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ABSTRACT 
The MPC algorithm concept is widely used in the 
process industry, but its application in the formation 
flaying control is rare. This paper presents a MPC 
algorithm for the formation in an orbit based on the 
leader-following approach, the linear model 
implemented in the MPC algorithm is based on the 
kepler's nonlinear dynamic equation for the relative 
position. In the suggested control algorithm, a control is 
to be applied as long as the formation is moving in a 
prescribed target interval. As the formation leaves that 
interval, the formation can be left to move naturally 
after imposing the proper initial states to cause the 
formation to return back to that interval with 
approximately the required configuration.  

 
Keywords: Formation keeping, model predictive control 
(MPC), Lyapunov function 

 
1. INTRODUCTION 
Formation flying has been identified as an enabling 
technology for many of NASA’s twenty-first-century 
space and earth science missions. These missions will 
help to revolutionize our understanding of the origin, 
environment, and the evolution of planetary systems 
(Mesbahi and Hadaegh 2001). The Air Force has Also 
identified formation flying as a key technology for the 
21st century. 

According to (Lawton 2000), three principal 
approaches have been developed to coordinate 
spacecraft in formation. These are leader-following, 
behavior-based, and virtual structure. In the leader-
following (LF) approach, one vehicle is chosen to be the 
leader while the remaining vehicles are designated as 
followers. The leader is responsible for achieving the 
position and attitude goals of the formation mission 
while the followers are responsible for achieving the 
formation keeping objectives. In other words, the leader 
tracks a prescribed trajectory while the followers track 
the leader position and attitude with a prescribed offset. 

 
(Kapila, Sparks, Buffington, and Yan 1999), 

developed a control for low-earth orbit formation flying 
in a circular orbit. The Clohessy-Wiltshire (C-W) linear 
dynamic equations are used as a model for the relative 

position. These equations were originally developed in 
the context of the spacecraft rendezvous problem. A 
pulse-based, discrete time feedback control strategy is 
developed based on full state feedback control, and a 
linear quadratic regulator (LQR) approach is used to 
calculate the gains. 

(Queiroz, Kapila, and Yan 2000), proposed an 
adaptive nonlinear control for the problem of formation 
keeping and its stability was proved using Lyapunov 
approach. The full nonlinear position equations were 
used for the descriptions of the position of the leader 
and flower spacecrafts.  

(McInnes, 1995), used simple analytic commands 
to bring a loose ring of satellites into a perfect ring 
formation with uniform intersatellite spacing in a 
circular orbit. For each spacecraft, the Keplarian 
equations of motion are used. A potential function is 
constructed to maintain the relative orientation of 
spacecraft. A control law is selected such that this 
potential function is negative definite. 

(Abdelkhalik and Alberts 2004), developed a 
controller for the formation in an elliptic orbit based on 
the leader following approach. The model of the 
formation flying used for the controller is the 
Keplarian’s nonlinear dynamic equations for the relative 
position, the inverse dynamic techniques was applied 
for developing the control low for the formation flaying 
problem.   

(Manikonda, Arambel, Gopinathan, Mehra, and 
Hadaegh 1999), combined the feedback linearization 
and model predictive control (MPC) to design a 
controller for space formation keeping and attitude 
control, the model used for the purpose of designing the 
MPC controller is based on the assumption of no 
coupling between each space craft. Moreover, (Breger, 
How and Richards 2005), used Hill’s equations of 
relative motion in circular orbit that governs the 
spacecraft to remain inside a specified error box for a 
formation flying control, the model with an assumed 
noise were implemented in the MPC algorithm for a 
formation flying control. 

Formation members will, in general, naturally drift 
away from each other when moving in separate orbits. 
If they were given proper initial relative velocities that 
are corresponding to their initial relative positions then 
they will return to their initial configuration after an 
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orbital period. If formation is required to maintain 
station keeping over a certain target area then the 
formation can be controlled during this period only and 
then the formation will be driven to the appropriate 
initial states for the free flying period.  

The MPC algorithm concept is widely used in the 
process industry (Henson 1998, AbdulRahman, Mokbel 
and Soufian 2002, Rodrigues and Odloak 2000), but its 
application in the formation flaying control is rare. This 
paper presents a MPC algorithm for the formation in an 
orbit based on the leader-following approach. In the 
suggested control algorithm, a control is to be applied 
as long as the formation is moving in a prescribed target 
interval. As the formation leaves that interval, the 
formation can be left to move naturally after imposing 
the proper initial states to cause the formation to return 
back to that interval with approximately the required 
configuration. The linear model implemented in the 
MPC algorithm is the same one that is used by 
(Abdelkhalik and Alberts 2004). The performance of 
the MPC algorithm is compared with the performance 
of the nonlinear control technique based on the inverse 
dynamic to Keplarian’s nonlinear dynamics relative 
motion.   
 
2. RELATIVE ERROR DYNAMIC MODEL 

EQUATION 
As the leader satellite moves in orbit (figure 1), a 
certain desired location for the follower satellite also 
moves with some offset from the leader position. Let 

the position of the leader satellite be lr
r

, the desired 

position of the follower be desrr , and the follower 

satellite position be frr
.  The position of the desired 

position relative to the follower position is: 

fdesdf rrr rrr
−=

                                                     (1) 
This may be called the error in follower relative 
position. The desired follower position relative to the 
leader position is: 

   ldesdl rrr rrr
−=                                                    (2) 

The acceleration of the error in follower relative 
position can then be written as: 

fdllfdesdf rrrrrr &&r&&r&&r&&r&&r&&r −+=−=                          (3)     
Recall from Kepler dynamics for two body motion: 
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where ur  is the control thrust vector. By assuming that 
0=dlr&&r , this is forced by control objective. 
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Figure 1 Relative positions of satellite in an orbit 

Let x, y, and z be the components of the vector dfr&&r
 

expressed in the RSW coordinate frame as shown in 
figure 1. The center of the RSW frame is located at the 
leader satellite center, where R is a unit vector pointing 
in direction from Earth center to satellite center, S is a 
unit vector in the velocity direction normal to R, and W 
completes the orthonormal set. Then the above dynamic 
model can be linearized in a similar way to that 
mentioned in (Inalhan, Tillerson and How 2002) to 
yield: 
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According to the model given above in equation 7, the z 
dynamics are decoupled from the orbital plane 
dynamics and so can be controlled separately. In this 
deployment only the orbital plane dynamics controlled. 
 
3. MODEL PREDICTIVE CONTROL 

ALGORITHM 
The core of the MPC algorithm is the model of the 
plant, which can be in the form of a discrete state as 
follows: 

( 1) ( ( ), ( ))
( ) ( ( ), ( ))

x k f x k u k
y k h x k u k

+ = Δ
= Δ                              (8) 

 With this model form, the future output response of the 
plant can be predicted p-step ahead into the 

future ˆ( )y k l+ , where l = 1,2,……,p. The prediction 

value ˆ( )y k l+ depends on the past actuation and the 
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planned m-step ahead actuation {Δu(k+j), j =1,2, ..., m-
1, m < p}. The planned moves {Δu(k+j), j=1,2,....,m-1} 
are determined as a solution to the following 
optimization problem. 

1
2 2

1 0
( ( / )) ( ( / ))

p m
y u

i i
J e k i k u k i kγ γ

−

= =

= + + Δ +∑ ∑
                                                                                     (9) 
Where,  it can be noticed that the cost function index J 
incorporates the errors e(k+i/k) which is the difference 
between the future reference trajectory r(k+i/k) and the 

predicted output of the system ˆ( / )y k i k+ equation 10, 
the change in the actuation moves Δu(k+i/k), and the 
weighting output γy and input γu. 
                                    

                               (10) 
                                  

   
  Outside the control horizon m, the actuation moves are 
constant and their change Δu(k+i/k) = 0. The first 
element of the minimizing control sequence is 
implemented on the actual plant. Then the whole cycle 
of output measurement, prediction, and input trajectory 
determination is repeated. This procedure is repeated 
one sampling interval later with a new prediction 
horizon, control horizon and reference trajectory 
defined and new output measurement. Because the 
prediction horizon remains of the same length as for the 
previous sampling interval, but slides along by one 
sampling interval at each step, this way of control is 
called receding horizon strategy; the receding horizon 
strategy makes a closed loop control law from the 
original open loop using the actual state and output 
measurement of the plant under control.  

  The optimal control sequence depends on the current 
measurement y(k/k), the prediction horizon p, the 
control horizon m, and the weights γy and γu . One of 
the advantages of the MPC algorithm is its applicability 
to handle in straightforward way multivariable 
interactive control problems, and to extend to 
constrained control problems. 

4. LINEAR CONTROL BASED ON LYAPUNOV 
FUNCTION 

For the time variant system (LTV) in equation 7, 
assume a Laypunov function (Abdelkhalik and Alberts 
2004) of the form: 

                                                            

                                                 

                    (11)    

Substituting for acceleration  from equation 7 
yields, 

                                                           

                             

                         (12) 
Let the control be as follow: 

                                                                  

 
                                                      

  (13)                      

 
Which is negative semi-definite, the equilibrium state 
can be easily checked by setting: 

This makes 

. 
By applying the controls to the equation of motion 7, 
the closed loop system is: 

                                                                    

                                                (14)                      
                                                                     

 
5. SIMULATION RESULTS 
A simulation tool was developed based on the MPC 
Toolbox in the MatLab/Simulink environment. First, an 
open response of the system to error initial conditions 
was obtained using the linear model of the system based 
on controller gains corresponding to ωnx = ωny = 0.0005 
rad/second, and ξx = ξy = 0.65. I t can be noticed from 
figure 2 that the time for the positions and acceleration 
of the system to return back to their zero initial 
conditions is long enough. 
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Figure 2 linear system response for errors initial 

conditions 
The objective of this work is to test the ability and 
cabaplity of the linear controllers to bring the follower 
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to be in distance of 100 m in the x-dirextion and 150 in 
the y-direction from the leader. An elliptical orbit for 
the leader was selected with the following parameters 
(Abdelkhalik and Alberts 2004): semi-major axis is 
6.7781e+006 m, eccentricity 0.005 and inclination of 96 
�, the follower positon is given as the initial conditions 
for the x and y positions. 
The closed loop response of the system having  
parameters similar to those implementd in figure 2 
shows unstability to bring the system to the desired 
values. Hence the controller gains were modified to be 
ωnx = ωny = 0.003 rad/second, and ξx = ξy = 0.65. These 
parameters give a good and fast closed loop response of 
the system as shown in the following figure 3.  
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Figure 3 closed loop system response based on 

Lyapunov function 
 
The model predictive control (MPC) algorithm is 
applied to the system in the interest to get improved 
trajectroy tracking.  For the purpose of testing the MPC 
algorithm, the same formation configuration as in the 
previous controller case is used, which means 
consideing the model as time inveriant model by 
making ωnx = ωny = 0.003, using a sampling period of 1 
to make the model discrete, and do not consider 
controlling the system in z direction. Moreover, the 
output weighting matrix for the relative position in x 
and y direction has been chosen to be γy = 2 and for 
acceleration in both mentioned direction γy = 1, while 
the input weighting γu = 0.9.  in addition to the previous 
mentioned configuration and parameters, the prediction 
horizon  has been chosen p = 5 and the control horizon 
m = 2. The closed loop system response based on the 
MPC algorithm is shown in figure 4. It can be noticed 
from figure 4 that the MPC drove the system to the 
desired x and y positions in short time compared to the 
controller based on Lyapunov function and maintain 
zero error in the control interval. 
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Figure 4 closed loop system response based on MPC 

algorithm 
CONCLUSION 
This work demonstrated the feasibility of maintaining 
the formation conditions in an eccentric orbit in a 
prescribed interval. Two controllers are evaluated; a 
linear Lyapunov function type controller and model 
predictive control algorithm via simulation in the 
MatLab/Simulink environment. Both controllers show 
ability to control the formation and correct the initial 
errors. MPC takes less time to reach the desired 
positions comparing to the controller based on 
Lyapunov function, Moreover, the control gains for the 
controller based on Lyapunov function needs to be 
tuned by simulation to meet the prescribed behavior, 
and some gains may lead to instability. 
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