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ABSTRACT

A finite horizon H-infinity cheap control problem with a
given performance level for a linear system with state
delays is considered. By a proper transformation of the
control variable, this problem is converted to an H-
infinity control problem for a singularly perturbed
system. For this new problem, parameter-free sufficient
conditions of the existence of solution and the solution
(controller) itself are obtained. These results are applied
to solution of a nonstandard H-infinity control problem.

Keywords: H-infinity cheap control, time-delay system,
singular perturbation, nonstandard H-infinity control
problem

1. INTRODUCTION
H_ control problems are studied extensively in the

literature for systems without and with delays in the
state variables (Basar and Bernard 1991, Bensoussan,
Da Prato, Delfour and Mitter 1992, Doyle, Glover,
Khargonekar and Francis 1989, Fridman and Shaked
1998, Fridman and Shaked 2000, van Keulen 1993).

The solution of an / control problem for a linear

system can be reduced to a solution of a game-theoretic
Riccati equation. In the case of an undelayed system,
the Riccati equation is finite dimensional (matrix one),
while in the case of a delayed system, it is infinite
dimensional (operator one). The operator Riccati
equation can be reduced to a hybrid system of three
matrix equations of Riccati type. Analysis and solution
of this system are very complicated. Therefore, it is

extremely important a study of classes of /_ control

problems with delays, for which the investigation of the
operator Riccati equation can be simplified. One of such

classes is the class of /{_ cheap control problems.

The H_ cheap control problem is an H  problem

with a small control cost (with respect to state and
disturbance costs) in the cost functional. A cost
functional with a small control cost arises in many
topics of control theory. For instance, it arises in the
regularization method of a singular optimal control
(Bell and Jacobson 1975), in studying the limitations of
optimal regulators and filters (Braslavsky, Seron,
Maine and Kokotovic 1999, Kwakernaak and Sivan

1972, Seron, Braslavsky, Kokotovic and Mayne 1999),
in analysis of control problems with a high control gain
(Kokotovic, Khalil and O'Reilly 1986), in the
investigation of inverse control problems (Moylan and.
Anderson 1973), in the design of a robust control for
systems with disturbances (Turetsky and Glizer 2004,
Turetsky and Glizer 2011), and some others.

Cheap control problems for systems without
disturbances (uncertainties) were widely investigated in
the literature. The case of systems with undelayed
dynamics was treated more extensively (Bikdash,
Nayfeh and CIliff 1993, Jameson and O'Malley 1974/75,
Kokotovic, Khalil and O'Reilly 1986, O'Malley and
Jameson 1977, Sabery and Sannuti 1987, Smetannikova
and Sobolev 2005). The case of systems with delayed
dynamics was studied less extensively (Glizer 1999,
Glizer 2005, Glizer 2006, Glizer, Fridman and Turetsky
2007, Glizer 2009a). In both cases, an optimal control
problem was analyzed. /_ cheap control problems
have been studied in the literature much less (Glizer
2009b, Toussaint and Basar 2001). It should be noted
that two-player zero-sum differential games with a
cheap control cost of one of the players in the
performance index were analyzed in (Glizer 2000,
Petersen 1986, Starr and Ho 1969, Turetsky and Glizer
2004, Turetsky and Glizer 2011). In these works, the
case of an undelayed game dynamics and a cheap
control cost for the player, minimizing the performance
index, was analyzed, which makes the problems,
considered in these works, to be close to the /1 cheap
control problem for a system without delays.

In the present paper, a system with point-wise and
distributed state delays and with a square-integrable
disturbance is considered. For this system, a finite
horizon H_ cheap control problem is formulated. A
method of asymptotic analysis and solution of the
considered M cheap control problem is proposed.
This method is based on: (i) an equivalent

transformation of the H_ cheap control problem to a

new H_ problem for a singularly perturbed controlled
system; (ii)) an asymptotic decomposition of the
resulting problem into two much simpler parameter-free
subproblems, the slow and fast ones. Using controllers,
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solving the slow and fast subproblems, a composite
controller, solving the transformed problem, is
designed. The latter yields a controller, solving the

original H_ cheap control problem. Note that the

algorithm of the analysis of the finite horizon H

cheap control problem, considered in this paper, is
similar to that applied in (Glizer 2009b) for analysis of

the infinite horizon H_ cheap control problem. Along

with this, there are essential differences in studying
these problems both in main assumptions and
techniques.

The results, obtained for the H_ cheap control
problem, are applied to the solution of a nonstandard
H_ control problem, i.e. the problem in which the
functional does not contain a quadratic control cost.

The following main notations are applied in the

paper: (1) E" is the n-dimensional real Euclidean
space; (2) ”” denotes the Euclidean norm either of a
vector or of a matrix; (3) the prime denotes the
transposition of a matrix A,(A4) or of a vector
x,(x); 4) L’[b,c;E"] is the Hilbert space of 7 -
dimensional vector-valued functions square-integrable
on the interval [b,c], the norm in this space is denoted

as ”-"Lz[b’c]; (5) C[b,c;E"] is the Banach space of

n -dimensional vector-valued functions continuous on
the interval [b,c], the norm in this space is denoted as

”” Clbel’ (6) I, is the n -dimensional identity matrix;

(7) col(x,y), where xe E",y € E", denotes the

column block-vector of the dimension 7 + m with the
upper block x and the lower block y, ie,

col(x,y)=(x,y).
2. PROBLEM FORMULATION

2.1. H_ Cheap Control Problem
Consider the controlled system

dx(t
z,( ) = A, x(1)+ 4, y()+ H,,x(t - h)
t )

+[1Gy (@x(e+ D)de + Fw@),

d
J;,_(tt) = Ay x(t) + Ay, y(6) + Hy x(1 — h) )

+ I_Othl (0)x(t + 7)d7 + Bu(t) + F,w(?),

where t€[0,T]; x(t)eE", y(@)eE",

u(tye E™, (u is a control), w(t)e E?, (w is a

disturbance); £ >0 is a given constant time delay;
Aij, @4,j=12), H,, G,(r), F,, (i=1,2) and

B are given time-invariant matrices of corresponding
dimensions; B has the full rank; the matrix-functions

G, (r), (i=1,2) are piece-wise continuous for
T e[-h,0].

Assuming that w(t)e L’ [0,T;E? ], consider
the functional

Jo(ww)=[ [x'(1)D,x(1)+ Y (1)D,y(1)
+&7fu(o)]” =y e Jar,

(€)

where D, is symmetric positive-semi-definite, D, is
symmetric positive-definite matrices; ¥ >0 is a given
constant; & > 0 is a small parameter.

The H, control problem with a performance level
y for the system (1)-(2) is to find a controller
u' [x(-),y(-)](t) that ensures the inequality
J g(u*, w) <0 along trajectories of (1)-(2) for all
w(t)e L’ [0,T;E?] and for
x(t)=0,y(t)=0,t<0.

The presence of a small multiplier &” in the control
cost of the functional (3) means that this problem is the

H  cheap control problem.

2.2. Transformation of the Cheap Control Problem
By the control transformation u(¢)=(1/&)v(?),

where Vv is a new control, the H_ problem (1)-(3)
becomes

dx(t
’;( ) 4 x(0)+ Ay (6) + H, x(t — h)
t )

+ j_thH (0)x(t+7)d7 + Fw(t),

SM = &{dy x(t) + Ay, y(t) + Hyx(1 = 1)
dt )

+[ Gu @t + 2)dzy + Bu(t) + eFyw),

x(t)=0, y()=0, <0, 6)
J(vow)= [ [X'(1)D,x(t)+ ¥ ()D,y(1)
) =7 ga

Note that the system (4)-(5) is singularly perturbed

(Kokotovic, Khalil and O'Reilly 1986). The state
variables x(-) and y(-) are the slow and fast ones,
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respectively. In this system, the slow state variable is
with a delay, while the fast state variable is delay free.

In the sequel, we deal with the H_ problem

consisting of the system (4)-(5), the initial conditions
(6) and the cost functional (7), which is called the

original H_ control problem (OHICP). Once a

o0

controller of the OHICP is obtained, the corresponding
controller of the H_ problem (1)-(3) is obtained by

using the equation u(¢) = (1/&)v(t).

2.3. Solvability Conditions
Consider the following (7 +m)x (n+ m)-block-
matrices

A_(All AlzJ H_(Hll OJ
- s - D (8)
AZI A22 H21 0
G 0 D 0
ooy = DO (B 0 ©)
Gzl(z') 0 0 D2

and the matrix S(¢&)

S(e)=y*FF'—¢”BB/,

-~ (F) ~ 10
Pl 7o) "
F, B

The matrix S(&) can be represented in the block form

S(e) = yRF y FF,
y’F,F, y’F,F,—¢’BB

ALS S,
B S; S5(¢) .

Consider the following set of Riccati-type ordinary
differential and two partial first-order differential

equations for the matrices P(t), Q(f,7) and
R(t,7,p) in the domain (2 =
{(t,7,p): 05t <T,-h<7<0,-h< p<0}

(11)

PO _ piya-a
= POA-AP@) ")

~ P(1)S(£)P(1) - 0(t,0) - Q' (1,0) - D,

(aﬁ_ijg(m):—(A+S(8)P(t))'Q(f:T)
t Ot

—P(1)G(7)-R(1,0,7)

(13)

o o0 0 P
(E_E_%]R(t’r’ p)=-G ()0, p) a

-0 (1,0)G(p) - 0 (1.1)S(£)Q(t, p).

The matrices P(¢), Q(t,7) and R(t,7,p) satisfy
the boundary conditions

4)

P(T)=0, O(T,r)=0, R(T,z,p)=0, (15)
0(t,—h)=P(t)H, (16)

R(t,~h,7)= H Q(t,7),

, (17)
R(t,z,~h)=Q (t,7)H.
It is seen that the matrix-functions Q(#,7) and
R(t,7,p) are present in the set (12)-(14) with
deviating arguments. The problem (12)-(17) is, in
general, of a high dimension. Moreover, due to the
expression for S(&), this problem is ill-posed for
E—>+0.
Lemma 2.1. Let, for a given & >0, there exist a
solution {P(t,&),0(t,7,8),R(t,7,p,€)} of (12)-
(17) such that

P'(t,&) = P(t,¢),

, (18)
R (t,7,p,8) = R(, p,7,¢).
Then, for this &, the controller
v[x(),y()() = -7 B[P(t,&)z(t)
(19)

+ th(t, 7,8)z(t+7)dr], z=col(x,y)

solves the OHICP.

Proof. The lemma is a direct technical extension of the
result of (Glizer 2003) (Theorem 2.1 and its proof)
where the case of only a point-wise state delay in the
controlled system has been considered.

Remark 2.1. Due to the above mentioned features of
the problem (12)-(17), verifying the existence of its
solution and searching this solution are very
complicated tasks.

2.4. Objectives of the Paper

The objectives of this paper are the following:

(i) to derive & -free reduced conditions, guaranteeing
the existence of a controller solving the OHICP for all
sufficiently small £ > 0;

(ii) to design a controller much simpler than (19), which
being & -free solves the OHICP for all sufficiently

small £ >0;
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(iii) to apply the above mentioned results to the solution
of a nonstandard /1  control problem.

3. FORMAL CONSTRUCTING A SIMPLIFIED
CONTROLLER FOR THE OHICP

In this section, we propose a method of constructing a

simplified controller for the OHICP. This method is

based on an asymptotic decomposition of the OHICP

into two much simpler & -free subproblems, the slow

and fast ones.

3.1. Slow Subproblem
The slow subproblem is obtained from the OHICP by

setting there formally & =0 and redenoting X, ),V

and J by x,y,,v, and J_, respectively. Thus, we

have

dx (1) _
dt

Ax () + A,y () +H, x (1= h)

+ I_OhGn (O)x,(t+7)dT+Fw(t), t>0,  (20)
Bv (1)=0, te€[0,+), 21
x,(t)=0, <0, (22)

J, = [ [x.(Dx,(t)+ . (1)D,y,(1)

v, ()| = |wee )| Jdt.

(23)

Since the matrix B is invertible, the equation (21)
yields

v.(1)=0, te[0,+00). (24)

By substituting (24) into (23), we obtain

J, = [ [x.(Dx,(t)+y.(1)D,y,(1)

—y?|wt)| Jat.

Since the variable y (¢) does not satisfy any equation

for ¢ €[0,+0), one can choose it to satisfy a desirable
property of the system (20). This means that the
variable y (#) can be considered as a control variable

in the system (20). Thus, the functional (25), calculated
along trajectories of this system, depends on the control

variable (1) and the
w(t)e L[0,T;E"], ie., J,=J,(y,w). For the

disturbance

system (20), we can formulate the following FH
control problem with a performance level y : to find a

controller y [x (-)](#) that ensures the inequality
J (¥,,w)<0 along trajectories of (20),(22) for all
w(t) e I’[0,T;E?]. This H_ control problem is

called the slow H_ control subproblem (SHICP)

associated with the OHICP.

Consider the following set of Riccati-type matrix
ordinary differential and two first-order partial
differential equations with deviating arguments:

dP.(1) _ .
7 Ps(t)All All})s(t) 26)
- P()S,P. (1)~ 0,(1,0)~0,(t,0) - D,

o & B
(E—EJQS(ET)—

— (4, +P.(1)S)0,(t,7) 27)
- Ps (t)Gl 1 (T) - Rs (1307 T)a

(g_i_ins(tarop) =

ot o0t Op
-G,(D)0,(t,p) -0, (1,7)G,(p) (28)
- Qs (t’ Z')SSQS (ta p)a

where S, =y *FF, — A,D;'4,,.
The set of equations (26)-(28) is subject to the boundary
conditions

P(T)=0, O(T,7)=0, R(T,7,p)=0, (29)

o,(@t-h)=P()H,,, (30)

Rs (l,—h,T) = HIIIQS (taf)a

' (€29)
R (t,z,—h)= 0 (t,7)H,,.

Similarly to Lemma 2.1, one has the following
proposition.
Proposition 3.1. Let there exist a solution

{P(),0,(t,7).R(t,7,p)} of (26-(31) in the
domain £2, such that

P(t)=P(t), R(t,r,p)=R(t,p,7). (32

Then, the controller
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i 10 = ~D5' 4, x
P+ [ 0.0, (4 o)

solves the SHICP.

3.2. Fast Subproblem
The fast subproblem is obtained in the following three

stages. First, the slow variable x(-) is removed from

the equation (5) and the cost functional (7) of the
OHICP. Second, the following transformation of
variables is made in the resulting problem:

t=ec, y(&g)=y (), v(eg)=v, (),
w(eg) =w,(S),

4
JOEEWED) = &, (v, (O, (),

where f, Vs Ves Wy and J 4 are new independent

variable, state, control, disturbance and cost functional,
respectively. Thus, we obtain the system and the cost
functional

dy (S)ds = edyy (S)+

(35)
By, (&) +elfw, (s), &>0,

Jrvpw )= [y (60D (5)+
Vi(EW(E)=7|w (&) Jdé.

Finally, neglecting formally the terms with the
multiplier € in (35) and replacing formally 7/& by
+ 00 in (36) yields the system

dy(&)ds=Bv (), ¢>0. (37

and the cost functional

J(vew )= [Ty, (£)Dy (£)+
Vi (EW(E)=7|w, (&) dé.

For the system (37) and the cost functional (38), the
H _ control problem with a performance level ¥ can
be formulated as follows. To find a controller
V;[ Y,(&)] that stabilizes (37) and ensures the

inequality J , (V; ,W,) <0 along its trajectories for all
Wf(é:) € L,[0,+00; E*] and for yf(O) =0. This

H__ control problem is called the fast /_ control

o0

subproblem (FHICP) associated with the OHICP.

Let K be any m X m -matrix such that BK is a
Hurwitz matrix. Then, the controller

Vil (1= Ky, (&) (39)

solves the FHICP.
Note, that the FHICP is a particular case of the

infinite horizon M control problem, considered in
(Basar and Bernard 1991). Due to results of this book, if
there exists a solution Pf of the algebraic matrix

Riccati-type equation

—P,BBP, +D, =0, (40)

such that — BB 'Pf is a Hurwitz matrix, then the matrix

gain K in (39) can be chosen as
K=-BP,. 1)

Let us show that the above mentioned solution of
(40) exists. Indeed, since the matrix D, is positive

definite, then there exist the unique positive definite
solution of (40)

P, =(BB) ™" x

((BB')I/ZD (BB')1/2)1/2(BB')71/2 (42)
2 s

where the superscript "1/2" denotes the unique
symmetric positive definite square root of respective
symmetric positive definite matrix, the one "-1/2"
denotes the square root of respective inverse matrix.
Now, using (41) and (42), we have

BK =—(BB')"* x

((BB')I/ZD (BB')1/2)1/2(BB')71/2 (43)
2 .

Since D, is positive definite and B is not singular,

then the equation (43) means that the matrix BK is
Hurwitz. Hence, the controller

Vvi[y,(E)1==BPy (&) (44)

solves the FHICP.

3.3. Composite Controller for the OHICP

In this subsection, based on the control v (¢), given by
(24), the controller . [x,(-)](£), solving the SHICP,
and the controller v; [y ,(&)]., solving the FHICP, we

construct a composite controller for the OHICP. Then,
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we show that this controller solves the OHICP for all
sufficiently small & > 0.
The composite controller is constructed in the form

v.[x(), yO1@0) = v, () + v, [F(de)], (45)
where V(#/€) is defined as follows
(1le)= (1) y.LxON). )

Substituting (24) and (44) into (45), and using (33),
(42) and (46) yield after some rearrangement

v [x(-).y(-)](t)==B'P,[ D' A,,P.(1)x(t)
F () + j_OhD;’A;ZQS (t7)x(t+7)de]  (47)

4. & -FREE SOLVABILITY CONDITIONS FOR
THE OHICP
Theorem 4.1. Let there exist a solution

{P(0),0,(t,T), R (1,7,p)} of (26-31) in the
domain €2, satisfying the conditions (32). Then, there
exists a positive number é‘*, such that the controller

(47) solves the OHICP for all & € (0,8*].

Proof. The proof of the theorem consists of four parts.
For the sake of saving the space of the paper, we present
here a sketch of the proof.

Part 1. By substituting the controller (47) into the
system (4)-(5) and the cost functional (7), we obtain

dx(t
’;( ) A x(0) + Ay (1) + H, x(t — h)
t (48)

+ I_OhG“ (D)x(t+7)d7 + Fw(?),

60 = (4, BB P, DS AP (OO
+[&d,, — BB P, 1y(t)+ &H , x(t — h)
+ |66,y (1)~ BB P,D;' 4,0, (1.0)]x

(49)
x(t+7)dr + eF,w(t),

J@0=1.00= [ [ 0D, (x(0)
+2x (1)Dp, (1) y(£) + y (1) D y(1)
+2x'(8) thQl (t,0)x(t +7)d7

+25' (1) thQZ (t,70)x(t +7)d7

0 0
+ Lﬂ J:hx (t+7)Dy, (1,7, p)x(t + p)ddp

2
e bt 50)
where
D,,(t)= D, + P.(t)A4,D;' 4,P.(), (51
D,,(t)=P.()4,, D,,=2D,, (52)

DQI (t,7)=P, (t)AlzDz_lAizQs (¢,7),
DQ2 (t,7)= A{QQS (1),
Dy, (t,7,p) = Q;(t: T)AlzDz_lAizQs(tap)- (54)

(53)

Thus, the proof of the theorem is reduced to a
proof of fulfilment of the following inequality for all
sufficiently small & >0

J . (w)<0 Vw()eL’[0,T;E"], (55)
along trajectories of the system (48)-(49) subject to the
initial conditions (6).

Part II. Consider the following (7 +m)x(n+m)
block matrices

zzl(t,g) =
4, 4, (56)
Ay —& P A,P(t) A, —¢ BB P, |

G(t,r,6) =

G, (7) 0 (57)
G, (r)— é‘_lpf_lAl'zQs (t,7) 0 )

D0~ (Dpl 0) Dy, (r)],

Dpy(t) Dys (1)

Dy (t,7) 0
Dy,(t,r) Of

Dy (t,z,p) O
DR(tarap):(O f Oja

S, =y ’FF.

619

D,(t,7)= {

(39

Consider the following system of ordinary and
partial matrix differential equations of Riccati type with

respect to  (m+m)x(n+m)-matrices f’(l‘) ,
Q(l‘, 7) and ]A{(t, 7, ) in the domain £2:

Proceedings of the Int. Conf. on Integrated Modeling and Analysis in Applied Control and Automation, 2012
ISBN 978-88-97999-12-6; Bruzzone, Dauphin-Tanguy, Junco and Merkuryev Eds. 6



dP(1) _ P(6)A(t,6) — A'(t,8)P(t)

(60)
— P(1)S, P(t) - 0(1,0) - Q' (1,0) - D, (1),

0 0\ B
(5 - E}Q(h 7)=

— (A(t,8) + S P()) O(t,7) — (61)
P()G(t,7,€) — R(1,0,7) - D, (t,7),

222 Nirep)-
ot oOr Op

—é'(t,f,g)é(t,p)—QA'(I,T)GA(t,p,g)

~0'(1,0)S,0(t, p) — Dy (1,7, p) . (62)

The system (60)-(62) is considered subject to the
boundary conditions

P(T)=0, O(T,7r)=0, R(T,7,p)=0, (63)
O(t~h) = P(0)H,

R(t~h,7)= H'Q(1,7), (64)
R(t,t,~h)=Q'(t,7)H,

where the matrix H is given in (8).

Let us show the following. If for some & >0, the
problem (60)-(64) has a solution

(P(t,€),0(t,7,¢),R(1,7, p, &)} such that

P'(t,e) = P(t,¢),

R'(t,7,p,€) = R(t, p,7,€), (65)
(t,7,p) € 2,

then, for this &, the inequality (55) is satisfied along
trajectories of the system (48)-(49) subject to the initial

conditions (6).
Part III. Consider the following functional, depending

on the parameter ¢ €[0,7], on a vector ¢, € E"™

and on a function ¢_(0) € L’[t—h,t; E™"]:

AL
Vit,000. (0= 0, P(1,2),
+20,[ Ot,0-1,6)p.(0)d0

+ [ 0.ORLO-1.0-1,6)x
@.(o)dbdo.

(66)

Let, for a given w(-)e L’[0,T;E], the vector
function z[t,w(-)]=col (x[t,w(®)], y[t, w(-)]) ,
t €[0,T], be the solution of the system (48)-(49)

subject to the initial conditions (6). Such a solution
exists and is unique. Let, for a given t€[0,7],

V(t )i VI[t,2[t.w(-)].2[6,w(-)]]. Calculating the

derivative of V(f), we obtain after some
rearrangement

dl;t(l‘) =5t w(-)]D, (¢)z[t, w(-)]

—22'[t,w(-)].[ihDQ (t,0—1)3[0,w()]dO

- J;t_;,J.:_hZA,[e’W()]DR (t,0—t,0—t)x
2ow(-)]ddo +y |w(t )|

—y?|wit)=wrewe ]| (67)
where
witw(-)] =y F [P(t,e)z[t,w(-)]

(68)

+ O(1,0 - 1,6 Z[0,w(-)]d6)].
i
Equation (67) directly yields the inequality V¢ € [0, 7]

dV() -
dt

LPEA0)]) ’_hDQ (t,0—1)3[0,w()]dO
+jf’_hjt’_hs’[e,w(-)]DR(t,e—t,a—t)x
z[o,w(-)]dbdo —y*|w(t)|’ < 0.

[£,w()IDp (D)2, w()]

(69)

Integrating the inequality (69) from =0 to t=T
and using the conditions (6) and (63) immediately yield
the fulfilment of the inequality (55) along trajectories of
the system (48)-(49) subject to the initial conditions (6).
Part IV. The existence of solution to the problem (60)-
(64) for all sufficiently small & > 0, which satisfies the
conditions (65), is shown by formal constructing and
justifying the zero-order asymptotic solution to the
problem (60)-(64). This asymptotic solution can be
obtained in the way similar (but not identical) to (Glizer
1999). This completes the proof of the theorem.
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Corollary 4.1. Under the conditions of Theorem 4.1,
the controller

u [ x(-).y()(t)=(1/e)v [ x(-).y(-)](1)
solves the H  control problem (1)-(3) for all
ce(0s"].

5. NONSTANDARD H_ CONTROL PROBLEM

In this section, we consider the following functional for
the system (1)-(2):

J(uw)=[ [x ()Dx(t)+y (1)D,y(t) o
—y?|wt)| Jat.

It is seen that the functional (70) does not contain a
quadratic control cost.

The nonstandard /  control problem with a
performance level ¥ for the system (1)-(2) (NHICP) is

to find a controller #~ /[ x(-), y(-)](t) that ensures
the inequality J (1", w) <0 along trajectories of (1)-
@) forall w(t)eL’[0,T;E?]

and for x(t)=0, y(t)=0, t<0.

Since the functional (70) does not contain a
quadratic control cost, the approach, proposed in

Lemma 2.1 for the solution of the H_ control problem

(4)-(7), is not applicable for the solution of the NHICP.
In order to solve the NHICP, we replace the functional
(70) with the cheap control functional (3). Such a

replacing leads to the H_ control problem (4)-(7), for

which Corollary 4.1 gives & -free reduced-order
solvability conditions, as well as the controller solving
this problem. Due to this corollary, the employing the

controller u(t)=u_[(x(-),y(-)](t) in the system
(H-2) subject to  the initial  conditions

x(t)=0,y(t)=0,t<0 yields the following
inequality for all w(t)e L’[0,T;E?] and all
se(0&"]:

T
JCugw)+ [ v [xC)y))) de<o,
where the arguments x(-) and y(-) for v, constitute

the solution col(x(t,&),y(t,&)) of the system (48)-

(49) subject to the initial conditions (6).
From the inequality (71), one directly has

J(u.,w)<0, which implies that the controller
u(t)=u,[(x(-),y(-)](t) solves the NHICP for all

se(0e] if  there exist a  solution

{P(,0,(t,0), R (t,7,p)} of (26)-(31) in the
domain (2, satisfying the conditions (32).

Remark 5.1. The inequality (71) yields a stronger
inequality than J(u,,w) < 0. Namely,

Juow)<=[|v.[x(e)v0.8)])0 ) de. 72

The integral in the right-hand side of this inequality
depends on & € (0, & ]. The following theorem gives

an estimate of this integral for small enough & > 0.
Theorem 5.1. Let there exist a  solution

{P(1),0,(t,7),R(t,T,p)} of (26)-(31) in the
domain €2, satisfying the conditions (32). Then there
exists a positive number 81* ,( 6‘1* <g ), such that, for
any given W(t) € L’[0,T;E?] and all & € (0,6‘1*],
the following inequality is satisfied:

0< [ |v.lxCe).y0e))(1)] di <
agQ|W(t)||L2[0,T] )2’

where a > 0 is some constant independent of &€ .
Proof. In order to save the space, we present here a
sketch of the proof.

The left-hand inequality in (73) is obvious. Proceed
to the proof of the right-hand one.

Asymptotic analysis of the problem (48)-(49), (6)

leads to the existence of a constant 0 < 81* <¢" such
that, for any given w(t)e L’[0,T;E?] and all

g€(0,&, ] , the following inequalities are valid:

(73)

||x(t,g) - f(t)”C[(),T] < a18||w(t)||L2[(),T]’ (74)
”y(t,g) - ')_/(t)”C[O,T] < a1€1/2||w(t)”L2[0,T] (79

where @, >0 is some constant independent of &,

%(t) = j;ax(t,s)aw(s)ds, (76)

7(0) = [®, (1.) Fw(s)ds. "

the 7 X 1 -matrix-valued function @ (¢,5) is the

solution of the following problem for 0 <s<¢t<T :

dcpxd(tt’S) - (A” - AzzD;A}zPs(t))ix(t’s)

+H,@(t=hs)+[ (G,(7)
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—AUD;]A]'ZQS(t,T))ax(t+'r,s)ds, (78)

D (t,5)=0, t<s; D (s,5)=1, (79)
and the m X n -matrix-valued function 6y (¢,8) has

the form

@,(t,5) = =D, 4,P.()D,(t,5)

- th;Al'zQS(t, )@ (t+71,5)dr. (80)

Now, by using the inequalities (74)-(75) and the
equations  (76)-(80), one obtains after some
rearrangement the inequality

v, [X(',é'),y(':g)](t)”c[aT] <

aze" )]z

(81)
[01]’

where a, > () is some constant independent of & .

The inequality (81) directly yields the right-hand
inequality in (73).

6. CONCLUSIONS

In this paper, a linear controlled system with point-wise
and distributed state delays and a square-integrable
disturbance is considered. For the sake of simplicity, it
is assumed that this system consists of two modes. One
of them is controlled directly, while the other is
controlled through the first one. Moreover, it is
considered the case where the state variable of the
directly controlled mode has no delays. For this system,
the finite horizon H_ control problem with a given
performance level is studied. The control cost in the
cost functional of this problem is assumed to be small
with respect to the state and disturbance costs, i.e., the
considered problem is the H cheap control problem.
By using a simple control transformation, this problem
is converted to the H_ control problem for a system

with a small multiplier & >0 for a part of the
derivatives, i.e., for a singularly perturbed system. In
this singularly perturbed system, the slow state variable
has delays, while the fast state variable has not. This
new H_ control problem, considered as an original
one, is analyzed in the sequel of the paper. For this
problem, reduced-order solvability conditions, valid for
any positive small enough &, are derived. The & -free
controller, solving this problem for all sufficiently small
values € >0, also is designed. This controller, being
multiplied by 1/ &, yields the controller, solving the

H  cheap control problem. These results are applied to

the solution of the nonstandard H  control problem. It

is shown that the controller, solving the F_ cheap

control problem, also solves the nonstandard /

control problem. Moreover, it is shown that this
controller ensures the cost functional of the nonstandard

H_ control problem to be smaller than the negative

[e]

function of &, the absolute value of which is of order of
& for all sufficiently small values & > 0.
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