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ABSTRACT 
A finite horizon H-infinity cheap control problem with a 
given performance level for a linear system with state 
delays is considered. By a proper transformation of the 
control variable, this problem is converted to an H-
infinity control problem for a singularly perturbed 
system. For this new problem, parameter-free sufficient 
conditions of the existence of solution and the solution 
(controller) itself are obtained. These results are applied 
to solution of a nonstandard H-infinity control problem. 
  
Keywords: H-infinity cheap control, time-delay system, 
singular perturbation, nonstandard H-infinity control 
problem 

 
1. INTRODUCTION 

∞H  control problems are studied extensively in the 
literature for systems without and with delays in the 
state variables (Basar and Bernard 1991, Bensoussan, 
Da Prato, Delfour and Mitter 1992, Doyle, Glover,  
Khargonekar and Francis 1989, Fridman and  Shaked 
1998, Fridman and Shaked 2000, van Keulen 1993). 
The solution of an ∞H  control problem for a linear 
system can be reduced to a solution of a game-theoretic 
Riccati equation. In the case of an undelayed system, 
the Riccati equation is finite dimensional (matrix one), 
while in the case of a delayed system, it is infinite 
dimensional (operator one). The operator Riccati 
equation can be reduced to a hybrid system of three 
matrix equations of Riccati type. Analysis and solution 
of this system are very complicated. Therefore, it is 
extremely important a study of classes of ∞H  control 
problems with delays, for which the investigation of the 
operator Riccati equation can be simplified. One of such 
classes is the class of ∞H  cheap control problems. 

The ∞H  cheap control problem is an ∞H  problem 
with a small control cost (with  respect to state and 
disturbance costs) in the cost functional. A cost 
functional with a small control cost arises in many 
topics of control theory. For instance, it arises in the 
regularization method of a singular optimal control 
(Bell and  Jacobson 1975), in studying the limitations of 
optimal regulators and filters (Braslavsky, Seron,  
Maine and Kokotovic 1999, Kwakernaak and Sivan 

1972, Seron, Braslavsky, Kokotovic and Mayne 1999), 
in analysis of control problems with a high control gain 
(Kokotovic, Khalil and O'Reilly 1986), in the 
investigation of inverse control problems (Moylan and. 
Anderson 1973), in the design of a robust control for 
systems with disturbances (Turetsky and Glizer 2004, 
Turetsky and Glizer 2011), and some others. 
      Cheap control problems for systems without 
disturbances (uncertainties) were widely investigated in 
the literature. The case of systems with undelayed 
dynamics was treated more extensively (Bikdash, 
Nayfeh and Cliff 1993, Jameson and O'Malley 1974/75, 
Kokotovic, Khalil and O'Reilly 1986, O'Malley and 
Jameson 1977, Sabery and Sannuti 1987, Smetannikova 
and Sobolev 2005). The case of systems with delayed 
dynamics was studied less extensively (Glizer 1999, 
Glizer 2005, Glizer 2006, Glizer, Fridman and Turetsky 
2007, Glizer 2009a). In both cases, an optimal control 
problem was analyzed. ∞H  cheap control problems 
have been studied in the literature much less (Glizer 
2009b, Toussaint and Basar 2001). It should be noted 
that two-player zero-sum differential games with a 
cheap control cost of one of the players in the 
performance index were analyzed in (Glizer 2000, 
Petersen 1986, Starr and Ho 1969, Turetsky and Glizer 
2004, Turetsky and Glizer 2011). In these works, the 
case of an undelayed game dynamics and a cheap 
control cost for the player, minimizing the performance 
index, was analyzed, which makes the problems, 
considered in these works, to be close to the ∞H  cheap 
control problem for a system without delays. 
       In the present paper, a system with point-wise and 
distributed state delays and with a square-integrable 
disturbance is considered. For this system, a finite 
horizon ∞H  cheap control problem is formulated. A 
method of asymptotic analysis and solution of the 
considered ∞H  cheap control problem is proposed. 
This method is based on: (i) an equivalent 
transformation of the ∞H  cheap control problem to a 

new ∞H  problem for a singularly perturbed controlled 
system; (ii) an asymptotic decomposition of the 
resulting problem into two much simpler parameter-free 
subproblems, the slow and fast ones. Using controllers, 
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solving the slow and fast subproblems, a composite 
controller, solving the transformed problem, is 
designed. The latter yields a controller, solving the 
original ∞H  cheap control problem. Note that the 

algorithm of the analysis of the finite horizon ∞H  
cheap control problem, considered in this paper, is 
similar to that applied in (Glizer 2009b) for analysis of 
the infinite horizon ∞H  cheap control problem. Along 
with this, there are essential differences in studying 
these problems both in main assumptions and 
techniques. 

The results, obtained for the ∞H  cheap control 
problem, are applied to the solution of a nonstandard 

∞H  control problem, i.e. the problem in which the 
functional does not contain a quadratic control cost. 
        The following main notations are applied in the 
paper: (1) nE  is the n -dimensional real Euclidean 
space; (2) ⋅  denotes the Euclidean norm either of a 
vector or of a matrix; (3) the prime denotes the 
transposition of a matrix )(, 'AA  or of a vector 

)(, 'xx ; (4) ];,[2 nEcbL  is the Hilbert space of n -
dimensional vector-valued functions square-integrable 
on the interval ],[ cb , the norm in this space is denoted 

as 
],[2 cbL

⋅ ; (5) ];,[ nEcbC  is the Banach space of 

n -dimensional vector-valued functions continuous on 
the interval ],[ cb , the norm in this space is denoted as 

],[ cbC
⋅ ; (6) nI  is the n -dimensional identity matrix; 

(7) ),(col yx , where mn EyEx ∈∈ , , denotes the 
column block-vector of the dimension mn +  with the 
upper block x  and the lower block y , i.e., 

''' ),(=),(col yxyx .  
 
2. PROBLEM FORMULATION  
2.1.  ∞H  Cheap Control Problem 
Consider the controlled system 
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where ][0,Tt ∈ ; nEtx ∈)( , mEty ∈)( , 

mEtu ∈)( , ( u  is a control), qEtw ∈)( , ( w  is a 

disturbance); 0>h  is a given constant time delay; 

ijA , 1,2)=,( ji , 1iH , )(1 τiG , iF , 1,2)=(i  and 

B  are given time-invariant matrices of corresponding 
dimensions; B  has the full rank; the matrix-functions 

)(1 τiG , 1,2)=(i  are piece-wise continuous for 

,0][ h−∈τ . 

       Assuming that ]E;T[0,L)t(w q2∈ , consider 
the functional  
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where 1D  is symmetric positive-semi-definite, 2D  is 
symmetric positive-definite matrices; 0>γ  is a given 
constant; 0>ε  is a small parameter. 
      The ∞H  control problem with a performance level 
γ  for the system (1)-(2) is to find a controller 

)t)]((y),(x[u* ⋅⋅  that ensures the inequality 

0),( * ≤wuJε  along trajectories of (1)-(2) for all 

]E;T[0,L)t(w q2∈  and for 
0.t0,=)t(y0,=)t(x ≤     

The presence of a small multiplier 2ε  in the control 
cost of the functional (3) means that this problem is the 

∞H  cheap control problem.  
 
2.2.  Transformation of the Cheap Control Problem 
By the control transformation )()(1/=)( tvtu ε , 

where v  is a new control, the ∞H  problem (1)-(3) 
becomes  
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Note that the system (4)-(5) is singularly perturbed 
(Kokotovic, Khalil and O'Reilly 1986). The state 
variables )(⋅x  and )(⋅y  are the slow and fast ones, 
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respectively. In this system, the slow state variable is 
with a delay, while the fast state variable is delay free. 
       In the sequel, we deal with the ∞H  problem 
consisting of the system (4)-(5), the initial conditions 
(6) and the cost functional (7), which is called the 
original ∞H  control problem (OHICP). Once a 
controller of the OHICP is obtained, the corresponding 
controller of the ∞H  problem (1)-(3) is obtained by 
using the equation )()(1/=)( tvtu ε .  
 
2.3. Solvability Conditions 
Consider the following )()( mnmn +×+ -block-
matrices  
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and the matrix )(εS  
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The matrix )(εS  can be represented in the block form  

.
)(

=

=)(

3
'
2

21

'2'
22

2'
12

2

'
21

2'
11

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
Δ

−−−

−−

ε

εγγ
γγ

ε

SS
SS

BBFFFF
FFFF

S
          (11) 

 
       Consider the following set of Riccati-type ordinary 
differential and two partial first-order differential 
equations for the matrices )(tP , ),( τtQ  and 

),,( ρτtR in the domain  =Ω  
0}0,,0:),,{( ≤≤−≤≤−≤≤ ρτρτ hhTtt   
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The matrices )(tP , ),( τtQ  and ),,( ρτtR  satisfy 
the boundary conditions  
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It is seen that the matrix-functions ),( τtQ  and 

),,( ρτtR  are present in the set (12)-(14) with 
deviating arguments. The problem (12)-(17) is, in 
general, of a high dimension. Moreover, due to the 
expression for )(εS , this problem is ill-posed for 

0 +→ε . 
Lemma 2.1. Let, for a given 0>ε , there exist a 
solution )},,,(),,,(),,({ ερτετε tRtQtP  of (12)-
(17) such that  
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                                (18) 

 
Then, for this ε , the controller  
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solves the OHICP. 
Proof. The lemma is a direct technical extension of the 
result of (Glizer 2003) (Theorem 2.1 and its proof) 
where the case of only a point-wise state delay in the 
controlled system has been considered. 
Remark 2.1. Due to the above mentioned features of 
the problem (12)-(17), verifying the existence of its 
solution and searching this solution are very 
complicated tasks. 

 
2.4. Objectives of the Paper 
The objectives of this paper are the following: 
(i) to derive ε -free reduced conditions, guaranteeing 
the existence of a controller solving the OHICP for all 
sufficiently small 0>ε ; 
(ii) to design a controller much simpler than (19), which 
being ε -free solves the OHICP for all sufficiently 
small 0>ε ; 
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(iii) to apply the above mentioned results to the solution 
of a nonstandard ∞H  control problem. 

 
3. FORMAL CONSTRUCTING A SIMPLIFIED 

CONTROLLER FOR THE OHICP 
In this section, we propose a method of constructing a 
simplified controller for the OHICP. This method is 
based on an asymptotic decomposition of the OHICP 
into two much simpler ε -free subproblems, the slow 
and fast ones. 

 
3.1. Slow Subproblem  
The slow subproblem is obtained from the OHICP by 
setting there formally 0=ε  and redenoting vyx ,,  

and J  by sss vyx ,,  and sJ , respectively. Thus, we 
have  
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Since the matrix B  is invertible, the equation (21) 
yields  
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By substituting (24) into (23), we obtain  
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Since the variable )(tys  does not satisfy any equation 

for )[0,+∞∈t , one can choose it to satisfy a desirable 
property of the system (20). This means that the 
variable )(tys  can be considered as a control variable 
in the system (20). Thus, the functional (25), calculated 
along trajectories of this system, depends on the control 
variable )(tys  and the disturbance 

];[0,)( 2 qETLtw ∈ , i.e., ),(= wyJJ sss . For the 

system (20), we can formulate the following ∞H  
control problem with a performance level γ : to find a 

controller ))](([ txy ss ⋅  that ensures the inequality 

0),( ≤wyJ ss  along trajectories of (20),(22) for all 

];[0,)( 2 qETLtw ∈ . This ∞H  control problem is 

called the slow ∞H  control subproblem (SHICP) 
associated with the OHICP. 
       Consider the following set of Riccati-type matrix 
ordinary differential and two first-order partial 
differential equations with deviating arguments:  
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The set of equations (26)-(28) is subject to the boundary 
conditions  
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Similarly to Lemma 2.1, one has the following 
proposition. 
Proposition 3.1. Let there exist a solution 

)},,(),,(),({ ρττ tRtQtP sss  of (26)-(31) in the 

domain Ω , such that  
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Then, the controller  
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solves the SHICP. 
 

3.2. Fast Subproblem  
The fast subproblem is obtained in the following three 
stages. First, the slow variable )(⋅x  is removed from 
the equation (5) and the cost functional (7) of the 
OHICP. Second, the following transformation of 
variables is made in the resulting problem:  
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where ξ , fy , fv , fw  and fJ  are new independent 
variable, state, control, disturbance and cost functional, 
respectively. Thus, we obtain the system and the cost 
functional  
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Finally, neglecting formally the terms with the 
multiplier ε  in (35) and replacing formally ε/T  by 
∞+  in (36) yields the system  
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For the system (37) and the cost functional (38), the 

∞H  control problem with a performance level γ  can 
be formulated as follows. To find a controller 

)]([* ξff yv  that stabilizes (37) and ensures the 

inequality 0),( * ≤fff wvJ  along its trajectories for all 

];[0,)( 2
q

f ELw +∞∈ξ  and for 0=(0)fy . This 

∞H  control problem is called the fast ∞H  control 
subproblem (FHICP) associated with the OHICP. 

       Let K  be any mm × -matrix such that BK  is a 
Hurwitz matrix. Then, the controller 
  

)(=)]([* ξξ fff Kyyv                                             (39) 
 
solves the FHICP. 
       Note, that the FHICP is a particular case of the 
infinite horizon ∞H  control problem, considered in 
(Basar and Bernard 1991). Due to results of this book, if 
there exists a solution fP  of the algebraic matrix 
Riccati-type equation  
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gain K  in (39) can be chosen as  
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       Let us show that the above mentioned solution of 
(40) exists. Indeed, since the matrix 2D  is positive 
definite, then there exist the unique positive definite 
solution of (40)  
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where the superscript "1/2" denotes the unique 
symmetric positive definite square root of respective 
symmetric positive definite matrix, the one "-1/2" 
denotes the square root of respective inverse matrix. 
Now, using (41) and (42), we have  
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Since 2D  is positive definite and B  is not singular, 
then the equation (43) means that the matrix BK  is 
Hurwitz. Hence, the controller  
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solves the FHICP. 

 
3.3. Composite Controller for the OHICP 
In this subsection, based on the control )(tvs , given by 

(24), the controller ))](([* txy ss ⋅ , solving the SHICP, 

and the controller )]([* ξff yv , solving the FHICP, we 
construct a composite controller for the OHICP. Then, 
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we show that this controller solves the OHICP for all 
sufficiently small 0>ε . 
       The composite controller is constructed in the form 
  

)],/(~[)(=))]((),([ * εtyvtvtyxv fsc +⋅⋅                (45) 
  
where )/(~ εty  is defined as follows  
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Substituting (24) and (44) into (45), and using (33),  
(42) and (46) yield after some rearrangement  

 
)t(x)t(PAD[P'B=)t)]((y),(x[v s

'
12

1
2fc
−−⋅⋅  

]d)t(x),t(QAD)t(y s
'
12

1
2

0

h
τττ +++ −

−∫         (47)       

 
 

4. ε -FREE SOLVABILITY CONDITIONS FOR 
THE OHICP 

Theorem 4.1. Let there exist a solution 
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domain Ω , satisfying the conditions (32). Then, there 
exists a positive number *ε , such that the controller 
(47) solves the OHICP for all ](0, *εε ∈ . 
Proof. The proof of the theorem consists of four parts. 
For the sake of saving the space of the paper, we present 
here a sketch of the proof. 
Part I. By substituting the controller (47) into the 
system (4)-(5) and the cost functional (7), we obtain  
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εε
 

[ ]
),()(

),()(

2

'
12

1
2

'
21

0

twFdtx

tQADPBBG sfh

εττ

ττε

++

×−+ −

−∫           (49)        

 

[ )()()(=)(=),( 1
'

0
txtDtxwJwvJ P

T

cc ∫
Δ

τττ dtxtDtx

tyDtytytDtx

Qh

PP

)(),()(2

)()()()()(2

1

0'

3
'

2
'

++

++

∫−
 

τττ dtxtDty Qh
)(),()(2 2

0' ++ ∫−  

ρτρρττ ddtxtDtx Rhh
)(),,()( 1

'00
+++ ∫∫ −−

      

] ,dt)t(w 22γ−                                                 (50) 
 
 where  
 

),()(=)( '
12

1
21211 tPADAtPDtD ssP
−+                   (51) 

,2=,)(=)( 23122 DDAtPtD PsP                          (52) 

),,(=),(

),,()(=),(
'
122

'
12

1
2121

ττ

ττ

tQAtD

tQADAtPtD

sQ

ssQ
−

            (53) 

).,(),(=),,( '
12

1
212

'
1 ρτρτ tQADAtQtD ssR

−         (54)                      
 
        Thus, the proof of the theorem is reduced to a 
proof of fulfilment of the following inequality for all 
sufficiently small 0>ε :  
 

],;[0,)(0)( 2 q
c ETLwwJ ∈⋅∀≤                     (55) 

  
along trajectories of the system (48)-(49) subject to the 
initial conditions (6). 
Part II. Consider the following )()( mnmn +×+  
block matrices  

 

,
PBBAtPAPA

AA
tÂ

fsf
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− −−− '1

22
'
12

11
21

1211

)(

=),(

εε

ε
      (56) 

 

,
0),()(
0)(

=),,(

'
12

11
21

11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− −− τετ

τ
ετ

tQAPG
G

tĜ

sf

                    (57) 

  

,
0),(
0),(

=),(

,
)()(
)()(

=)(

2

1

3
'

2

21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

τ
τ

τ
tD
tD

tD

tDtD
tDtD

tD

Q

Q
Q

PP

PP
P

                          (58) 

  

.=

,
00

0),,(
=),,(

'2

1

FFS

tD
tD

F

R
R

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

γ

ρτ
ρτ

                  (59) 

 
       Consider the following system of ordinary and 
partial matrix differential equations of Riccati type with 
respect to )()( mnmn +×+ -matrices )(ˆ tP , 

),(ˆ τtQ  and ),,(ˆ ρτtR  in the domain Ω :  
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),(,0)(,0)()()(

)(),(),()(=)(

'

'

tDtQ̂tQ̂tP̂StP̂

tP̂tÂtÂtP̂
dt

tP̂d

PF −−−−

−− εε
      (60) 

  

),,(),0,(),,()(

),())(),((

=),(

'

ττετ

τε

τ
τ

tDtR̂tĜtP̂

tQ̂tP̂StÂ

tQ̂
t

Q

F

−−

−+−

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

                (61) 

  

),,(),(),(),,(

=),,(

'' ερτρετ

ρτ
ρτ

tĜtQ̂tQ̂tĜ

tR̂
t

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

−
∂
∂

 

 
.tDtQ̂StQ̂ RF ),,(),(),(' ρτρτ −−                     (62) 

 
The system (60)-(62) is considered subject to the 
boundary conditions  

 
0,=),,(ˆ0,=),(ˆ0,=)(ˆ ρττ TRTQTP       (63) 

,),(=),,(

),,(=),,(

,)(=),(

'

'

HtQ̂htR̂

tQ̂HhtR̂

HtP̂htQ̂

ττ

ττ

−

−

−

                                  (64) 

  
where the matrix H  is given in (8). 
       Let us show the following. If for some 0>ε , the 
problem (60)-(64) has a solution 
 

)},,,(ˆ),,,(ˆ),,(ˆ{ ερτετε tRtQtP  such that  

,),,(
),,,,(=),,,(

),,(=),(
'

'

Ωρτ
ετρερτ

εε

∈t
tR̂tR̂

tP̂tP̂

                           (65) 

 
 then, for this ε , the inequality (55) is satisfied along 
trajectories of the system (48)-(49) subject to the initial 
conditions (6). 
Part III. Consider the following functional, depending 
on the parameter ][0,Tt∈ , on a vector mnE +∈0ϕ  

and on a function ];,[)( 2 mn
z EthtL +−∈θϕ :  

 

θθϕεθϕ

ϕεϕθϕϕ

dttQ̂

tP̂tV

z

t

ht

z

)(),,(2

),(=)](,,[
'
0

0
'
00

−+ ∫−

Δ

 

.)(

),,,()('

σθσϕ

εσθθϕ

dd

tttR̂

z

z

t

ht

t

ht
×−−+ ∫∫ −−                    (66) 

 
 Let, for a given ];[0,)( 2 qETLw ∈⋅ , the vector 
function )])(,[ˆ)],(,[ˆ(=)](,[ˆ ⋅⋅ wtytwtxcolwtz , 

][0,Tt∈ , be the solution of the system (48)-(49) 
subject to the initial conditions (6). Such a solution 
exists and is unique. Let, for a given ][0,Tt∈ , 

[ ])](w,[ẑ)],(w,t[ẑ,tV=)t(V̂ ⋅⋅
Δ

θ . Calculating the 

derivative of )(ˆ tV , we obtain after some 
rearrangement  

 

θθθ dwẑttDwtẑ

wtẑtDwtẑ
dt

tV̂d

Q

t

ht

P

)](,[),()](,[2

)](,[)()](,[=)(

'

'

⋅−⋅−

⋅⋅−

∫−
 

22

R
't

ht

t

ht

)t(wdd)](w,[ẑ

)t,t,t(D)](w,[ẑ

γσθσ

σθθ

+⋅

×−−⋅− ∫∫ −−  

,)](w,t[ŵ)t(w 22 ⋅−− γ                                   (67) 
 
 where  
 

].d)](w,[z),t,t(Q̂

)](w,t[z),t(P̂[F=)](w,t[ŵ
t

ht

'2

θθεθ

εγ

⋅−+

⋅⋅

∫ −

−

          (68) 

 
Equation (67) directly yields the inequality ][0,Tt∈∀  
 

θθθ dwẑttDwtẑ

wtẑtDwtẑ
dt

tV̂d

Q

t

ht

P

)](,[),()](,[2

)](,[)()](,[)(

'

'

⋅−⋅+

⋅⋅+

∫−

0.)t(wdd)](w,[ẑ

)t,t,t(D)](w,[ẑ
22

R
't

ht

t

ht

≤−⋅

×−−⋅+ ∫∫ −−

γσθσ

σθθ
         (69) 

 
 Integrating the inequality (69) from 0=t  to Tt =  
and using the conditions (6) and (63) immediately yield 
the fulfilment of the inequality (55) along trajectories of 
the system (48)-(49) subject to the initial conditions (6). 
Part IV. The existence of solution to the problem (60)-
(64) for all sufficiently small 0>ε , which satisfies the 
conditions (65), is shown by formal constructing and 
justifying the zero-order asymptotic solution to the 
problem (60)-(64). This asymptotic solution can be 
obtained in the way similar (but not identical) to (Glizer 
1999). This completes the proof of the theorem. 
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Corollary 4.1. Under the conditions of Theorem 4.1, 
the controller 

)t)]((y),(x[v)(1/=)t)]((y),(x[u cc ⋅⋅⋅⋅ ε  

solves the ∞H  control problem (1)-(3) for all 

](0, *εε ∈ . 
 
5. NONSTANDARD ∞H  CONTROL PROBLEM 
In this section, we consider the following functional for 
the system (1)-(2):  

 

.dt])t(w

)t(yD)t(y)t(xD)t(x[=)w,u(J
22

2
'

1
'T

0

γ−

+∫    (70) 

 
 It is seen that the functional (70) does not contain a 
quadratic control cost. 
       The nonstandard ∞H  control problem with a 
performance level γ  for the system (1)-(2) (NHICP) is 

to find a controller )t)]((y),(x[u* ⋅⋅  that ensures 

the inequality 0),( * ≤wuJ  along trajectories of (1)-

(2) for all   ]E;T[0,L)t(w q2∈  
and  for    .0t,0)t(y,0)t(x ≤==  
        Since the functional (70) does not contain a 
quadratic control cost, the approach, proposed in 
Lemma 2.1 for the solution of the ∞H  control problem 
(4)-(7), is not applicable for the solution of the NHICP. 
In order to solve the NHICP, we replace the functional 
(70) with the cheap control functional (3). Such a 
replacing leads to the ∞H  control problem (4)-(7), for 
which Corollary 4.1 gives ε -free reduced-order 
solvability conditions, as well as the controller solving 
this problem. Due to this corollary, the employing the 
controller )t)]((y),(x[(u=)t(u c ⋅⋅  in the system 
(1)-(2) subject to the initial conditions 

00,=)(0,=)( ≤ttytx  yields the following 

inequality for all ]E;T[0,L)t(w q2∈  and all 

](0, *εε ∈ :  

0,dt)t)]((y),(x[v)w,u(J 2
c

T

0c ≤⋅⋅+ ∫        (71) 

 where the arguments )(⋅x  and )(⋅y  for cv  constitute 

the solution )),t(y),,t(x(col εε  of the system (48)-
(49) subject to the initial conditions (6). 
        From the inequality (71), one directly has 

0),( ≤wuJ c , which implies that the controller 

)t)]((y),(x[(u=)t(u c ⋅⋅  solves the NHICP for all 

](0, *εε ∈  if there exist a solution 

)},,(),,(),({ ρττ tRtQtP sss  of (26)-(31) in the 

domain Ω , satisfying the conditions (32). 
Remark 5.1. The inequality (71) yields a stronger 
inequality than 0),( ≤wuJ c . Namely,  

 

.dt)t)](,(y),,(x[v)w,u(J 2
c

T

0c εε ⋅⋅−≤ ∫    (72) 

  
The integral in the right-hand side of this inequality 
depends on ](0, *εε ∈ . The following theorem gives 
an estimate of this integral for small enough 0>ε . 
Theorem 5.1. Let there exist a solution 

)},,(),,(),({ ρττ tRtQtP sss  of (26)-(31) in the 

domain Ω , satisfying the conditions (32). Then there 
exists a positive number *

1ε , ( **
1 εε ≤ ), such that, for 

any given ];[0,)( 2 qETLtw ∈  and all ](0, *
1εε ∈ , 

the following inequality is satisfied:  

( ) ,)t(wa

dt)t)](,(y),,(x[v0
2

]T[0,2L

2
c

T

0

ε

εε ≤⋅⋅≤ ∫
               (73) 

 where 0>a  is some constant independent of ε . 
 Proof. In order to save the space, we present here a 
sketch of the proof. 
       The left-hand inequality in (73) is obvious. Proceed 
to the proof of the right-hand one. 
       Asymptotic analysis of the problem (48)-(49), (6) 
leads to the existence of a constant **

1<0 εε ≤  such 

that, for any given ]E;T[0,L)t(w q2∈  and all 

](0, *
1εε ∈ , the following inequalities are valid:  

 
,)t(wa)t(x),t(x

]T[0,2L1]T[0,C
εε ≤−         (74) 

  
,)t(wa)t(y),t(y

]T[0,2L
1/2

1]T[0,C
εε ≤−     (75) 

  
where 0>1a  is some constant independent of ε , 

,)(),(=)( 10
dsswFsttx x

t
Φ∫                                  (76) 

  

,)(),(=)( 10
dsswFstty y

t
Φ∫                                  (77) 

 the nn × -matrix-valued function ),( stxΦ  is the 

solution of the following problem for :Tts0 ≤≤≤  
 

( )

( )(G)s,ht(H

)s,t()t(PADAA=
dt

)s,t(d

11

0

h11

xs
'
12

1
21211

x

τΦ

Φ
Φ

∫−

−

+−+

−
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) ,ds)s,t(),t(QADA xs
'
12

1
212 τΦτ +− −               (78) 

  
,=),(;<0,=),( nxx Issstst ΦΦ                (79) 

and the nm × -matrix-valued function ),( styΦ  has 
the form  
 

),()(=),( '
12

1
2 sttPADst xsy Φ−Φ −  

 

.),(),('
12

1
2

0
τττ dsttQAD xsh

+Φ− −

−∫                     (80) 

 
Now, by using the inequalities (74)-(75) and the 
equations (76)-(80), one obtains after some 
rearrangement the inequality  
 

,)t(wa

)t)](,(y),,(x[v

]T[0,2L
1/2

2

]T[0,Cc

ε

εε ≤⋅⋅
                          (81) 

 
 where 0>a2  is some constant independent of ε . 
        The inequality (81) directly yields the right-hand 
inequality in (73). 
 
6. CONCLUSIONS 
In this paper, a linear controlled system with point-wise 
and distributed state delays and a square-integrable 
disturbance is considered. For the sake of simplicity, it 
is assumed that this system consists of two modes. One 
of them is controlled directly, while the other is 
controlled through the first one. Moreover, it is 
considered the case where the state variable of the 
directly controlled mode has no delays. For this system, 
the finite horizon ∞H  control problem with a given 
performance level is studied. The control cost in the 
cost functional of this problem is assumed to be small 
with respect to the state and disturbance costs, i.e., the 
considered problem is the ∞H  cheap control problem. 
By using a simple control transformation, this problem 
is converted to the ∞H  control problem for a system 
with a small multiplier 0>ε  for a part of the 
derivatives, i.e., for a singularly perturbed system. In 
this singularly perturbed system, the slow state variable 
has delays, while the fast state variable has not. This 
new ∞H  control problem, considered as an original 
one, is analyzed in the sequel of the paper. For this 
problem, reduced-order solvability conditions, valid for 
any positive small enough ε , are derived. The ε -free 
controller, solving this problem for all sufficiently small 
values 0>ε , also is designed. This controller, being 
multiplied by ε/1 , yields the controller, solving the 

∞H  cheap control problem. These results are applied to 

the solution of the nonstandard ∞H  control problem. It 

is shown that the controller, solving the ∞H  cheap 

control problem, also solves the nonstandard ∞H  
control problem. Moreover, it is shown that this 
controller ensures the cost functional of the nonstandard 

∞H  control problem to be smaller than the negative 
function of ε , the absolute value of which is of order of 
ε  for all sufficiently small values 0>ε . 
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