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ABSTRACT 
In this paper an Auto-Regressive Moving Average 
(ARMA) model based Generalized Predictive Control 
(GPC) is presented. The controller derived from this 
method will automatically contain an integrator. The 
control law is obtained by minimizing a quadratic 
objective function. An analytical solution can be found 
in the absence of constraints. The presented method can 
deal with stable, unstable and non-minimum phase 
processes. A concept of suboptimal control is 
introduced in order to reduce calculating burden and 
refine dynamic aspects of a controlled system in case of 
need. It is straightforward to achieve the double integral 
action which is required in some industrial processes. 
Furthermore, it is very easy to incorporate the terms T 
and S if it is viewed as a classical RST controller. For 
this purpose, a relationship between GPC and RST 
controllers is also presented. Some simple examples 
and numerical analyses of particular cases are given. 
 
Keywords: generalized predictive control, model 
predictive control, auto-regressive moving average, 
integral action 

 
1. INTRODUCTION 
As well known the MPC presents many advantages 
such as the availability to control a process with long 
delay times, the feasibility to handle easily the 
multivariable case and the relative simplicity to deal 
with constrained control. 

Predictive control algorithms are based on an 
assumed model of the process and on an assumed scene 
for the future control signals. From the end of 1970’s, a 
lot of predictive control algorithms were presented. 
Model Algorithmic Control (MAC) (Richalet, Rault, 
Testud, and Papon 1976, 1978), Dynamic Matrix 
Control (DMC) (Cutler and Ramaker 1980). Predictive 
Functional Control (PFC) (Richalet, Abu el Ata-Doss, 
Arber, Kuntze, Jacubash, and Schill 1987) and 
Extended Horizon Adaptive Control (EHAC) (Ydstie 
1984) are ones of them. The GPC method was proposed 
by Clarke et al. (Clarke, Mohtadi, and Tuffs 1987). It 
has been studied intensively in the industrial and 
academic circles and has been successfully 
implemented in numerous industrial applications 
(Clarke 1988). It is based on the CARIMA (Controlled 

Auto-Regressive and Integrated Moving Average) 
model. The expectation of a quadric function measuring 
the discrepancy between the predicted output and the 
predicted reference over prediction horizon plus another 
quadric function measuring control efforts is the index 
to be optimized. The optimization results a sequence of 
control signal. But only the first one is applied to the 
process to be controlled. A new sequence is calculated 
during the next sampling interval after a new 
measurement of output is obtained. This is called 
receding-horizon control. Based on the same concepts, 
the ARMA model based GPC is proposed in this paper 
as an alternative or a complement to enrich the 
goodness of the GPC.  
 
2. PROCESS MODEL 
Assume that the process dynamics are characterized by 
the local-linearized model 
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where )( 1zA and )( 1zB are polynomials in the 
backward shift operator without any common 
factors, u is the control signal, v is a disturbance acting 
on the input of the process and e is the measurement 
noise acting on the process output. 

However, when taking into account neither the 
disturbance nor the measurement noise, the model (1) 
becomes 
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3. OUTPUT PREDICTION 
One of the basic ideas of the predictive control is to 
rewrite the model of the process in order of obtaining an 
explicit expression for the output at a future time.  
 
3.1. Stable Process 
Consider the model (2)  
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h steps ahead, 
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Subtracting Eq. (3) from Eq. (4), we obtain  
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where d is the dead time, hF y ( 1) ,h d

hz G    whose 
degree is dh  y 1n respectively, are the quotient and 
remainder of the division / ,B A  namely    
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where  
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Define  
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where the first term of the right hand depends on 

,),( ku ),( dhku  the second term can be treated as 
a filter and a constant error is assumed over the 
predication horizon. That is, from Eq. (1) and (7),  
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For simplicity, the last two terms of the right hand side 
of Eq. (7)  are denoted as ),(~ kyh  which is called free 
response and the first term is called forced response for 
depending on the future control signals if .dh  Thus 
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Using the last equation for ,,,2,1 Nh  we get 
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Introduce vectors 
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where )|(ˆ khky  denotes the h step ahead output 
prediction made at the instant k and the notation 

)|( khku  denotes the control signal for instant hk   
calculated at instant k. Then Eq. (9) can be expressed as 
  
    yFuy ~               (10) 
  
where 
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is a lower triangular matrix for causality.  

 As it will be known that the controller based on the 
predictor (10) incorporate automatically an integrator. 
In case a double integrator is required in order to follow 
ramp type reference, the following predictor is needed 
to reach the purpose. 

 Multiplying both sides of Eq. (2) with the term 
11 ,z   which is a difference operator, we get  
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By a similar procedure, we will acquire a predictor for 
double integral action. 
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3.2. Integrating Process 
An integrating process can be modeled as 
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where d is dead time, 11  z is the difference 
operator as mentioned above and A is stable and well 
damped. The model can be rewritten as 
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From that we can get 
 

       )1()(
)(
)()(

1

1






kydku
zA
zBky                       (13) 

      )1()(
)(
)(

)( 1

1






hkydhku
zA
zBhky       (14) 

 
Subtracting Eq. (13) from Eq. (14), we get 
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where it is assumed that the sum 
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may be different from zero.  

 Using the identity (5) and the definition (6), 
iterating the last equation for Nh ,2,1 , we get 
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In vector form 
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where the vectors y and u are the same as the aforesaid 
and 
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So Eq. (15) can be written as Eq. (10), and the matrix F  
can be otherwise expressed as 
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where ,1,,1,0,  Nif i  are the coefficients of the 

polynomial )( 1zFh as aforementioned. 
 The controlled system will have double integral 

action for the process itself has the integrating effect. 
   
3.3. Unstable process  
Rewriting the model (2) as 
  
 )()()()( 11 dkuzBkyzA                                   (16) 
 
with A monic and denoting 1( )A z as 
  
      1

1
2

2
1

1
1 11)(   zAzazazazA n

n  
 
where n is the order of the process, Eq. (16) can thus be 
rewritten as 
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rest is the second term of the right hand side of the 
identity. Notice that in the terms i

hF and ,i
hG i is no more 

than a notation which indicates the relation between 
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them and 1 .iA B  The polynomial ),()]([ 11
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0,1,2, .i    is of degree )1)(1(  ni  and expressed in 

the backward shift operator.  
 Iterating Eq. (19) for ,,,2,1 Nh   we can get  
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The vector form is 
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where the vectors y and u are the same as the aforesaid 
and 
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 For instance, for the first order system  
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By introducing ),()1(~ kyku MHy   Eq. (20) can be 
expressed in the same form of Eq. (10). 

 The predictor developed here can be called general 
predictor, because it works not only for unstable 
processes but also for stable processes and integrating 
ones. An integrating process controlled by a controller 
based on current predictor owns the double integrating 
action for the process itself possesses integrating effect. 

 Through a similar course, we can get a predictor 
for double integral action. 

 
  )()1( kyku MHuFy   
 

It can be expressed in the form of (12) if the following 
is defined. 
 
         )()1(~ kyku MHy   
 
3.4.   Unified predictor 
Assume that the polynomial )( 1zA with degree n, can 
be factorized as 

 
  )()()( 1

0
1

2
1   zAzAzA  

 
where )( 1

2
zA contains unstable and/or poor damped 

modes and )( 1
0

zA contains stable and well damped 

modes. )( 1
0

zA and )( 1
2

zA are monic because so 

)( 1zA is. Therefore )( 1
2

zA can be expressed as 
 
 )(1)( 1

1
11

2
  zAzzA  

 
Now, the transfer function (2) can be rewritten as 
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The predictions can be expressed in condensed form as 
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where the vectors y and u are the same as the aforesaid 
and 
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After introducing ),()1(~ kyku MHy   Eq. (24) can 
be expressed in the same form of Eq. (10). 

 Notice that the predictor (24) is identical to that 
one for stable processes if ,0 AA   consequently 

12 A  and .01 A  The predictor for integrating 

processes is the case when ,1 1
2

 zA  clearly 
.11 A If ,2 AA  that means ,10 A  the general 

predictor results. 
 Analogously, a unified predictor for obtaining 

increments of control signal can be derived. 
 
  )()1( kyku MHuFy   
 

It can, of course, be expressed in the form (12) if 
corresponding definition is introduced. 

 By introducing 
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a general expression of identity can be found 
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For the last, if introduce the following notation: 
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all the above-mentioned predictors can be expressed in 
a unique form 
 
    yFwy ~               (30) 
 
4.   OBJECTIVE FUNCTION 
Different objective functions have been proposed for 
different model predictive control (MPC) algorithms. 
But the aim is basically the same. The distance between 
the future output and the reference and the control 
efforts are penalized. The general expression for such 
an objective function is 
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where 1N and 2N are the minimum and maximum 
prediction horizons and uN is the control horizon. )(i  
and )( j are coefficients whose elections depend on 
pretension to future behavior of the system. The 
signal r is the reference. 

 One of the advantages of predictive control is that 
the system can react before the change has effectively 
been made if the future evolution of the reference is 
known a priori. That, consequently, avoids the effect of 
delay in the process response.  

 It is needed to redefine the objective function in 
order to obtain an optimal sequence of increments of 
control signal. 
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 A reference trajectory is frequently used in the 

objective functions (31) and (32): 
 
     )()( kykym    

)()1()1()( hkrhkyhky mm      Nh ,,1  
  

where is a parameter of design and takes the value 
between zero and one, the closer to unity the smoother 
the approximation. 

 In this paper )( j constant, j  and ,,1)( ii   
are adopted for the sake of simplicity, unless otherwise 
indicated. 
 

5. CONTROL LAW 
The aim of the MPC is that the future output on 
considered horizon should follow a determined 
reference signal but the control effort is taken into 
account too. Thus the objective function should be 
minimized. The product of the minimization is the 
control law. Namely, the objective function will be 
minimized by using the resultant control law. For this 
purpose, the following are introduced. 
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hence   
  Tkk )]1()([  uuu  
 
Assume 11 N without any loss of generality. The cost 
function (31) can be written as 
  
   uuryry T )()(),,1( 2

T
uNNJ  

        ]~)([]~)([ ryFuryFu  kk T  
           )]1()([)]1()([  kkkk T uuuu  
 

where Eq. (10) is used as a general case. Minimizing 
the cost function with respect to ),(ku we get 
  
     )]1()~([)()( 1   kk TT uyrFIFFu               (33) 
 
The first element )(ku of vector )(ku is applied to the 
process. The control law is calculated again when a new 
measurement is obtained at the next sampling instant. 
Thus, the receding-horizon control concept is used. 

 The control law (33) incorporates implicitly the 
integral action. This will be proved below. It is time 
invariant if the process to be controlled is time 
invariant. 

 A matrix of dimension NN  has to be inverted in 
the calculation of the control law, where N is the 
prediction horizon. It is possible to introduce 
constraints on the future control signal in order to 
decrease the computations. Assume, for example, that 
the control signals are constant after uN steps, 
with ,NNu   

  
    )()1()( NkuNkuNku uu    
  

This implies that the control increments are assumed to 
be zeros after uN steps. The control law (33) should be 
modified to 
  
    )]1()~([)()( 1

1
11   kk TT uyrFIFFu   
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where 1F is a uNN  matrix. Therefore, the matrix to be 
inverted is now uu NN  dimensions. For instance, 
applying mentioned assumption, the matrix described in 
Eq. (11) will be  
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 By an analogous procedure and with the predictor 

(12), we can get an optimal sequence of increments of 
the control signal for double integral action. 

 
)]1()~([)()( 1   kk TT uyrFIFFu      (34) 

 
The control law can be expressed as 
 

  
( ) [ ( ) ( 1)]

( ) ( 1) ( )

Tu k k
u k u k u k

     
   

L F r y u
             (35) 

 
where L is the first row of the matrix 1( ) .T  F F I  

 Now let us demonstrate one of the properties of the 
controller (33). Firstly we introduce a definition.  
 DEFINITION   1   Estimation of Output 
The vector given by yFuy ~)1(ˆ  k is a estimation of 
the vector given by yFuy ~)(  k with the available data 
at instant k before calculating ),(ku because )1( ku is 
obtained before instant k and y~ is obtained at instant k. 
 THEOREM   1   Integral Action 
The control law (33) derived by means of minimizing 
the cost function (31) possesses the integral action. 

 Proof:   Assume 11  dN without any loss of 
generality. The control law can be rewritten as 

  
)~()1()()( yrFuuIFF  TT kk             

  
Subtracting the term )1( kTFuF on both sides of the last 
equation, using the definition and gathering the terms, 
we get 
  
  )ˆ()]1()()[( yrFuuIFF  TT kk  
 
Thus  
 
  )ˆ()()1()( 1 yrFIFFuu   TTkk   
 
In words, the control law (33) has the integral action. □ 
  

It deserves to be mentioned that a controlled system 
will have offset in steady-state if u instead of u is 
penalized. But it is an alternative penalizing u when a 
regulator is wanted. 

Now let us introduce the suboptimal concept. 
When replacing the vector )],1([)1(  kuk hu  

,,,1 Nh    with 1( 1),u k 1  where [1 1 1]T1   
an 1N  vector, in the calculating of the control signal, a 
suboptimal controller is obtained. The suboptimal 
concept can be used to reduce computation burden and 
overshoot. For example, the process )1/(1)(  ssG is 
controlled by a controller with following parameters 

1,8  uNN and .1.0  Its step response is drawn 
in Fig.1 (blue trajectory). Assume a quicker recovery 
from disturbance is required. It can be reached with 
larger .uN The red trajectory (left drawing of Fig.1) is 
resulted when .5uN Larger uN means larger burden 
of computation. But it can be reduced by using the 
suboptimal concept as above-mentioned. The result is 
plotted in the left drawing of Fig. 1 (dashed). Notice 
that the dashed one and the red one are very similar. 
Here the reference trajectory which was mentioned in 
Section IV is used to lower the overshoots. However, 
the suboptimal concept can also be used to change other 
dynamic aspects of a controlled system. Fig.1 (right) 
depicted the result of using it to cut down the overshoot 
of the same process given above. After applying the 
suboptimal concept, the dashed trajectory is gotten.  
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Figure1. Step Responses of the System.  The Left: 

1uN  (blue), 5uN  (red) and 2uN  (Dashed). A 
Load Disturbance Is Introduced at Time 6. The Right: 
Results of Applying the Suboptimal Concept to Reduce 
Overshoot.  

 
 In order to demonstrate the double integral action 

of the control law (35), the following definition is 
introduced. 

 DEFINITION   2   Estimation of Output 
The vector given by yuFy ~)1(ˆ  k is a estimation of 
the vector given by yuFy ~)(  k with the available 
data at instant ,k because )1( ku  is obtained before 
instant k and y~ is obtained at instant k.  

 THEOREM   2   Double Integral Action 
The control law (35) derived by means of minimizing 
the cost function (32) possesses the double integral 
action. 

 Proof:   Assume 11  dN without any loss of 
generality. Eq. (34) can be rewritten as 
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 )~()1()()( yrFuuIFF  TT kk   
 
Subtracting the term )1(  kT uFF on both sides of the 
last equation and manipulating algebraically, we get  
 
 )ˆ()()1()( 1 yrFIFFuu   TTkk   
 
where yuFy ~)1(ˆ  k as defined. Thus the sequence 

u  is obtained by means of integrating. That signifies 
the increment )(ku is given by integration. And 
another integral action is given by 
 
  )()1()( kukuku   
 
Therefore the double integral action of the control law 
(35) is revealed. □  

 Previous theorems are illustrated with some simple 
examples. All of them are the particular case with 
following assumptions: constant future control, namely 

),()( kuiku   ,,,2,1 hi  there is no constraint on 
the control effort and it is desired that 

( ) ( ),y k h r k h   where h is the prediction horizon. In 
other words this is the case when 1,uN   0  and 

( ) 0,i   1,2, , 1i h   but ( ) 1.h    
 Example 1. Consider a first order process 
  
  ( ) ( 1) ( 1)y k ay k bu k     
 

If it is open-loop stable and well damped, we can use 
the predictor (10) for stable process case. After 
algebraic manipulations, we obtain the control law  
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We can also use the predictor for unstable process case 
to obtain the control law no matter whether the process 
may be stable or not. 
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 Example 2.  Consider the same process of 

Example 1 and assume it is open-loop stable and well 
damped. It is desired that the output of the process can 
follow a mixed trajectory composed of steps and ramps. 
So the double integral action is needed. Using the 
predictor (12) and manipulating algebraically, we will 
finally get 

 
    1( ) ( 1) [ ( ) ( 1 ) ( )]u k u k r k h h hz y k           
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 Example 3.  Consider an integrating process 
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with the pole p a  in the unit disc and well damped. 
Using the corresponding predictor, we can get the 
following control law through same manipulations. 
  
         1( ) ( 1) [ ( ) ( 1 ) ( )]u k u k r k h h hz y k         
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6. STABILITY AND ROBUSNESS  
No Mathematic model is able to describe exactly a 
physical process. Some approximations are always 
made. However, it is desired that the controlled system 
should be insensitive to those uncertainties in the 
model. 

 In the absence of theoretical results, some 
numerical analyses are presented.  

 Let dN 1 and assume the transport delays are 
multiple of the sampling time for all cases. Only a few 
types of uncertainties are considered here. 

 Case 1. Consider a stable process  
 

    se
as
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
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)(
)(  

 
with nominal values 2a and ,5.0b  which is 
sampled with sampling time 0.1 seconds, so the discrete 
nominal plant is 

  
 )(0453.0)1(8187.0)( dkukyky   
  
The nominal system is stable for all ,dN   and 

.11  dNNu   
 The simulations with 1,01  uNNN  and 

1.0  show the followings. 

 1. Uncertainty at the pole: When ,1d the system 
is stable for .01.0a That is to say an 
uncertainty of about %5.99  is permitted. 
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When ,10d  the system keeps stable 
for .6.0a That means an uncertainty of about 
 70% is permitted. Fig. 2 is step responses 
and Nyquist diagrams. 

 2. Uncertainty of the gain: When ,1d the 
system dose not loss stability for 

.8001.0  b Namely a variation about %98  
is allowed. When ,10d  the system is stable 
for .6.101.0  b  That is a variation about 

%98 is allowed. See Fig. 2. 
 3.  Unmodelled pole: Assume that the real process 

has another pole 2 but its static gain 
maintains the same in spite of the existence of 
another pole. When ,1d  the system is stable 
for .1.0  When ,10d  the system is also 
stable for .1.0  Fig. 3 shows step responses 
of the controlled system and Nyquist diagrams 
when the real process has a less dominant 
pole .10  

 4.  Uncertainty at the delay: When ,1d   an error 
of 12 units is tolerated. When ,10d  an error 
of 19 units is tolerated and for all the possible 
negative values of delay mismatch, from 1  
to ,9 the controlled system does not lose 
stability. See Fig. 4. 
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Figure 2. Responses of the Nominal System to Step Type 
Reference and Load Disturbance (Left), and Nyquist 
Diagrams (Right) when 1d  (Blue) and 10d (Red).  
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Figure 3. Responses of the System to Step Type 
Reference and Load Disturbance (Left), and Nyquist 
Diagrams (Right) with Unmodelled Mode when 1d  
(Blue Trajectory) and 10d  (Red Trajectory).  
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Figure 4. Step Responses of the Controlled System 
under the Uncertainty at the Delay, when 1d  
(Above) and 10d  (Middle and Below). Only Those 
with Even Numbers of Delay Units Are Depicted for 
Clarity. 

 Case 2. Consider a stable second order process 
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with nominal values 5.0 and 1 rad/s, which 
means the process has poles at .8660.05.0 j  It is 
sampled with sampling time 0.1 seconds. 
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 The nominal system is stable for 01  NN  and 

.41  NN The simulations with 1,71  uNNN  
and 1.0  obtain the following results. 

 1. Uncertainty of the damping: When ,1d the 
system is stable for .1001.0   That is to 
say an uncertainty of about %98  is 
permitted. When ,10d  the system keeps 
stable for .102.0    That means an 
uncertainty of about  30% is permitted. Fig. 
5 is the step responses of the controlled 
nominal process and the correspondent 
Nyquist diagrams. 

 2. Uncertainty of the nature frequency: When 
,1d the system does not lose stability 

for .5.245.0    Namely a variation about 
%55 is allowed. When ,10d  the system is 

stable for .35.15.0   That is a variation 
about %35 is allowed. See Fig. 5. 

 3.  Unmodelled pole: Assume that the real process 
has another pole 5.0 but its static gain 
maintains the same in spite of the existence of 
another pole. When ,1d  the system is stable 
for .3.0  When ,10d the system is also 
stable for .3.0  Fig. 6 shows the step 
responses and the Nyquist diagrams when the 
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real process has a less dominant pole .10 If 
the real process has a couple of conjugated 
complex  poles  8660.05.0 j  is assumed, 
the controlled system is stable, for example, 
for 1,3   or for 5,1    when ,1d  
and for 1,5.1   or 2,1    when 

.10d A drawing similar to Fig. 6 can be 
obtained under the assumption that the real 
process has another less dominant couple of 
poles .660.810 j  

 4.  Uncertainty at the delay: When ,1d   an error 
of 6 units is tolerated. When ,10d  an error of 
14 units is tolerated and for all the possible 
negative values of delay mismatch, from 1  
to ,9 the controlled system remains stable. 
See Fig. 7. 
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Figure 5. Responses of Nominal System to Step Type 
Reference and Load Disturbance (Left), and Nyquist 
Diagrams (Right) when 1d  (Blue) and 10d (Red).  
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(Right) of the System with Unmodelled Mode 
when 1d  (Blue) and 10d (Red).  
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 Case 3. Consider a second order integrating 
process 
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with nominal values .2a It is sampled with sampling 
time 0.1 seconds. 

 

)(
)8187.01)(1(

0088.00094.0)(
21

1
dku

zz
zky 










 

  
The nominal system is stable for 4N  and 1uN  
when .1d It is stable for 10N  and 1uN  
when .10d  For this particular case, the controlled 
system is not always stable for .1 dNNu The 
simulations with 1,71  uNNN and 1.0  when 

1d and with  1,321  uNNN  and 1.0  when 
10d show the followings. 

 1. Uncertainty of the parameter a : When ,1d  
the system is stable for .2001.0  a That is 
to say an uncertainty of about %98  is 
permitted. When ,10d  the system maintains 
stability for .209.0  a That means an 
uncertainty of about  55% is permitted. Fig. 
8 is the step responses of the controlled 
nominal process and the correspondent 
Nyquist diagrams. 

 2.  Unmodelled pole: Assume that the real process 
has another pole 2 but its static gain 
maintains the same in spite of the existence of 
another pole. When ,1d  the system is stable 
for .4.2  When ,10d the system is stable 
for .5.3  Fig. 9 shows the step responses 
and the Nyquist diagrams when the real 
process has a less dominant pole 10  or .20  

  4.  Delay uncertainty: When ,1d   an error of 2 
units is tolerated and up to 4 is tolerated when 

.18N When ,10d  an error of 6 units is 
tolerated and up to 10 units is tolerated 
when .50N And for all the possible negative 
values of delay mismatch, from 1  to ,9 the 
controlled system preserves stability. See Fig. 
10. It is noticed that the tolerance is dependent 
on prediction horizon. 
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Figure 8. Responses of the Nominal System to Step 
Type Reference and Load Disturbance (Left), and 
Nyquist Diagrams (Right) when 1d (Blue  Trajectory) 
and 10d (Red Trajectory). 
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Figure 9. Responses of the Controlled System to Step 
Type Reference and Load Disturbance (Left), and 
Nyquist Diagrams (Right) with Unmodelled Mode 
when 1d  (Blue Trajectory) and 10d (Red 
Trajectory) and when 10  (Superior) and 

5 (Inferior). 
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 Three numerical analyses of controlled systems 

have been given. Those controllers were based on the 
predictors for stable processes or for integrating 
processes. In the following the controller based on the 
predictor for unstable processes will be used in order to 
compare the proposed controller with that based on the 
CARIMA model.  

 The CARIMA model is 
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where e is a white noise. The comparisons will de made 
under the conditions 1)( 1 zC for the CARIMA 

model, and 1)(,1)( 1
1

1
1   zTzS (see Section VII for 

the definitions) for the ARMA model.  
 The process to be controlled is a stable one. 
 
  )1()1()( dbukayky   
 

For the range of variation of the parameters: 
98.01.0  a and the possible values of gain with 

which the controlled system keeps stable. The 
numerical results show that no difference, in respect of 
tracking a reference and rejecting disturbances, can be 
observed between the controller based on the predictor 
for unstable processes and that based on CARIMA 
model when .1d However, when ,10d the pole is 
big ,98.0a  and the process gain is 5, the system 
controlled by controller based on predictor for unstable 
processes can tolerate a delay estimation error of 7 
units. See Fig. 10. Nevertheless, for a delay of 10 units 
a delay mismatch of one unit is permitted by the 
controller based on CARIMA model (Camacho, 
Bordons, 2007).  
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7. A CLASSICAL POINT OF VIEW  
The terms T and R can be incorporated when the 
controller (33) or (35) is viewed as a classical 
controller, 

 
 1 1 1( ) ( ) ( ) ( ) ( ) ( )R z u k T z r k S z y k                         (36) 
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with 1 1(1) / (1) 1S T  for avoiding static error, and 
factorize A as 02 AAA  and use  the identity (28) in 
order to get a general sense result. Thereby the model 
(2) can be rewritten as 
  

 )(
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where w is defined as (29).  

 By a similar way to that in Section II, we can get a 
predictor with the form of Eq. (30). It can be also 
expressed in the form of Eq. (19), 
 

)()1( kykuy ff MHFu                   (38) 
 

where F has the same form of (25), replacing the 
polynomials ,1T B and 1A of the Eq. (26) and (27) 
with ,10TA 1BS and ,IA respectively, we can get the new  
matrixes H and M for Eq. (38). 

 Let [ ], 1,2, ,i i N    be the first row of the 
matrix 1( )T T F F I F and [1 1 1]T1   an 1N   
vector, where N is the prediction horizon.  

 Eq. (33) and (34) can be expressed as 
 
 )]1()~([)()( 1   kk TT wyrFIFFw   
  

It is equivalent to 
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because the receding-horizon concept is used. 
Subtracting )1( kwT F1F from both sides of the last 
equation and manipulating algebraically, we get 
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However, only the first element of the vector is used, 
therefore the following results. 
  
 )]1(~[)()1( 1   kwkwz F1yr           
 
Assume 11 N without any loss of generality and 
consider that the future reference keeps constant along 
the horizon or its evolution is unknown. That 
is .),()( hkwhkw   By means of algebraic 
manipulations, we can get 
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where lP  denotes a polynomial of degree l. The second 
equality is obtained for the fact that a polynomial 
1 ,mz m integers, has always a factor 11 z is used 
(De Moivre’s theorem). Thus compare the third 
equation from the bottom with Eq. (36), we get 
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The controlled system is, according to the model (1), 
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where AAA 20 as foresaid. By resolving Eq. (39) for 

yx,  and ,u we will get the characteristic equation.  
 
    0  BSzAR d  
  
A proper selection of the term or filter 1T  can improve 
the robustness. Signals with certain frequencies can be 
suppressed by requiring that the polynomial 1( )S z  
vanishes at corresponding values of z. There is no 
steady-state error when the load disturbance is a step 
for the existence of an integrator. That is (1) 0.R   Due 
to the latter, the present section can be regarded as 
another proof of Theorem 1.  

 Notice that the obtained controller is dependent on 
prediction horizon and on delay as well if 1.d  It is not 
obvious whether there is virtue for this distinguishing 
feature. Simulations show that a small N is enough to 
stabilize a system and that the sensitivity of a controlled 
system is closely related to prediction horizon. 
   
8. CONCLUSION 
According to simulations, the ARMA model based 
GPC presented here can deal with a great variety of 
processes, stable and unstable ones as well as those of 
nonminimum phase. The predictor formulated for 
unstable process can be also used for stable ones as well 
as for integrating ones. However, there is difference 
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with respect to the dynamic response of the controlled 
system to disturbances and to uncertainties when 
different predictor is used. To say roughly, a system 
controlled by a controller based on the predictor for 
unstable processes is less robust but more rapid to 
recover from a disturbance. The derived relationship 
between GPC and RST controllers indicates how to 
improve the controller if it is needed. There are 
potential applications of proposed controllers in the 
case of poor estimation of process delays. All the 
matrixes involved HF, and ,M can be calculated 
recursively.  Present method presents difficulties when 
it is used to control unstable and simultaneously 
nonminimum phase processes. Some of them can be 
controlled with large N  and 2.uN    
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