is given by:

−
∫ L

0
ρxëdx− (JB + JC)θ̈ = 0 (12)

ρ(ë− xθ̈)+EIv
∂4e
∂x4 = 0

A change of variables is then introduced:

e(x, t) = z(x, t)− xθ(t) (13)

leading the model to a form like:

∫ L

0
ρxz̈dx+ Jcθ̈ = 0 (14)

ρz̈+EIv
∂4e
∂x4 dx = 0

with boundary conditions:
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z
∣∣∣
x=0

= 0
∂2z
∂x2

∣∣∣
x=l

= 0 (15)

∂z
∂x

∣∣∣
x=0

= 0
∂3z
∂x3

∣∣∣
x=l

= 0

All these transformations have been necessary to ex-
press the system in coordinates where an expansion on
independent orthogonal functions of time and space can
be performed:

z(x, t) =
∞

∑
r=1

φr(x)ηr(t) (16)

This allows separated spatial and time descriptions
through the equations:

η̈r(t)+ω
2
r ηr(t) = 0 (17)

EIv
∂4φr(x)

∂x4 −ω
2
r ρφr(x) = 0

For the eigenvector equation, 17, admissible solu-
tions are proposed as:

φr(x) = arsin(βrx)+brcos(βrx) (18)
+ crsinh(βrx)+drcosh(βrx)

The determination of the coefficients is made by
solving a linear system. After many algebraic manipu-
lations one can arrive at a standard form:

δrs =
∫ L

0

d2φs

dx2
d2φr

dx2 dx (19)

=
1

EIv

{∫ L

0
ω

2
r ρφsφrdx− Jcωr[φ

′
sφ
′
r]x=0

}
Considering the forced system, one can find:

∞

∑
r=1

[∫ L

0
ρφsφrdx− Jc[φ

′
sφ
′
r]x=0

]
η̈r+ (20)

+EIv

∞

∑
r=1

[
ω

2
r [
∫ L

0
ρφsφrdx− Jc[φ

′
sφ
′
r]x=0

]
ηr =τφ

′
s

∣∣∣∣
x=0

Observing the adopted norm, we finally have:

η̈r +ω
2
r ηr = τφ

′
r|x=0 (21)

Then, the interaction between substructures be-
comes:

η̈r +ω
2
r ηr =

∫ L

0
FE(li)φrdx+ τφ

′
s|x=0 (22)

where FE(li) is the force due to the presence of a
sliding mass at this point.

After some manipulations:

η̈r +ω
2
r ηr =−

∫ L

0
Mi

∞

∑
s=1

[
φs
∣∣
x=li

η̈s

]
φrdx (23)

−
∫ L

0
Mi2l̇iθ̇φrdx+ τφ

′
s

∣∣∣
x=0

This equation is very important because it shows the
relationship between the vibration modes in time and the
influence of motions in space, that is, the interaction be-
tween the sliding masses, applied at the point li, and the
structure and their effects transferred as functions of spa-
tial forms. It also shows the effect of the torque applied
to the hub on the flexible robotic arm.

4 STATE SPACE FOR THE DYNAMICAL SYS-

TEM
In order to design any control strategy, the system model
should be written in state space variables. Then, sub-
structure motions are synchronized and normalized to get
a set of matrix equations in the form:

η̈r =−[T ]−1

Wηr−2Mi l̇iθ̇

 L∫
0

φrdx

+ τφ̇r|x=0


(24)

where [W ] = ω2
i × Inxn and [S] = [T ]−1 is given by:

Srs =



Mi+M2
i

p
∑

k=1,k 6=r
φk

∣∣
x=li

L∫
0

φkdx

1+
p
∑

k=1
Miφk

∣∣
x=li

L∫
0

φkdx

for r = s

−M2
i φr

∣∣
x=li

L∫
0

φsdx

1+
p
∑

k=1
Miφk

∣∣
x=li

L∫
0

φkdx

for r 6= s

(25)

Using Newton’s Law on the rotational motion, one
can get:

(
JB + JC +MLl2

I θ̈
)
= τ+FE j(li)li (26)
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Equation 26 describes the rotational motion, in-
cludes the torque applied to the hub and the slider reac-
tions FE j, at positions li and takes into account the beam
moment of inertia, JB. Finally, a state model can be writ-
ten:

ẋ2r−1 = x2r

ẋ2r = −
2(M1x2p+4+M2x2p+6)x2p+2

p
∑

s=1
Srs

L∫
0

φsdx

M1+M2

−

p
∑

s=1
w2

s Srsx2s−1

M1+M2
+

p
∑

s=1
Srsφ̇s

∣∣
x=0

M1+M2
ui

ẋ2p+1 = x2p+2

ẋ2p+2 =

p
∑

r=1

p
∑

s=1
ω2

s φr(li)Srsx2s−1

JB+JC+M1x2
2p+3+M2x2

2p+5
+

1−
p
∑

r=1

p
∑

s=1
Srsφ̇

∣∣
x=0

φr(li)

JBC+M1x2
2p+3+M2x2

2p+5

τ

+2 (
M1x2p+4+M2x2p+6)x2p+2

JB+JC+M2x2
2p+5+M1x2

2p+3
×( p

∑
r=1

p
∑

s=1
φr(li)Srs

L∫
0

φsdx−1
)

JB+JC+M2x2
2p+5+M1x2

2p+3

ẋ2p+3 = x2p+4
ẋ2p+4 = u2

M1
+ x2p+3x2

2p+2
ẋ2p+5 = x2p+6
ẋ2p+6 = u3

M1
+ x2p+5x2

2p+2

(27)

The elements of matrix S are written according to
eq. 25 with the necessary adaptations, p indicates the
number of vibration modes of the system.

In this model, the state variables represent ẋ2r are
the normal modes of the system, x2r−1 are the velocities
of normal modes, x2p+1 is the angular motion, x2p+2 is
the velocity angular motion, and x2p+3 and x2p+5 are the
position of sliders 1 and 2 respectively, and x2p+4 and
x2p+5 are the velocities of sliders.

5 THE OPTIMAL CONTROL PROBLEM
A general Optimal Control Problem (OCP) can be stated
as one where the control laws u j(t), j = 1, · · ·m and the
initial and final conditions xi(a)and xi(b) , i = 1, · · · ,n
have to be chosen so as to minimize an Index of Perfor-
mance

IP = Φ(x(a),x(b))+
∫ b

a
L(x(t),u(t), t)dt (28)

subject to:

1. Dynamic Constraints:

ẋi = fu(x(t),u(t), t), i = 1, · · · ,n (29)

2. Boundary Constraints:

φk(x(a),x(b),a,b) = 0,k = 1, · · · ,r (30)

Although easily included, this system does not re-
quire the use of Control or State Inequality Constraints.

6 ILLUSTRATIVE CASES STUDY
The Indexes of Performance were always chosen as com-
binations of arm tip displacements and velocities since
we are interested in minimizing tip vibrations. For
robotic problems, minimum time or minimum control en-
ergy are not as relevant as tip vibrations because in the
case the rotating arm is carrying a tool or other device,
getting the final position with the tool ready to use is the
most important figure. Manoeuver time may be incorpo-
rated to the Index of Performance (1 or 2 or 3 seconds,
or more) and the control efforts to move the sliders are
low. The structural problem under investigation corre-
sponds to a fast angular manouever of the arm, from 0 to
45o in 3s. A flexible arm will vibrate with large ampli-
tudes if the system is not controlled and induced vibra-
tions should be attenuated. Then, in our investigations,
the objective is to reduce arm tip displacement and ve-
locity to the smallest levels at the end of the angular ma-
noeuver to guarantee a quick start. To do this, the Index
of Performance is a combination of the weighted squares
of tip displacement and velocity in the fundamental mode
of vibration.

In the next figures the main dynamical arm param-
eters are addressed and two different IPs are simulated.
In each case, the computational scheme performed suc-
cessfully (assured numerical convergence) and 8 simula-
tion results, considering different slider initial positions,
are presented to facilitate comparisons, that is, one slider
starts motion from a fixed arbitrary point, while the other
has its initial position changed each time a new run is
initiated.

Table 1shows the main parameters of the flexible
arm.

Table 1: Physical parameters of the Optimal Control
Problem

Physical Parameters
Length of the arm L = 0,7m
Arm Thickness h = 0,001 m
Arm Width b=0.0254
Arm Mass 0,0482 kg
Arm Linear mass density ρ0 = m/L
Arm Moment of inertia Jv = ρ0 ∗ L3

3
Hub Moment of inertia Jc = 1.3510−4

Aluminum Density ρB = 27 ·10kg/m3 (Al)
Aluminum Young Modulus E = 7.1 ·1010 PA
Slider 1 mass M1 = 0.05∗m
Slider 2 mass M2 = 0.05∗m

In the first case, the sliding masses are arranged
as follows: sliding mass 1 is initially put in position
l1 = 0.3556 , and sliding body 2 has initial positions
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l2 = 0.1,0.2,0.3,0.4,0.5,0.6,0.7 for the 8 simulations.
The performance index is IP =

∫ 3
0 (4x2

1 +x2
2)dt All com-

puter simulations were run using the RIOTS (Recursive
Integration Optimal Trajectory Solver) 95 package by
(Schwartz, 1966). This software solves the OCP al-
lowing the use of 1-st, 2-nd, 3-rd and 4-th order fixed
step-size Runge-Kutta integrator and 1-st to 4-th order
splines. The optimization problem is solved with a class
of conjugate-gradient techniques or with an SQP (Se-
quential Quadratic Programming) solver. User-defined
cost and constraint functions, as well as their symbolic
derivatives, are written in C code and dynamically linked
to RIOTS. For the second case study, a small modifica-
tion in the IP is made IP=

∫ 3
0 (2x2

1 +x2
2)dt Through a rel-

atively heavier weight on the variable x2, one intends to
diminish the tip velocity during the flexible arm rotation.

The variables x1 represent the vibration of the flex-
ible arm and x2 its derivative. Thus the criterion estab-
lished intended to minimize the vibration during rotation.
The performance criteria are presented with the inten-
tion of showing the difficulties in the numerical solution.
Comparing the position of the sliding masses, figures 4
and 9, and the external action (forces and torque) applied,
figures 6 and 11, to the flexible arm makes it clear the
influence of the parameters in performance criterion to
obtain the solution.

Figure 2: Flexible Arm Motion

Figures 2 and 7 show smooth movements of the
rotating structure, as can be observed from the angular
displacements, despite high angular velocities, since the
structures start from null velocities, accelerate and ceases
motion in just 3 seconds. Arm vibrations are quite small
and movements are almost rigid ones.

In Figures 3 and 8, the tip vibrations on the end of
the flexible arm are shown. Amplitudes are quite small
when one considers the large flexibility of the structure.

Figure 3: Vibration of the end of the flexible arm

In the cases shown, the smoothness of the curve is deter-
mined by the IP system.

Figure 4: Trajectories of the sliders

Figures 4 and 9 exhibits the trajectories of the two
sliders during the manoeuver of the flexible arm. One
may observe in these simulations, a movement through-
out the flexible arm on the first half of the time interval
for the sliding mass m2. For the mass m1 , movements are
virtually the same in all the simulations, noting that this
slider moves toward the inner end of the flexible arm on
the first half of the time and returns to its original position
in the second half.

In Figures 5 and 10, the velocities of the two sliders
are presented. Note that in both cases at the end of move-
ment (T = 3s) their speeds are null, a condition that was
deliberately imposed in the simulation scheme.

In Figures 6 and 11, the external forces acting on the
flexible arm, due to the mass M1 and M2 and the external
torque on the hub are shown. Forces to move the sliders
are small and the torque is as required to perform the rigid
motion.
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Figure 5: Velocity of the sliders

Figure 6: External Forces

Figure 9: Trajectories of the sliders

Figure 7: Flexible Arm Motion

Figure 8: Vibration of the end of the flexible arm

Figure 10: Velocity of the sliders
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Figure 11: External Forces

7 FINAL COMMENTS
In this paper, we have presented a new way to reduce the
vibrations induced on a flexible structure rotating around
some axis. Vibration reduction is achieved through the
translational motion of mass sliders. The full model of
a narrow beam carrying n sliders is deduced and, in the
sequence, the equations of motion are simplified by sub-
struturing the system to make it feasible for control de-
sign. The non linear nature of the complex problem de-
mands for Optimal Control approaches to find the tra-
jectories the sliders shall perform in order to achieve the
best vibration figures. Two slightly different cases con-
sidering two sliders have been proposed and simulated
to demonstrate the feasibility of the proposed scheme.
When comparing the two examples, a small change in
the index of performance (other figures have been kept
the same) leads to significant change in only one aspect,
relative to the region where one of the sliding masses
moves, the outer or the inner edge of the flexible arm,
leading to the conclusion that the system behaves accord-
ingly, despite the complexity of the motion of each part
of the system. The authors intend to implement these and
other already published results in an experimental device,
already designed but not yet assembled, to confirm the
performance of the proposed approaches in a near future.
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