
NEURAL NETWORK SIMULATION OF SIMPLE BIOLOGICAL SYSTEMS 
INCLUDING OPTIMAL CONTROL PROBLEMS 

 
 

Tibor Kmet(a), Maria Kmetova(b) 
 
 

(a)Constantine the Philosopher University in Nitra, Department of Informatics, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia 
(b)Constantine the Philosopher University in Nitra, Department of Mathematics, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia 

 
(a)tkmet@ukf.sk, (b)mkmetova@ukf.sk 

 
 
 
 

ABSTRACT 
The mechanistic model of the phytoplankton 
photosynthesis-light intensity relationship and nitrogen 
transformation cycle are investigated. Assuming that 
phytoplankton regulates its photosynthetic production 
rate with certain strategy which maximizes 
photosynthetic and biomass production, respectively 
two such possible strategies were examined using a 
neural network based optimal control synthesis for 
solving fixed and free final time optimal control 
problems with control and state constraints. The optimal 
control problem is transcribed into nonlinear 
programming problem which is implemented with 
adaptive critic neural network. Results show that 
adaptive critic based systematic approach holds promise 
for obtaining the fixed and free final time optimal 
control with control and state constraints. 

 
Keywords: optimal control problem, state and control 
constraints, free terminal time, neural network 
simulation, phytoplankton photosynthesis, nitrogen 
transformation cycle, optimal photosynthetic production 

 
1. INTRODUCTION 
Optimal control of nonlinear systems is one of the most 
active subjects in control theory. There is rarely an 
analytical solution although several numerical 
computation approaches have been proposed (for 
example, see (Kirk, 1989), (Polak, 1997). The most of 
the literature dealing with numerical methods for the 
solution of general optimal control problems focuses on 
algorithms for solving discretized problems. The basic 
idea of these methods is to apply nonlinear 
programming techniques to the resulting finite 
dimensional optimization problem (Buskens, Maurer, 
2000). When Euler integration methods are used, the 
recursive structure of the resulting discrete time 
dynamic can be exploited in computing first-order 
necessary condition.  

In the recent years the neural networks are used for 
obtaining numerical solutions to optimal control 
problem (Padhi, Unnikrishnan, Wang, and 
Balakrishnan, 2001), (Padhi, Balakrishnan and 
Randoltph, 2006). For the network, a feed forward 
network with one hidden layer, a steepest descent error 

backpropagation rule, a hyperbolic tangent sigmoid 
transfer function and a linear transfer function were 
used.  

The paper presented extends adaptive critic neural 
network architecture proposed by Padhi, Unnikrishnan, 
Wang and Balakrishnan (2001) to the optimal control 
problems with control and state constraints. The 
organization of the paper is as follows. In Section 2 
optimal control problems with control and state 
constraints are being introduced. We summarize 
necessary optimality conditions and give a short 
overview on basic result including iterative numerical 
methods and discussed discretization methods for given 
optimal control problem and a form of resulting 
nonlinear programming problems. Section 3 presented a 
short description of adaptive critic neural network 
synthesis for optimal problem with state and control 
constraints. Section 4 consists of a mechanistic model 
of phytoplankton photosynthesis. We prove the 
existence of unique globally asymptotically stable 
equilibrium depending on light intensity. Using optimal 
control theory we maximize photosynthetic production 
rate for fixed and free final time.  Section 5 presented a 
nitrogen transformation cycle.  We investigate a 
preferential utilization of nitrogen compounds by 
phytoplankton using adaptive critic neural network. We 
examine short and long-term strategy of utilization. 
Conclusions are being presented in Section 6. 

 
2. OPTIMAL CONTROL PROBLEM 
We consider nonlinear control problem subject to 
control and state constraints. Let x(t) ∈ R

n
 denote the 

state of a system and u(t) ∈ R
m
 the control in a given 

time interval [t0, tf ].  
Optimal control problem is to minimize 

 (   )   ( (  ))  ∫   ( ( )  ( ))            ( )
  

  

 

subject to  
 
 ̇( )    ( ( )  ( ))  

 
 (  )       

 
 ( (  ))      
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 ( ( )  ( ))        ∈ [     ]  
   

The functions             
      

                     and             
    are assumed to be sufficiently smooth on 
appropriate open sets. The theory of necessary 
conditions for optimal control problem of form (1) is 
well developed  (Kirk, 1989), (Pontryagin, Boltyanskii, 
Gamkrelidze and Mischenko, 1983). 

We introduce an additional state variable 
 

  ( )    ∫   ( ( )  ( ))  
 

 

 

 
defined by the  
 
 ̇( )     ( ( )  ( ))   ( )     
Then the augmented Hamiltonian function for problem 
(1) is 
 

 (       )   ∑     (   )  ∑     (   ) 

 

   

 

   

         ( ) 

 
where   ∈      is the adjoint variable and  ∈    is a 
multiplier associated to the inequality constraints. Let 
( ̂  ̂) be an optimal solution for (1) then the necessary 
condition for (1) (Kirk, 1989), (Pontryagin, Boltyanskij, 
Gamkrelidze and Mischenko,1983)  implies that there 
exist a piecewise continuous and piecewise 
continuously differentiable adjoint function   [     ]  

    ( )    and a multiplier  ∈    satisfying 
 

  ̇( )    
  

   

( ̂( )  ( )  ( )  ̂( )) 

 
  (  )      

( ̂(  ))       
( ̂(  ))           ( ) 

 
  ̇( )     

 

   
  

  
( ̂( )  ( )  ( )  ̂( ))  

 
For free terminal time tf , an additional condition needs 
to be satisfied: 
 

 (  )  (∑    (   )  ∑    (   ))

 

   

 

   

 
  

    

 
Furthermore, the complementary conditions hold 

i.e. in  ∈ [     ]      (   )    and    (   )  

    Herein, the subscript x or u denotes the partial 
derivative with respect to x or u. 
 

2.1. Discretization of optimal control problem 
Direct optimization methods for solving the optimal 
control problem are based on a suitable discretization of 
(1). Choose a natural number N and let   ∈ [     ]   

       , be an equidistant mesh point with    
              , where h is time step and    

     . Let the vectors   ∈        ∈      
     , be approximation of state variable and control 
variable x(ti), u(ti), respectively at the mesh point. 
Euler´s approximation applied to the differential 
equations yields 

 
           (     )            

 
Choosing the optimal variable 

   (                      ) ∈        
(     ) , the optimal control problem is replaced 
by the following discretized control problem in the form 
of nonlinear programming problem with inequality 
constraints: 
     ( )    (  )  

 
where 
 
 (  )   ((       )    )    

                                ( ) 
 

subject to   
 
           (     )     

 
    (  )  

 
 (  )      

 
 (     )                  

 
In a discrete-time formulation we want to find an 

admissible control which minimizes object function (4). 
Let us introduce the Lagrangian function for the 
nonlinear optimization problem (4): 

 

 (         )  ∑     (     

   

   

     (     ))   

  (     )  ∑    (     )    (     ) 

   

   

            ( ) 

 
and define H(i) and  as a follows: 
 
 ( )   (   )(     (     )  
        
 

The first order optimality conditions of Karush-
Kuhn-Tucker (Polak, 1997) for the problem (4) are: 

 
     (       )

              (     )     

      (     )               ( ) 
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     (       )

    (  )      (     )    ( ) 
 

     (       )          (     )      (     )    
                                                                            ( ) 

    (       )     ∑   ( )

   

   

 ∑     (     )

   

   

                             ( ) 

 
Eq. (6-9) represents the discrete version of 

necessary condition (3) for optimal control problem (1). 
 
3. ADAPTIVE CRITIC NEURAL NETWORK 

FOR OPTIMAL CONTROL PROBLEM 
WITH CONTROL AND STATE 
CONSTRAINTS AND FREE TERMINAL 
CONDITION 

It is well known that a neural network can be used to 
approximate smooth time-invariant functions and 
uniformly time-varying function (Hornik, Stichcombe 
and White, 1989), (Sandberg, 1998). Neurons are 
grouped into distinct layers and interconnected 
according to a given architecture (Figure 1). Each 
connection between two neurons has a weight 
coefficient attached to it. The standard network 
structure for an approximation function is the multiple-
layer perceptron (or feed forward network). The feed 
forward network often has one or more hidden layers of 
sigmoid neurons followed by an output layer of linear 
neurons. 
 

 
Figure 1: Feed Forward Neural Network Topology with 
One Hidden Layer (vji; wkj are values of connection 
weights, vj0; wk0 are values of bias) 
 
Figure 1 shows a feed forward neural network with ni 

inputs nodes one layer of   nhl hidden units and no output 
units. Let                   

  and 

                 
  be the input and output vectors 

of the network, respectively. Let   [         
] be 

the matrix of synaptic weights between the input nodes 
and the hidden units, where                   

  and 
    is the bias of the jth hidden unit.  

 

Let also   [        
] be the matrix of synaptic 

weights between the hidden and output units, where 
                  

   and     is the bias of the 
kth output unit,     is the weight that connects the jth 
hidden units to the kth output unit. 
The response of the jth hidden unit is given by 
 

        (∑       ) 

  

   

 

 
where     ( ) is the activation function for the hidden 
units. The response of the kth output unit is given by 
 

     ∑       

   

   

 

 
Multiple layers of neurons with nonlinear transfer 
functions allow the network to learn nonlinear and 
linear relationships between input and output vectors. 
The number of neurons in the input and output layers is 
given, respectively, by the number of input and output 
variables in the process under investigation. 
 

 
Figure 2: Architecture of Adaptive Critic Network 
Synthesis 
 
The multi-layered feed forward network shown in 
Figure 2 is training using the steepest descent error 
backpropagation rule. Basically, it is a gradient descent, 
parallel distributed optimization technique to minimise 
the error between the network and the target output 
(Rumelhart, Hinton and Wiliams, 1987). 
 In the Pontryagin’s maximum principle for deriving 
an optimal control law, the interdependence of the state, 
costate and control dynamics is made clear. Indeed, the 
optimal control  ̂ and multiplier  ̂ is given by Eq. (8), 
while the costate Eqs. (6-7) evolves backward in time 
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and depends on the state and control. The adaptive critic 
neural network is based on this relationship. It consists 
of two networks at each node: an action network the 
inputs of which are the current states and outputs are the 
corresponding control  ̂ and multiplier  ̂, and the critic 

network for which the current states are inputs and 
current costates are outputs for normalizing the inputs 
and targets (zero mean and standard deviations). For 
detail explanation see (Rumelhart, Hinton and Wiliams, 
1987), (Kmet, 2011). 
 From free terminal condition (ψ(x) ≡ 0) and from 
Eqs. (6-7) we obtain that   

     for i =N,…,0 and 
  

     for  j = 1,…, n. We use this observation before 
proceeding to the actual training of the adaptive critic 
neural network. The steps for training the action 
network are as follows: 
1)     Generate set S. For all xk

  S, 
   follow the steps below: 
(1.i)  Input xk

 to the action network to obtain 
    u

k;a
 and k;a. 

(1.ii) Using xk
 and uk;a

 solve state 
    equation (4) to get xk+1. 
(1.iii) Input xk+1 to the critic network 
    to obtain k+1. 
(1.iv) Using xk

 and k+1 solve (8) 
    to calculate uk;t

 and k;t. 
 
When 

‖(         )  (         )‖   ‖(         )‖       

the convergence criterion for the action network 
training is met.  
 The training procedure for the critic network which 
expresses the relation between xk  and k

 is as follows: 

1)     Generate set S. For all xk
  S, 

   follow the steps below: 
(1.i)  Input xk

 to the action network to obtain 
    u

k;a
 and k;a. 

(1.ii) Using xk
 and uk;a

 solve state 
    equation (4) to get xk+1. 
(1.iii) Input xk+1 to the critic network 
    to obtain k+1. 
(1.iv) Using xk

 , uk,a, k,a and k+1 solve (6) 
    to calculate k,t . 
(1.v)   Input xk to the critic network 
    to obtain k,c. 
 
When 

 
‖         )‖   ‖    ‖       
 
the convergence criterion for the action network 
training is met.  
Further discussion and detail explanation of this 
adaptive critic method can be found in (Hornik, 
Stichcombe, White, 1989), (Padhi, Unnikrishnan, Wang 
and Balakrishnan, 2001), (Padhi,  Balakrishnan and 
Randoltph, 2006), (Werbos, 1992),. 

 
4. A MECHANISTIC MODEL OF 

PHYTOPLANKTON PHOTOSYNTHESIS 
Mathematical models of photosynthesis in bioreactors 
are important for both basic science and the bioprocess 
industry (Garcia-Camacho et al., 2012). There is a class 
of models based on the concept of the “photosynthetic 

factories” developed by Eilers and Peeters (1988). The 
dynamic behaviour of the model has also been 
discussed in (Eilers and Peeters, 1993), (Kmet, 
Straskraba and Mauersberger 1996), (Papacek, 
Celikovsky, Rehak and Stys, 2010),  (Wu and Merchuk, 
2001) Assuming that phytoplankton regulates its 
photosynthetic production rate with a certain strategy 
which maximize production, two such possible 
strategies is examined, i.e. instantaneous and the  
integral maximal production.  

 
4.1. Description of the Model 
Basic for the following consideration is the mechanistic 
model of phytoplankton photosynthesis. It is based on 
unit processes concerning the cellular reaction centres 
called photo-synthetic-factories - PSF. It is known from 
algal physiology (Eilers, Peeters, 1988) that three states 
of a PSF are possible:   - resting,    - activated and    
- inhibited. Transitions between states depend both on 
light intensity and time. The probabilities of the PSF 
being in the state   ,    or   , are given as   ,    and 
  , respectively. Transitions between states can be 
expressed as follows: 
 
 ̇                                                               (  ) 
 ̇       (    )   
 ̇            
 
 The parameters       and   occurring in this 
model are positive constants and   is a light intensity. 

Let  (    ) be a solution of (10) with the initial 
condition  (    )    , where   

    
    

   . 
Note that solutions of the system (10) exist for all   
 . By adding up the right-hand side of (10) we get 

 
 ̇   ̇   ̇     
 
i.e. ∑   (   

 )    
    for all       Of course these 

equations are considered in 
 
  { ∈   

            }  
 
4.2. Global behaviour under constant condition 
 
Proposition.  Let parameters         and   be positive, 

then there exists an unique positive equilibrium  ̅ which 

is globally asymptotically stable on  . 
Proof: Vector  ̅ is the solution of the following linear 
equation system: 

 

 (

  

  

  

)  (
 
 
 
)                                                                 (  ) 
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where 

  (

     
        
     

)   

 
Let us consider the matrix          where 
     |   | and   is the unit matrix.   is an 
irreducible nonnegative matrix and so the apparatus of 
the Perron-Frobenius theory of a nonnegative matrix 
applies. Since       , also        , where   
denotes the unit vector. By the Perron- Frobenius theory 
there is a unique positive right eigenvector   associated 
with the eigenvalue   and we can normalize to get 

 
 ̅  

  
∑   

 
   

⁄   

 
Since (      ) ̅      ̅  then   ̅     and  ̅     . By 
the Perron-Frobenius theorem we get, (see Akin (1979) 
that the matrix   is a stable matrix on    i.e.   has one 
zero eigenvalue and the other eigenvalues have negative 
real parts. This proves the statement of the proposition. 
It follows that system (10) has a unique positive 
equilibrium  ̅ with entries 

 

 ̅ ( )  
        

 
                                                       (  ) 

 ̅ ( )   
   

 
 

 ̅ ( )  
    

 
  

 
where             (     )         

 
The simplex   is positively invariant. System (10) for 
all     has a unique positive equilibrium  ̅( ) with 
entries given by (12). 
The equilibrium  ̅( ) is globally asymptotically stable 
on  , that means for fixed light intensity   all solutions 
with initial condition  ( )  ∈    converge to  ̅( )  
 
4.3. Optimization of Photosynthetic Production 
Let us assume that phytoplankton regulates its 
photosynthetic production rate (FP) with a certain 
strategy which maximizes production. The rate of the 
photosynthetic production FP is proportional to the 
number of transitions from    to   . Let us investigate 
the optimal values of light intensity  ( ), for which the 
photosynthetic production         ( ) is maximal  
under constraints   ∈              
We will examine two strategies: 
1. Instantaneous maximal photosynthetic 
production with respect to    (local optimality), i.e. 
 

 ̇     (     )         
 

for all    under the constraints  ∈               
2. Integral maximal biomass (global optimality), i.e. 

 

  ( )  ∫    ( )  
  
 

   
 

under the constraints  ∈              
 
4.4. Local Optimality 
In the case of strategy 1, we maximize the following 
function: 
 

 ( ( ))    ( )   ( )   ( )   ( ) 
 
under the constraints  ∈               For  ( )     ̅( ) 
we examine the following function: 
  

  ( )   
    

     (       )        
   

 
By straightforward calculation we get that the optimal 
light intensity is given by 

 

   √
  

  
  

 
4.5. Global Optimality 
In case of strategy 2, we have the following optimal 
control problem: Find a function  ̂( ) for which the goal 
function 

 

 ( )   ∫    ( )   
  

 

 

 
attains its maximum, where    is fixed. We introduce an 
additional state variable 
 

  ( )   ∫    ( )  
 

 

                                                   (  ) 

 
defined by  
 
  ̇( )       ( )   ( )       

 
We are led to the following optimal control problems: 

 
           (  )                                                            (  ) 

 
under the constraints 
 
  (   )           
  (   )            
 
Discretization of Eqs. (10, 13, 14) using Eqs. (6, 7, 8) 
and state equation (4) leads to  
 
          (   

 ) 
 
subject to  
          (     )            
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                (     )       (     )  
           
 
  

                
 
   (        )  
 
          

(     )       
(     )  

 
where the vector function  
 
 (   )  (       (   )     (   )) 
 
is given by Eq. (13) and by right-hand side of Eq. (10). 
In the adaptive critic synthesis, the critic and action 
network were selected such that they consist of three 
and two subnetworks, respectively, each having 3-18-1 
structure (i.e. three neurons in the input layer, eighteen 
neurons in the hidden layer and one neuron in the 
output layer).  

 

 

 
Figure 3: Adaptive Critic neural Network Simulation of 
Optimal Control  ̂( ) and  ̃( ) for Global and Local 
Strategies, respectively with Fixed Final Time, dotted 
line  ̂ ( )   ̃ ( ), dashed line  ̂ ( )   ̃ ( ) 
 
The results of numerical solutions (Figure 3) have 
shown that the optimal strategies  ̃( ) and  ̂( ) based on 
short or long-term perspective, respectively, have 
different time trajectory, for a given initial condition 
 ̃( )        and optimal control   ̂( ) for long-term 

strategies obtains extreme values of the control set, i.e. 
optimal control is bang-bang.  For long-term strategy 
optimal trajectory  ̂ ( ) converges to  ̅ ( 

 )  Therefore 
let us consider the following free final time optimal 
control problems 

 

 (     )  ∫    ( )  

  

 

 

 
and 
 

  (    )  ∫   

  

 

 

 
with final condition  ( (  ))       where  
 ( )   (     ̅ ( 

 )      ̅ ( 
 ))   Results of 

adaptive-critic simulations are shown in Figure 4.  
 

 

 
Figure 4: Adaptive Critic Neural Network Simulation of 
Optimal Control  ̂( ) for Maximal Photosynthetic 
Production and Minimal Time, respectively to a Point 
 ̅ ( 

 ) with Initial Condition 
 ( )    (               ) (dotted line  ̂ ( ), dashed 
line  ̂ ( )) 
 
The results of numerical calculations have shown that 
the proposed adaptive critic neural network is able to 
meet the convergence tolerance values that we choose, 
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which led to satisfactory simulation results. 
Simulations, using MATLAB show that proposed 
neural network is able to solve nonlinear free final time 
optimal control problem with state and control 
constraints. 
 
5. NITROGEN TRANSFORMATION CYCLE 

 
5.1. Description of the Model 
The aerobic transformation of nitrogen compounds 
(Kmet, 1996), (Kmet, 2009) includes: 

 the decomposition of complex organic 
substances into simpler compounds, 
ammonium being the final nitrogen product, 

 ammonium and nitrate oxidation, 
 the assimilation of nitrates. 

Specific groups of microorganisms participate in these 
processes. Heterotrophic bacteria (  ) assimilates and 
decomposes the soluble organic nitrogen compounds 
DON    derived from detritus   . Ammonium   , one 
of the final decomposition products undergoes a 
biological transformation into nitrate   . This is carried 
out by aerobic chemoautotrophic bacteria in two stages: 
ammonia is first oxidized by nitrifying bacteria from the 
genus Nitrosomonas    into nitrites    that serve as an 
energy source for nitrating bacteria mainly from the 
genus Nitrobacter   . The resulting nitrates may be 
assimilated together with ammonia and soluble organic 
forms of nitrogen by the phytoplankton   , whereby the 
aerobic transformation cycle of nitrogen compounds is 
formed (Figure 5).  
The individual variables            represent nitrogen 
concentrations contained in the organic as well as in 
inorganic substances and living organisms presented in 
a model. 
 

 
Figure 5: Diagram of the Compartmental System 
Modelled by Eq. (15) 

 
The following system of ordinary differential 

equations is proposed as a model for the nitrogen 
transformation cycle: 
 
 ̇    (  ( )    ( )    ( )) 

 ̇  ∑     ( )
 

   
      

 ̇           ( )      ( )      ( )            (  ) 
 ̇      ( )      ( )      ( ) 
 ̇      ( )      ( ) 
 ̇      ( )      ( ) 
 
where xi are the concentration of the recycling matter in 
microorganisms, the available nutrients and detritus, 
respectively (15). 
 

  ( )  
      

        

                 

                 
 

  ( )  
   

     
                    

 

  ( )  
       ( )

       ( )
   

     

   

 

                      
 
  ( )                ( )                    
 
  ( )    ( )  ( )                   

                 
 
  ( )  

      

     
             . 

 
 
5.2. Optimal Biomass Production 
The variables   (        ) express the preference 
coefficients for update of          . It can be expected 
that the phytoplankton will employ control mechanisms 
in such a way as to maximize its biomass over a given 
period T of time: 

 

 ( )  ∫   ( )       

  

 

 

under the constraints 

 (   )      (   )      (   )      (   )
     (   )   ( )  

  ∈                           

The last inequality expresses the fact that amount of 
energy used for ”living expenses” (synthesis, reduction 

and excretion of nutrients) by phytoplankton cannot 
exceed a certain value W(I) which depends on light 
intensity I  (for detail explanation see (Kmet, 1996)). 
We introduce an additional state variable 

 

  ( )  ∫  ( )                                                          (  )

 

 

 

defined by 
 
 ̇ ( )    ( )   ( )  
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We are led to the following optimal control problems: 
1) long-therm strategy: 

 
            (  )                                                           (  )       
 
under the constrains 
 
 (   )   ( )      ∈                               
 

2) short-therm strategy: 
 

           (   )    (   )    (   )    (   ) 
 
for all  ∈ [     ] under the constrains  
 
 (   )   ( )      ∈                               
 
Discretization of Eqs. (15 - 17) using Eqs. (6 - 8) and 
state equation (4) leads to 

 
         (   

 )                                                            (  ) 
 

subject to  
          (     )            
 
                (     )       (     )  
           
 
  

                
 
   (                    )  
 
          (     )       (     )  
 
where the vector function  
 
 (   )  (      (   )     (   )) 
 
is given by Eq. (16) and by right-hand side of Eq. (15). 

 The solution of optimal control with state and 
control constraints using adaptive critic  neural  
network and NLP methods is displayed in Figs. 6 -
10 for different initial conditions x(0) and different 
values of reduction coefficients    and     We used 
values of coefficients given in Table 1 for numerical 
calculation. 

 
Table 1: Values of the Constants Used in the Model 

a1 = 0.007 u7 = 0.03 
a2 = 0.0182 u9 = 0.2 
a3 = 0.5 g1 = 0.14 
a4 = 0.67 g2 = 1.5 
a5 = 1 g3 = 2.0 
a6 = 1.39 g4 = 1.5 
a7 = 0.66 g5 = 0.8 
a8 = 0.67 g6 = 0.4 
K1= 19.3 g7 = 0.2 
K2= 8.17 g8 = 0 

K3= 71.28 g9 = 0.15 
K4= 3.4323 g10 = 0 
K5= 0.62 g11 = 0.1 
u6 = 0.01 g12 = 0 

 
In the adaptive critic synthesis, the critic and 

adaptive network were selected such that they 
consist of nine and four subnetworks, respectively, 
each having 9-27-1 structure (i.e. nine neurons in the 
input layer, twenty-seven neurons in the hidden layer 
and one neuron in the output layer). The proposed 
adaptive critic neural network is able to meet the 
convergence tolerance values that we choose, which 
led to satisfactory simulation results. Simulation using 
MATLAB shows that there is a very good agreement 
between short-term and long-term strategy and 
proposed neural network is able to solve nonlinear 
optimal control problem with state and control 
constraints.  
 

 
Figure 6: Adaptive Critic Neural Network Simulation of 
Optimal Control  ̂( ) for Initial Condition  ( )  
(                                               ) 
and       or       
 
The optimal strategy is the following. In the presence of 
high ammonium concentration, the uptake of DON and 
nitrate is stopped. If the concentration of ammonium 
drops below a certain limit value, phytoplankton and 
long-term strategy and proposed neural network is able 
to solve nonlinear optimal control problem with state 
and control constraints. The optimal strategy is the 
following. In the presence of high ammonium 
concentration, the uptake of DON and nitrate is stopped. 
If the concentration of ammonium drops below a certain 
limit value, phytoplankton starts to assimilate DON or 
nitrate dependently on values b2, b3. 
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Figure 7: Adaptive Critic Neural Network Simulation of 
Optimal Control  ̂( ) for Initial Condition  ( )  
(                                     ) and       
 
If the concentration of all three forms of nitrogen are 
low all of them are assimilated by phytoplankton at the 
maximal possible rate, i.e.  ̂ ( )         for all 
 ∈ [     ] (Figure 6). Our results are quite similar to 
those obtained by (Kmet, 1996). 
 

 
Figure 8: Adaptive Critic Neural Network Simulation of 
Optimal Control  ̂( ) for Initial Condition  ( )  
(                                     ) and       
 
6. CONCLUSION 

 
A single network adaptive critic approach is 

presented for optimal control synthesis with control and 
state constraints. We have formulated, analysed and 
solved an optimal control problems related to optimal 
photosynthetic production and optimal biomass 
production, respectively. Using MATLAB, a simple 
simulation model based on adaptive critic neural 
network was constructed. Numerical simulations have 
shown that adaptive critic neural network is able to 
solve nonlinear optimal control problem with control 
and state constraints and fixed and free final time. 
 

 
Figure 9: Adaptive Critic Neural Network Simulation of 
Optimal Control  ̂( ) for Initial Condition  ( )  
(                                 ) and       

 
 

 
Figure 10: Adaptive Critic Neural Network Simulation 
of Optimal Control  ̂( ) for Initial Condition  ( )  
(                                 ) and       
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