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ABSTRACT 
This paper proposes a novel supervisory control method 
for a parallel hybrid electric vehicle (PHEV) with a 
transmission mounted electric drive (TMED). An 
equivalent consumption minimization strategy (ECMS) 
is the supervisory control method and provides real-
time sub-optimal energy management decisions by 
minimizing the “equivalent” fuel consumption of a 
hybrid electric vehicle (HEV). The equivalent fuel 
consumption is a combination of the actual fuel 
consumption an electrical energy use, and an 
equivalence factor is used to convert electrical power 
used into an equivalent chemical fuel quantity. In this 
study, the proposed ECMS parameter adaption focused 
on the driver characteristic variation. In the stage of 
development, the longitudinal driver model is 
developed and the represented driving patterns are 
defined. Results obtained in this research clarify the 
causal connection between the driver characteristic and 
the equivalence factor as the initial step of the adaptive 
ECMS implementable into microcontroller. The 
simulation results show that optimizing the control 
parameter is needed as the driver characteristic variation.  
 
Keywords: Adaptive ECMS, Equivalence factor, 
Driving pattern, Driver model 

 
1. INTRODUCTION 
The advanced researches about the supervisory control 
algorithm of the HEV are heading to the parameter 
adaptation algorithm for global optimality. A research 
adapting the equivalence factor of the ECMS using past 
driving data has been done where the computational 
effort is too high. Another research proposed a pattern 
recognition algorithm to identify the drive cycle. 
However, that is insufficient to isolate the different 
driver on almost same drive-cycle. The purpose of this 

study is to clarify the causal connection between the 
driver characteristic and the equivalence factor as the 
initial step of the adaptive ECMS implementable into 
microcontroller. 

Previous adaptive ECMS algorithm requires 
enormous computational effort to calculate the 
equivalence factor for stored driving data of past 
hundred seconds. However, the proposed algorithm 
calculates the combination of pre-calculated 
equivalence factor in offline so additional computation 
effort is only occurred for identifying the driver type 
and the drive cycle. Moreover, there was no research 
about analyzing the tendency of the equivalence factor 
according to the driver characteristic 

In this paper, a forward simulator for the TMED type 
HEV is constructed based on the Cruise® and 
Simulink® including custom longitudinal driver model 
to imitate the characteristic of the actual driver. As a 
simulation group, some representative driver types are 
defined by the parameter set of the driver model. Each 
equivalence factor of these driver types for some drive 
cycles is calculated according to the conventional 
ECMS researches for the parallel HEV. These results 
are carefully analyzed in terms of the tendency of the 
equivalence factors. Operating points of actuators, the 
engine and the electric motor, are also depicted. Finally, 
the fuel economy of the conventional ECMS algorithm 
is simulated for the various combinations of the driving 
patterns and the equivalence factor to show the 
effectiveness of proposed adapting algorithm. 

This paper introduces the target vehicle for the 
simulation (Chapter 2), and explains the used HCU 
(Chapter 3). Continually, the developed longitudinal 
driver model (Chapter 4) and the simulation result for 
the fuel economy (Chapter 5) is analyzed. Finally, the 
last chapter is the conclusion of this paper. 
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Figure 1: Example of the different 6 drivers driving almost same drive-cycle (FTP72: see the chapter 5.1) 

 
2. TARGET VEHICLE 
In this paper, target vehicle is the PHEV with the 
TMED type. This chapter introduces the configuration 
of the used PHEV with TMED type. There are many 
possibilities of configurations in a parallel hybrid 
powertrain. However, two different configurations are 
applied to the most of the parallel HEVs in production, 
which are shown in Fig. 2. The TMED can separate the 
traction motor (MG2) from the engine by the engine 
clutch. Therefore, the TMED can provide the electric 
vehicle mode which the practical parallel hybrid 
powertrain cannot support due to the engine friction. 
The TMED also offers a number of advantages such as 
flexibility to mix and match different sized electric 
motors and transmissions to suit different vehicles, and 
utilizing an existing off-the-shelf transmission.  
However, due to the additional complexity and the 
increased degree of freedom in the energy flow of the 
hybrid powertrain, the TMED requires more 
complicated and subtle supervisory control to take 
advantage of the advanced configuration. In general, the 
achievable improvements of fuel economy in HEVs 
depend strongly on the implemented energy 
management strategy, which is major part of the 
supervisory control. The next chapter will explain the 
HCU applied optimal supervisory control algorithm for 
a TMED in the sense of minimization of fuel usage.  

 
(a) Practical parallel hybrid powertrain 

 

 
(b) Transmission mounted electric drive (Target 

Vehicle configuration) 
 

Figure 2: Parallel hybrid powertrain configuration 
 
3. HYBIRD CONTROL UNIT (HCU) 
In this chapter, The HCU and the ECMS algorithm are 
explained. The HCU is main controller to control the 
vehicle, in which energy management strategy that is 
the ECMS minimizing the equivalent fuel usage is 
implemented. 
 
3.1. HCU 
The hybrid control unit (HCU) is the main controller of 
the HEV which keeps the optimal driving condition as 
controlling each subsystem by observing the driving 
states of the vehicle for the optimal driving. 
Additionally, the subsystems are engine control unit 
(ECU), motor controller unit (MCU), transmission 
controller unit (TCU), battery management system 
(BMS) and voltage DC-DC converter (LDC). To be 
more concrete, the roles of the HCU are various and 
about 11s. First, starting a HEV with motor when 
turning ignition key or auto-stop or operating the 
starter-motor when no motor admitted, the next, 
assisting the engine torque by motoring when 
accelerating a HEV. Third, controlling the ratio of the 
transmission according to driving states, fourth, storing 
the electric energy by generation of the motor 
(regenerative breaking), fifth, stopping the engine when 
stopping with breaking after driving setting the D-range 
(auto-stop) or restarting the engine when non-zero 
accelerator pedal or zero decelerator pedal. Sixth, 
controlling the sliding at the slope, seventh, permitting 
the fuel cut and inject or not according to state of charge 
(SOC) and the ratio of the shift gears. Eighth, 
preventing the overcharging of the battery and limiting 
the motor torque. Ninth, control of the booster pressure, 
tenth, on/off control, generating of the LDC and voltage 
control. The last, inducing the eco-driving. Figure 3 is 
the block diagram of the HCU and subsystems. 
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Figure 3: Hybrid control unit (HCU) 

 
3.2. ECMS 

A real-time control strategy based on an 
instantaneous optimization needs a definition of the cost 
function to be minimized at each instant. Such a 
function has to depend only upon the system variables 
at the current time. Since the main control goal is the 
minimization of the fuel consumption, it is clear that 
this quantity has to be included in the cost function. 
However, based on the requirements of electrical self-
sustainability, the variations in the stored electrical 
energy (or state-of-charge, SOC) have to be taken into 
account as well. To deal with such aspects, various 
approaches have been proposed in this area. One-  
approach was used in the recently paper. It consists of 
evaluating the instantaneous cost function as a sum of 
the fuel consumption and an equivalent fuel 
consumption related to the SOC variation equivalent 
consumption minimization strategy (ECMS). In this 
case, it is clearly recognized that the electrical energy 
and the fuel energy are not directly comparable, but an 
equivalence factor is needed. The equivalence between 
electrical energy and fuel energy is basically evaluated 
by considering average energy paths leading from the 
fuel to the storage of electrical energy. If the overall 
efficiencies of the electrical and thermal paths were 
rigorously constant, such an equivalence would be 
theoretically exact. Since efficiencies vary with the 
operating point, this approach only allows the use of 
average values. 

In the real-time control strategy, the equivalent fuel 
consumption is evaluated under the assumption that 
every variation in the SOC will be compensated in the 
future by the engine running at the current operating 
point. The equivalent fuel consumption therefore 
changes both with the operation point and with the 
power split control, and its evaluation requires an 
additional, inner loop in the instantaneous optimization 
procedure, or the prior storage of the results in a look-
up table. 

A control of the ECMS is presented at Sciarreta 
paper. This paper has the similar ECMS method. It is 
based on a new method for evaluating the equivalence 
factor between fuel and electrical energy. This method 
does not require the assumption of the average 
efficiencies of the parallel paths, and it is based on a 

coherent definition of system self-sustainability. The 
ECMS is valid for different system architectures and 
types of machines involved. The advantage includes 
good control performance with comparing that obtained 
with conventional control strategies, the robustness with 
respect to the variation of control parameters, and the 
system behavior in case of steady operating point. 

 
4. LONGITUDINAL DRIVER MODEL 
The longitudinal driver model is developed for imitating 
the real driver behavior. This driver model presents 
three driver tendency, flexibility, sensitivity and 
competence. Also, PI controller control the accelerator 
pedal (AP) and braking pedal (BP), and making the 
shape of AP, BP by driving maneuver mode. 
 Chapter 4.1 explains the behavior of the driver model 
and chapter 4.2 introduces the representative driving 
pattern in more detail.  
 
4.1. The behavior of  the driver model 
Figure 4 is the developing driver model. The driver 
model follows the reference driving cycle and makes 
the shape of AP signal (APS), BP signal (BPS). The red 
box of the figure 4 is reference driving cycle with FTP-
72 speed profile. This model inputs are the vehicle 
speed, APS, BPS which have the blue line. The main 
control parameters have green, yellow, blue color box in 
the figure 4. The green box is making the APS delay 
(apdel). The figure 4 (g) depicts the vehicle speed graph 
changing the apdel. The behavior of the driver model is 
similar to competence of the drivers. The blue boxes are 
controller gains about AP, BP. Increasing the AP 
P_Gain (pa) effects the slope of the APS. This time, the 
behavior of the driver model is similar to flexibility of 
the drivers. Figure 4 (b) is APS example of the different 
flexibility. The yellow boxes are Bounds. The bounds 
related AP, BP control timing and vehicle speed error is 
reference. Bound1 is hb which decides activating AP, 
BP. If the hb is large amplitude, speed error is larger. 
Bound2 is lb which decides deactivating AP and 
Bound3 is blb which decides deactivating BP. Figure 4 
(e) presents the APS graph of changing the lb. 
Moreover, driving maneuver mode is made with 
SR_latch and integrator reset designs the anti-winding. 
 
4.2. The representative driving pattern 
The driving pattern is defined as three. This paper 
assumes that various driver’s characteristic are 
classified according to the flexibility, the sensitivity, the 
competence. These each patterns are orthogonal. 
Therefore, the each parameters of the driver model 
describes one pattern. Changing the pa describes 
Flexibility, changing the lb describes Sensitivity and 
changing the apdel describes competence. In this paper, 
parameter sets of the table 1 are used and its simulation 
results are figure 4. 
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Table 1: The parameter sets for the driver types used in the simulation 
Flexibility pa lb apdel 

Case1 5 -1 0 
Case2 8 -1 0 
Case3 11 -1 0 
Case4 15 -1 0 
Case5 22 -1 0 
Case6 30 -1 0 

Sensitivity pa lb apdel 
Case1 20 -5 0 
Case2 20 -1 0 
Case3 20 1 0 
Case4 20 2 0 
Case5 20 3 0 
Case6 20 5 0 

Competence pa lb apdel 
Case1 20 -1 0 
Case2 20 -1 0.5 
Case3 20 -1 1 
Case4 20 -1 1.5 
Case5 20 -1 2 
Case6 20 -1 2.5 
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(a) Vehicle Speed (Flexibility) 

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Time(s)

AP
S

 

 
CASE1
CASE2
CASE3
CASE4
CASE5
CASE6

 
(b) APS (Flexibility) 
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(c) BPS (Flexibility) 
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(d) Vehicle Speed (Sensitivity) 
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(e) APS (Sensitivity) 
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(f) BPS (Sensitivity) 
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(g) Vehicle Speed (Competence) 

 

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Time(s)

A
PS

 

 
CASE1
CASE2
CASE3
CASE4
CASE5
CASE6

 
(h) APS (Competence) 
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(i) BPS (Competence) 

 
Figure 4:  Vx, APS, BPS of the each patterns (used parameter in the table 1) 
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Figure 5:  Longitudinal Driver Model 

 
 

5. SIMULATION 
The proposed Advanced HEV supervisory control 
algorithm adapts the equivalence factor according to 
driver characteristic variation. The different driving 
characteristic represents the driving pattern and driver 
type (Case1 ~ Case6) according to changing parameter 
pa, lb, apdel. 
  Chapter 5.1 depicts the simulation environment 
applied defined driving pattern, Chapter 5.2 shows the 
simulation results. 
 
5.1. Simulation environment 
The co-simulation environment configures with 
aforementioned (Chapter 2, 3) target vehicle and HCU 
control algorithm in the figure 5. The developed target 
vehicle by Cruise sends signals of EMS, MCU, GCU, 
LDC, BMS, TCU to the HCU logic, and the HCU 
calculates the each signals by control algorithm. As a 

result, the final calculated EMS, MG, ISG, LDC, TCU 
commands transmit the target vehicle. Above step 
repeat each sample time. This simulation has sampling 
time 0.005 sec and uses the FTP-72 profile among the 
driving cycles. Fuel consumption a constant speed 
cannot accurately represent real driving conditions. 
Various drive cycles have been developed to simulate 
real driving conditions. The drive cycles are usually 
represented by the speed along with the relative driving 
time. Legislation drive cycles – all mass produced cars 
are subjected to before being authorized for sale in a 
particular market. The total mass of emissions produced 
during a particular drive cycle must be below a set limit 
decided by the legislating authority. The most common 
– the cycles used by the US EPA and the European ECE. 
Light-Duty Vehicles (Chassis Dynamometer), FTP72 – 
A transient test cycle for cars and light duty trucks on a 
simulated urban route with frequent stops (Federal Test 
Procedure) 
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Figure 5: Simulation Environment 

 
 
 
5.2. The simulation result for the fuel economy 
The result of the driver characteristic variation works 
the fuel economy. This chapter shows the simulation 
result for the fuel economy according to changing the 
driving pattern. Chapter 5.2.1 is the case applied the 
optimal equivalence factor for each driving tendency. 
Chapter 5.2.2 is the case applied the non-optimal 
equivalence factor for each driving tendency. These two 
cases fuel economy made by table 2, 3. 
 
5.2.1. The simulation for the optimal equivalence 

factor 
The optimal equivalence factors are found for the one 
case selecting among Case1~6 of the each driving 
pattern. Case1 (Flexibility), Case6 (Sensitivity), Case4 
(Competence) is simulated with it’s the optimal 
equivalence factor and the fuel economy is calculated. 
In order, the fuel economy is 17.281km/l, 21.901km/l, 
21.994km/l. 
 
5.2.2. The simulation for the non-optimal 

equivalence factor 
The equivalence factor sets selected in the chapter 5.2.1 

are exchanged each other. The fuel economy appears 
in table 2. Comparing the table 1 and table 2, the gap 
of the Max and min fuel economy is the 5.831km/l in 

the Case1 (Flexibility), is the 0.991km/l in the Case6 
(Sensitivity) and is the 1.846km/h in the Case4. 

The fuel economy simulation result shows that the 
optimal fuel economy is made by adapting the optimal 
equivalence factor according to the driver characteristic. 
 
Table 2: Optimal equivalence factor and fuel economy 

*Fuel economy unit : [km/l] 

 
Table 3: Non-optimal equivalence factor and fuel 
economy 

Flexibility Schg Sdis 
Fuel 

economy 
Case1 1.80 2.41 17.281 

Sensitivity Schg Sdis 
Fuel 

economy 
Case6 2.49 2.51 21.901 

Competence Schg Sdis 
Fuel 

economy 
Case4 1.78 2.87 21.994 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2012
ISBN 978-88-97999-12-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds. 110



Flexibility Schg Sdis 
Fuel 

economy 
Case1 2.49 2.51 11.450 
Case1 1.78 2.87 17.261 

Sensitivity Schg Sdis 
Fuel 

economy 
Case6 1.80 2.41 20.910 
Case6 1.78 2.87 21.226 

Competence Schg Sdis 
Fuel 

economy 
Case4 1.80 2.41 20.148 
Case4 2.49 2.51 20.190 

*Fuel economy unit : [km/l] 
 

6. CONCLUSION 
This paper presented the concept of novel adaptive 

ECMS and defined the driver types in terms of the 
parameter set of the longitudinal driver model which is 
developed. The effectiveness of the equivalence factor 
adaptation according to the driver characteristic 
variation is verified through the fuel economy 
simulation. The simulation result shows that each driver 
using the optimal equivalence factor has better fuel 
economy than the non-optimal equivalence factor. In 
conclusion, the ECMS parameter adaption for the driver 
characteristic variation has validity. 

In the future work, an algorithm identifying actual 
driver in real-time need to be developed, because this 
study analyzes the relationship between the offline-
defined driver type and the equivalence factor as an 
initial step of novel adaptive ECMS algorithm.  Taking 
a step forward, this study does not consider the road 
condition identification. Some pattern recognition 
algorithm for road condition identification can be 
combined with this study 
 
REFERENCES 
James, D.J.G., Boehringer, F., Burnham, K.J., and Copp, 

D.G., 2004. Adaptive driver model using a neural 
network. Proceedings of artif life robotics, 7 4, 
170-176. 

Majjad, R., Kiencke, U., and Körner, H., 2005. A-
ECMS: An adaptive algorithm for hybrid electric 
vehicle energy management. Proceedings of the 
44th IEEE conference on decision and control, and 
the European control conference, pp. 1816-1823. 
December 12-15, Seville, Spain. 

Cheng, B., Fujioka, T., 1997. Hierarchical driver model. 
Proceedings of the ITSC ’97 IEEE conference on 
intelligent transportation system, pp. 960-965. 
November 9-12, Boston, MA. 

Gu, B., Rizzoni, G., 2006. An adaptive algorithm for 
hybrid electric vehicle energy management based 
on driving pattern recognition. Proceedings of 
(ASME) international mechanical engineering 
congress and exposition, pp. 249-258. November 
5-10, Chicago, Illinois, USA. 

Majjad, R., Kiencke, U., and Körner, H., 1998. Design 
of a hybrid driver model. Proceedings of the 1998 
society of automotive engineers international 

congress and exposition, pp. 37-42. February 23-
26, Detroit, Michigan. 

McGordon, A., Poxon, J.E.W., Cheng, C., Jones, R.P., 
and Jennings, P.A., 2011. Development of a driver 
model to study the effects of real-world driver 
behavior on the Fuel. Mechanical engineers, Part 
D: Journal of automobile engineering, 225 11, 
1518-1520. 

Yang H.-H., Peng, H., 2010. Development of an 
errorable car-following driver model. Vehicle 
sytem dynamics: International journal of vehicle 
mechanics and mobility, 48 6, 751-773. 

Inata, K., Raksincharoensak, P., and Nagai, M., 2008. 
Driver behavior modelling based on database of 
personal mobility driving in urban area. 
Proceedings of international conference on 
control, automation and systems, pp. 2902-2907. 
Octobor 14-17, COEX, Seoul, Korea. 

Brundell-Freij, K., Ericsson, E., 2005. Influence of 
street characteristics, driver category and car 
performance on urban driving patterns. 
Transportation research part D: Transport and 
environment, 10 3, 213-229. 

Sciarretta, A., Back, M., and Guzzella, L., 2004. 
Optimal control of parallel hybrid electric 
vehicles. IEEE transactions on control systems 
technology, 12 3, 352-363. 

Hofman, T., Steinbuch, M., van Drutenm R.M., and 
Serrarens, A.F.A., 2008. Rule-based equivalence 
fuel consumption minimization strategies for 
hybrid vehicles. Proceedings  of the 17th world 
congress the international federation of automatic 
control, pp. 5652-5657. July 6-11, Seoul, Korea. 

Sciarretta, A., Chasse, A., 2011. Supervisory control  
hybrid powertrains: An experimental benchmark 
of offline optimization and online energy 
management. Control engineering practice, 19 11, 
1253-1265. 

Reñski, A., 1998. The driver model and identification of 
its parameters. Proceedings  of international 
congress and exposition, pp. 1-8. February 23-26, 
Detroit, Michigan. 

Macadam, C., 2003. Understanding and modeling the 
human driver. Vehicle system dynamics: 
international journal of vehicle mechanics and 
mobility, 40 1-3, 101-134. 

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2012
ISBN 978-88-97999-12-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds. 111


