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ABSTRACT
This article address the identification problem of the

natural frequency and the damping ratio of a second order
continuous system where the input is a sinusoidal signal.
An algebra based approach for identifying parameters
of a Mass Spring Damper (MSD) system is proposed
and compared to the Kalman-Bucy filter. The proposed
estimator uses the algebraic parametric method in the
frequency domain yielding exact formula, when placed
in the time domain to identify the unknown parameters.
We focus on finding the optimal sinusoidal exciting
trajectory which allow to minimize the variance of the
identification algorithms. We show that the variance of
the estimators issued from the algebraic identification
method introduced by Fliess and Sira-Ramirez is less
sensitive to the input frequency than the ones obtained
by the classical recursive Kalman-Bucy filter. Unlike
conventional estimation approach, where the knowledge of
the statistical properties of the noise is required, algebraic
method is deterministic and non-asymptotic. We show that
we don’t need to know the variance of the noise so as
to perform these algebraic estimators. Moreover, as they
are non-asymptotic, we give numerical results where we
show that they can be used directly for online estimations
without any special setting.

Keywords: Parameter estimation; Recursive algorithm;
Kalman-Bucy algorithm; Forgetting factor; Algebraic ap-
proach; Laplace transform; Operational calculus; Leibniz
formula; Integral rules; Filtering.

1. INTRODUCTION
Since a wide large of mechanical systems are modeled

through coupled or isolated Mass Springer Damper sys-
tems, the estimation problem of the MSD parameters is
classic in nature. Moberg et al [1] have modeled a 2 link
of an ABB industrial robot based on serial MSD system for
each axis. This is done aiming to simplify the related elastic
dynamic equations. Also, a double mass model of an elastic
cam mechanism was described in [2], that gives a more
realistic idea of the relationship in mass distribution in the
process. The method introduced in this article concerns the
parameters estimation problem based on a new algebraic
method introduced by Fliess and Ramirez [3] and compare

to a conventional algorithm proposed through the Kalman-
Bucy filter in parameter estimation. These algebraic para-
metric estimation techniques for linear systems [4] have
been extended for various problems in signal processing
for example [5],[6],[7],[8],[9],[10]. Let us emphasize that
those methods, which are non-asymptotic, exhibit excellent
robustness properties with respect to corrupting noises,
without the need of knowing their statistical properties
[19]. We propose to apply this algebra based approach for
identifying parameters of a Mass Spring Damper (MSD)
excited by a sinusoidal input. Similar approach is proposed
in [8], however the novelty of this article, is to compare
two types of identification algorithms based on finding
the optimal input solution in order to well and quickly
identify the mechanical system parameters. We perform a
numerical study to obtain the optimal solution in case when
a wave generator is used as excitation signal. The optimal
input signal design depends on two parameters : frequency
ω1 and the amplitude that gives the best training exciting
trajectory. We compare the results to the ones obtained
via a classical recursive approach [11], [12], [13], [14]. In
particular, this method is compared to a weighted Kalman-
Bucy filter [13] in order to show the robustness and the
efficiency of the proposed technique where measurements
are corrupted by a noise. We study the effect of a Gaussian
noise added to the output on the estimators variance [15].
This is performed by taking the sampling period into
account. We focus on optimal input excitation in order
to maximize the convergence rate of estimators based on
minimum variance analysis [16]. Hence, we compare the
algebraic method variance with the one of the Kalman-
Bucy filter. This variance analysis allows us to show that
contrary to the recursive approach [17], [18], the algebraic
method is less sensitive to the value of the exiting frequency
input and more robust to the corrupted noise. Moreover,
the Kalman-Bucy approach needs the knowledge of the
statistical properties of the noise that is not required for the
algebraic method [19]. We show that this method is also
robust even for a high frequency sinusoidal disturbance.
Online identification of the unknowns undamped angular
frequency and the damping ratio is devoted. The identified
parameters are obtained in finite time and the noise effect is
attenuated by the iterated integrals. Numerical results show
the accuracy of the estimation and the best training signal
design.
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The outline of this paper is as follows. Section 2
describes the problem statement. Section 3 contains a
variance analysis of identified parameters thorough the
Kalman-Bucy algorithm and the corresponding exciting
trajectory design. Mathematical framework for algebraic
parameters estimation is presented in Section 4 which also
contains the estimation methods following from the rules of
operational calculus. Simulations and comparative analysis
of estimators are proposed in Section 5, while Section 6
concludes the paper.

2. PROBLEM STATEMENT

Consider a Mass Spring Damper (MSD) system defined
by the following continuous-time second-order system :

ẍ(t)+2ζ ω0ẋ(t)+ω
2
0 x(t) = u(t), (1)

where u(t) is the input, ω0 is the natural undamped
frequency and ζ ∈ [0,1] is the damping ratio. One can

note that physically ω0=
√

k
m is the undamped angular

frequency of the mechanical system and ζ = c
2
√

km
be the

damping ratio; Where c is the viscous damping coefficient,
k denotes the spring constant and m the mass of the load.
We set θ1 = 2ζ ω0, θ2 = ω2

0 and u(t) = A1 sin(ω1t). Let
x̃i = xi +ϖi be a noisy observation of the "true" position
xi = x(ti) of the system at ti = iTs for i = 0, . . . ,N. The
real value Ts denotes the sampling period. We assume that
ϖ is an additive noise corruption which is a second order
continuous stochastic process with zero-mean and a known
variance σ2. Consequently, we search the values of ω1
which allows us to estimate θ1 and θ2 with the minimum
variance for a given time estimation.

3. KALMAN-BUCY FILTER ESTIMATORS

A. Introduction

This section aims to use the Kalman-Bucy filter [13] so
as to estimate the vector Θ = (θ1,θ2)

T which is involved
in the motion equation (1). In order to quickly identify
these parameters through an optimal designed sinusoidal
input, a variance analysis of the estimator is described in
the following. This will allow us to optimally choose the
values of A1 and ω1. The input sequence (ui)i=1,...,N and the
output sequence (x̃i)i=1,...,N are measured synchronously
at the sampling period Ts. Consequently, we obtain the
following linear relations from these measurements :

Yk = XkΘ+ρk, with m < k ≤ N, (2)

where the regression matrix Xk =
(
(ẋi)e x̃i

)
i=m+1,...,k,

the observed signal vector Yk = (ui− (ẍi)e)i=m+1,...,k and
(ẋi)e (resp. (ẍi)e) is the velocity estimation (resp. accelera-
tion estimation) at ti = iTs. We assume that ρk is a sequence
of independent Gaussian variables with zero mean and
known variance σ2

ρ issued from the variance estimators due
to both of the measurement noises ϖ and the derivative
estimation errors. Moreover, the integer m is the minimum
value needed so as to calculate (ẋi)e and (ẍi)e. Usually,
these estimators are computed through a filtered finite
numerical differentiator [22],[23].

From now on, the problem is to estimate Θ based on the
measurements and the observed signal vector. We consider
the situation when the observations are obtained one-by-
one from the process. We would like to update the param-
eters estimate whenever new observation to the previous set
of observations. In what follows, a recursive formulation
is derived. Instead of recomputing the estimates with all
available data, the previous parameters estimate are updated
with the new data sample. In order to do this, the Kalman-
Bucy filter is written in the form of a recursive algorithm.
The recursive algorithm is given by the following structure:

Kk+1 = PkXT
k+1(Rk+1 +Xk+1PkXT

k+1)
−1,

αk+1 = Yk+1−Xk+1Θ̂k,

Θ̂k+1 = Θ̂k +Kk+1αk+1,
Pk+1 = λ−1 (Pk−Kk+1Xk+1Pk) ,

(3)

where Θ̂k is the parameters estimation vector after the
first k−samples and λ ∈ ]0,1] is a forgetting factor which
reduces the influence of old data. In particular, if λ = 1,
then all the data are taken into account in the same manner.
In this algorithm (3), one notes that the vector Θk and
the matrix Pk are involved in the recursions. In order to
initialize the algorithm, we must provide initial values for
these variables. We choose to apply the Ordinary Least
Square solution of this identification problem by using
a "small" samples of the first m-measures (x̃i)i=1,...,k to
compute

Θ̂m = PmBm, where
{

Pm = (XT
m R−1

m Xm)
−1,

Bm = XT
m R−1

m Ym.
(4)

Let us denote

α(i) = k−max{i−m,k} f or i ∈ {m+1, . . . ,k} (5)

After k≥m stacked samples, by applying recursions (3)
initialized with (4), one can recursively obtain the following
estimation

Θ̂k =

∑k
i=m+1 λ α(i)XiYi∑k
i=m+1 λ α(i)X2

i

(6)

with Kk =
Xk∑k

i=m+1 λ α(i)X2
i

and Pk =
σ2

ρ∑k
i=m+1 λ α(i)X2

i

.

(7)

B. Variance analysis

In this subsection, we are interested in the variance
analysis of the estimation (6), aiming to find the input
trajectory u(t) i.e. the values of (A1)opt , and (ω1)opt , which
allow to minimize the variance of (6). The value (ω1)opt

is investigated in term of the optimal ratio Zopt =
(ω1)opt

ω0
.

Besides, for small values of ζ , the dynamic equation (1)
can be simplified by neglecting the damping effect based
on a numerical simulation of the differential equation. For
example, in Fig 1, we compare the difference between the
exact solutions of (1) with ζ = 0.0021 and ζ = 0.

This will be used so as to simplify the variance analysis.
Also, this approximation will take place only in order to
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 Position error by neglecting the damping ratio

Fig. 1. Error of the exact solution of x(t) with ζ = 0.0021 (real damping
ratio) and ζ = 0 and a given sinusoidal exciting trajectory

perform the Kalman-Bucy filter variance of Θ, Var(Θ), in
term of the ratio Z =

ω1

ω0
. This is done in order to find

a variance expression of the recursive estimator. However,
Kalman-Bucy algorithm in parameter estimation will be
rebuilt, by means of (2) and (3), in order to estimate the
unknowns parameters θ1 and θ2 based on the calculated
variance expression. Under this assumption, in order to
perform the variance expression, Θ is limited to the scalar
variable θ2. Moreover, the regression matrix Xk can be
rewritten Xk = (x̃i)i=m+1,...,k. The explicit solution of this
reduced differential equation becomes :

x(t) =
A1 [ω1 sin(ω0t)−ω0 sin(ω1t)]

ω0(ω2
1 −ω2

0 )
. (8)

We denote Pk = ((XkR−1
k Xk)

T )−1, where Rk is a diagonal
matrix

Rk = diag(r1, . . . ,rk−m︸ ︷︷ ︸
k−m times

), (9)

with the r j > 0 and ek =Yk−XkΘ̂k−1 is the a priori error of
estimation. Consequently, the Kalman-Bucy filter consists
of two stages. The first part employs an estimate Θ̂k using
the information already available at time k and the second
part provides the main time-update made by the innovation
process (a priori errors), denoted αk+1 in (3), in order to
estimate Θ̂k+1 from measurements Yk+1, regression Xk+1
and Θ̂k.

In fact, ρk depicts a white noise vector with zero mean
and it is defined by the following autocorrelation function

E[ρ(t)ρ∗(t− τ)] =

{
σ2

ρ , τ = 0,
0, τ 6= 0.

(10)

Concerning the matrix Pk, it represents the variance-
covariance matrix of the estimation error.

Pk = cov[ek] = E[(Θ̂k−Θ)T (Θ̂k−Θ)].

At this stage, the developments below, will be based on
the Kalman-Bucy algorithm with a fixed variance, i.e., for
any k ≥ m, rk−m = σ2

ρ .

Therefore, by applying the linearity property of the
variance, we obtain the above variance expression of (6)

Var(Θ̂k) =

σ2
ρ

k∑
i=m+1

λ 2α(i)X2
i(

k∑
i=m+1

λ α(i)X2
i

)2 . (11)

Relation (11) can be expressed by using the explicit
solution (8), as follows

Var(Θ̂k) =
σ2

ρ

A2
1

K(Z,λ ,ω0,Ts,m,k)

where

K(Z,λ ,ω0,Ts,m,k) =

(ω2
0 (Z

2−1))2
k∑

i=m+1
λ 2α(i)(Z sin(ω0ti)−w0 sin(Zω0ti))

2

(
k∑

i=m+1
λ α(i)(Z sin(ω0ti)−ω0 sin(Zω0ti))

2
)2

. (12)

Hence, the minimization of the variance of the Kalman-
Bucy estimator may be obtained by increasing the mag-
nitude A1 of the input force. However, this strategy is
naturally restricted by some physical limits. Concerning
the variable ω1 i.e. the ratio Z = ω1

ω0
, it will be explained

in next subsection.

C. Influence of the forgetting factor λ

In a first series of experiments, we investigate the
influence of the forgetting factor λ on the value of
K(Z,λ ,ω0,Ts,m,k), Fig 2. In fact, Fig 3 shows the log-
arithm value of K(Z,λ ,ω0,Ts,m,k) according to a dis-
cretized value of Z belonging to [0.01,2] where the
sampling period Ts = 0.001 s, k = 100 and m = 3.
A set of different values of the forgetting factor λ =
{0.95,0.98,0.99,1} is choosen. As we can see, λ = 1 is
always the optimal value for our application.
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Fig. 2. Influence of the forgetting factor λ in variance analysis

D. The optimal input trajectory

Consequently, when λ = 1, we have

K(Z,ω0,Ts,m,k) =
ω4

0 (Z
2−1)2(

k∑
i=m+1

(Z sin(ω0ti)− sin(Zω0ti))
2
) .

(13)
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A Taylor series at Z = 1 allows us to conclude that the min-
imum value is obtained for Z = 1 i.e. (ω1)opt = ω0. Figure
3 depicts the value of K(Z,ω0,Ts,m,k) (13), according to
Z for different numbers k of samples. The other parameters
are the same than those used in the previous subsection.
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Fig. 3. Influence of the ratio Z = ω1
ω0

for optimal trajectory design

Figure 3 shows that the sensibility of the variance is quite
important in the neighborhood of Zopt = 1. In conclusion
using an input trajectory as closed as possible to the natural
frequency of the system, we can consequently minimize the
variance of the Kalman-Bucy estimator.

4. ALGEBRAIC PARAMETRIC ESTIMATOR

In this section, we provide the interested reader with
rigorous mathematical development in which the algebraic
parameter estimation technique, used in this article for the
estimation problem, is based. The fundamental develop-
ments are based on the module theoretic approach to linear
systems [3], [5], [6].

A. Mathematical framework: Generalized expressions of
parameters estimation

Set k = k0{Θ}, where k0 is considered as real, or
complex differential field and Θ = (θ1, ...,θr) a finite set
of unknowns parameters which might not be constant.
The unknown parameters Θ = (θ1, ...,θr) are said to be
linearly identifiable if, and only if,

P(t)

θ1
...

θr

= Q(t)+R(t), (14)

where
• the entries of the matrices P(t) and Q(t), of respective

sizes r×r and r×1 belong to spank0(t)[ d
dt ]
(u,y) where

(u,y) denotes respectively the vector of inputs and
outputs of systems;

• det(P(t)) 6= 0;
• R is a r× 1 matrix with entries in spank0(t)[ d

dt ]
(π)

which designed the disturbance contribution.

B. Algorithm

We consider the dynamic of a system satisfies the inputs-
outputs relation:

n∑
i=0

ai y(i) =
m∑

i=0

bi u(i) (15)

where an = 1, m < n. The algebraic parametric estimator
is derived using the following steps:

• We apply the Laplace transform of (15):∑n
i=0 ai (siy(s)− si−1y0− ...− y(i−1)

0 )

=
∑m

i=0 bi (siu(s)− si−1u0− ...−u(i−1)
0 ) .

(16)
One note the onset of the initial conditions to the (n−
1)th order involved in (16).

• By applying n times the derivative operator with re-
spect to s, we can annihilate the initial conditions. This
step will be of a great advantage by eliminating these
conditions since they are usually unknown. Hence,
we obtain algebraic parametric estimator independent
from initial conditions. It is aimed to estimate the
parameters ai and bi in a fast way and on the basis
possibly noisy measurements. For this exact expres-
sions of the parameters are derived as a function of
the integral of the output and the input, through the
following inverse Laplace transform :

Proposition 4.1 Let Γ be a causal real continuous function
and t0 be a strictly positive real value then for any positive
real T ≤ t0, m ∈ IN∗ and n ∈ IN we have

L −1
(

1
sm

dnΓ̂(s)
dsn

)
(T ) =

(−1)nT m+n

(m−1)!

∫ 1
0 (1− τ)m−1

τnγ (t0− τT )dτ,
(17)

where Γ̂(s) is the Laplace transform of the continuous
function Γ(t) = γ (t0− t).

Proof: By applying the Cauchy formula, we obtain for
any T ≥ 0,

L −1
(

1
sm

dnΓ̂(s)
dsn

)
(T )=

(−1)n

(m−1)!

∫ T

0
(T −u)m−1 un

Γ(u)du.

If we assume that for any u≤ t0, Γ(u) = γ (t0−u) then by
substituting u by τT we obtain∫ T

0
(T −u)m−1 un

Γ(u)du=T m+n
∫ 1

0
(1− τ)m−1

τ
n
γ (t0− τT )dτ.

Consequently (17) holds.
By now on, we set

P(γ)
m,n,T (t0) =

(−1)nT m+n

(m−1)!

∫ 1

0
(1− τ)m−1

τ
n
γ (t0− τT )dτ,

(18)
where γ is either the system output y(t) or the input
u(t) and T > 0 is the time length of the sliding window
estimation. Let us denote t0 is the initial step time for
each sliding window i.e. time estimation T along the
simulation time vector t.This estimation time T may be
small especially in the absence of noise. Meanwhile, T
cannot obviously be taken arbitrary small even in a noise-
free context. A lower bound for T has been formally
characterized in [[19], Prop. 3.2], within the framework
of nonstandard analysis.
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C. Application

Applying the previous rules to (1), we obtain an explicit
formula for the estimates θ̂1 of θ1 and θ̂2 of θ2, as a
function of the estimation time t0on a sliding windows of
length T . We firstly apply the Laplace transform to the
differential equation (1). This gives the following equation:
s2X(s)− sx(0+)− ẋ(0+)+θ1(sX(s)− x(0+))
+θ2X(s) = u(s).
In order to eliminate the initial conditions x(0+) and ẋ(0+),
we apply the derivative operator with respect to s two times.
It leads to:

2X(s)+4s
dX(s)

ds
+ s2 d2X(s)

ds2 +θ1

[
s

d2X(s)
ds

+2
dX(s)

ds

]
+θ2

d2X(s)
ds2 =

d2U(s)
ds2 .

(19)

Multiplying the equation (19) by s−µ , µ ≥ 3, and applying
the inverse Laplace transform (18), we obtain a set of linear
equations in the unknown parameters Θ = (θ1 θ2)

T in
the time domain. It is expressed in terms of a linear
combination of iterated convolution integrals over x(t) and
u(t). Consequently(

θ̂1(t0)
θ̂2(t0)

)
=

(
2P(x)

µ,1,T (t0)+P(x)
µ−1,2,T (t0) P(x)

µ,2,T (t0)

2P(x)
µ+1,0,T (t0)+P(x)

µ,1,T (t0) P(x)
µ+1,2,T (t0)

)−1

(
−2P(x)

µ,0,T (t0)−4P(x)
µ−1,1,T (t0)−P(x)

µ−2,2,T (t0)+P(u)
µ,2,T (t0)

−2P(x)
µ+1,0,T (t0)−4P(x)

µ,1,T (t0)−P(x)
µ−1,2,T (t0)+P(u)

µ+1,2,T (t0)

)
.

(20)

As in [6], we could get another estimators by applying
a derivation to (19) before applying the 1

s operator. For
an experimental design of the algebraic estimator, a dis-
cretization of the integral in (18) will be held by using the
Simpson’s rule ∗ [20].

P(γ)
m,n,T (t0) =

(−1)n

(m−1)!
T m+n

∫ 1

0
(1− τ)m−1

τ
n
γ(t0− τT )dτ

≈ (−1)n

(m−1)!
T n+m T s

3

[(
(1− τ)m−1

τ
n
γ(t0− τT )

)
(0)

+2
L/2−1∑

j=1

(
(1− τ)m−1

τ
n
γ(t0− τT )

)
(2 j)

+4
L/2∑
j=1

(
(1− τ)m−1

τ
n
γ(t0− τT )

)
(2 j−1)

+
(
(1− τ)m−1

τ
n
γ(t0− τT )

)
(n)

]
(21)

where L represents the sampling window T length in
samples: L = T

Ts
. Therefore, let us quote the following

remarks:
• The estimation time T may be small, resulting in fast

estimation.
∗Simpson’s rule is employed aiming to reduce the numerical inte-

gration error compared to the trapezium rule and not to complicate the
numerical implementation.

• The noise effect is attenuated by the iterated integrals
(low pass filter).

• The computational complexity is low.

5. SIMULATIONS AND COMPARATIVE
ANALYSIS

Computer simulations were carried out with the Matlab-
Simulink software. Simulations are achieved on the dy-
namic equation

ẍ(t)+θ1ẋ(t)+θ2x(t) = A1sin(ω1t) (22)

where x(t) is corrupted by a noise with zero-mean and a
known variance. This stochastic signal is built by means
of sequence of random variables by the instruction awgn
in the Matlab package which adds white Gaussian noise to
the vector signal x(t). A step sampling of Ts = 0.001s is
used. The noise level is measured by the signal to noise
ratio in dB, i.e., SNR = 10 log10 (

∑
i |x(ti)|2∑
i |ρ(ti)|2

). Simulations
are achieved for a spring value k = 400 N/m, a damping
coefficient c = 0.05 N.s/m and a load mass m = 3 kg.
Concerning the sinusoidal input u(t), the signal amplitude
A1 was chosen so that it will be the maximum allowed with
respect to the limited physical properties of the system. In
our case, A1 is set to 333.3333N. Fig 4 shows the noisy
position for ti ranging from 0 to 5 seconds. Although, the
linear time invariant (LTI) MSD system (1) is discretized
in order to perform the identification algorithms for each
sampling time.
We note that in this section, most of figures depict the
natural frequency estimation and are limited to ω0 =

√
θ2.
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Fig. 4. Noisy Position x(t) with SNR = 25dB for a given sinusoidal
input

A. Robustness Analysis

In order to compare the performance of the proposed
algebra-based method with the Kalman-Bucy filter, we gen-
erate numerical simulations with high level noises which
allows us to illustrate the robustness of the parameters
estimators involved in (1) with respect to the SNR in dB
and the ratio Z = ω1

ω0
. Both of estimators algorithms were

carried out around two important quantities that reflect
the robustness and the performance of the identification
methods: signal-to-noise ratio and Z. Fig 5 and 6 depict
the weightiness of both SNR and Z in the convergence of
each estimation algorithm.
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Fig. 5. Convergence time (s) for 2 % of estimation error with Algebraic
technique
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Fig. 6. Convergence time (s) for 2 % of estimation error with Kalman-
Bucy algorithm

We assume that the time-estimation is stopped when the
absolute value error estimation is less than 2%. Conse-
quently, one can note that the algebraic technique converges
as well as possible with respect to the rapidity in time when
the period of the signal u(t) is 10 times less than natural
period of the MSD system. Moreover, the computation time
of ω0 decreases whenever the SNR and ω1

ω0
is increased. As

we can see, for a SNR = 80 dB and an angular frequency
ratio Z = 10, ω0 is computed in 0.005s when the sampling
time Ts is 0.001s. Fig 7, 8 and 9 depict the algebraic
estimation of the natural frequency ω0 with the presence of
a noise effect using the algorithm represented by equations
(20). One can note that peaks in Fig 7 are generated
from numerical artifacts due to the implementation of (21)
and does not exceed 0.0035% of estimation error .We
can conclude that this algorithm is non-asymptotic and
the noise contribution is attenuated by the presence of
iterated integrals after the numerical discretization through
the Simpson’s rule (21).
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Fig. 7. Algebraic method estimates for ω0 with SNR = 25dB
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Fig. 8. Algebraic method estimates for ω0 with SNR = 50dB
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Fig. 9. Algebraic method estimates for ω0 with SNR = 80dB

The Kalman-Bucy filter is performed based on the
variance analysis as illustrated in section 3.B. This is
done through the minimization of the variance expression
(11). Fig 3 depicts Var(Θ) according to ω1

ω0
. In fact, as it

was shown in Fig 6, Var(Θ) is minimum when ω1 = ω0.
Besides, from Fig 10, 11 and 12 we can conclude that the
convergence time decreases when the signal-to-noise ratio
in dB increases. However, the convergence time in case
of Kalman-Bucy filter is 100 times more as compared to
the algebra-based approach for a given SNR. It should be
emphasized that for recursive algorithm, the convergence is
made asymptotically. From this, it was noted that algebraic
technique presents an online-estimator due to the quickness
of the parameter computation.
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Fig. 10. Kalman-Bucy algorithm estimates for ω0 with SNR = 25dB
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Fig. 11. Kalman-Bucy algorithm estimates for ω0 with SNR = 50dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

Time (s)

w0
 (r

ad
/s

)

 

 

 Estimated undamped natural frequency
 Simulated undamped natural frequency

Fig. 12. Kalman-Bucy algorithm estimates for ω0 with SNR = 80dB

B. High frequency sinusoidal perturbation

This section devoted a numerical simulation to evaluate
the performance of the proposed algebraic approach com-
pared to the Kalman-Bucy algorithm on a current perturbed
position. Unfortunately, this type of experiment involves a
severe tempering of the compared estimation algorithms.
We consider that the measured position x(t) is corrupted
by another sinusoidal perturbation with a higher frequency
generator (which is not satisfy the sampling limit) and
a white noise process ρ(0,0.001) with a high signal-to-
noise ratio. This can be expressed as x̃(t) = x(t)+ρ(t)+
A2sin(ω2t) where, A2 = 0.1 and ω2 = 500ω0 (Fig 15).
The experiments are performed with the optimal conditions
for the Kalman-Bucy (ω1 = ω0) and with ω1 = 10 ω0
for the algebra-based algorithms. Fig (14) and (15) depict
the estimation of the angular frequency with presence of

a higher frequency sinusoidal. We note that, even the
"true" position is highly corrupted Kalman-Bucy filter and
the proposed algorithm converge. For the algebra-based
technique, the estimations are achieved in about 5×Ts and
50×Ts for the recursive algorithm for a 2% of estimation
error. It should be noted that the convergence time is faster
than for highly Gaussian noisy measurement. Indeed, the
robustness of the obtained estimations with respect to the
unknown measurement noise is quite high.
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Fig. 13. Position measurement with a high frequency sinusoidal noise
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Fig. 14. Algebraic method estimates for ω0 with SNR = 80dB and high
frequency sinusoidal noise
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Fig. 15. Kalman filter estimates for ω0 with SNR = 80dB and high
frequency sinusoidal noise

C. Variable parameter estimation

There are many applications where the involved param-
eters vary in time due to behavior of the system or some
physical change [21]. For example, due to the thermal
effect, the angular frequency of the MSD system may
change with respect to time. This is explained through the
fluctuation of spring constant k or the viscous damping
coefficient c. To evaluate the performance of the algebraic
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algorithm, we made an interesting experience where we
have simulated the variation of ω0 with a discontinuity
change-point. However, the system still LTI in that range
where ω0 is constant. Therefore, we can apply directly
our algebraic algorithm so as to estimate different abrupt
changes of the values of ω0=

√
k
m .

Fig 16 shows the performance of the estimation approach
where the first jump is carried for t = 0.1 s. That result
proves the accuracy of the proposed algorithm even if
the unknown parameter is time varying with a specific
behavior.
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Fig. 16. Algebraic methods estimates for a variable ω0

6. CONCLUSION
The objective of this paper has been to study optimal

sinusoidal input design so as to minimize the variance
parameters estimation of a range of mechanical system.
We have presented an algebraic approach to the fast and
reliable identification of dynamical parameters of a Mass
Spring Damper system, compared to a conventional algo-
rithm introduced by the Kalman-Bucy filter in parameter
estimation. The calculation of the characteristic parameters
of these mechanical systems was interesting for many rea-
sons touching the engineering theme. As it known, a lot of
mechanical structures are modeled via coupled or isolated
MSD systems aiming to simplify both of their static and
dynamic behaviors . It results an important problem in the
control theory such as feedback and feed-forward control
where the involved parameters are unknown and should be
identified for each time step.
By analyzing the variance estimators, contrary to the
Kalman-Bucy filter, we show that the proposed algebraic
approach is less sensitive to the choice of the input fre-
quency and is more robust to additive noise on the output.
In this study, the numerical differentiation of the output
signal employed for the recursive algorithm, was a simple
finite difference technique with a low pass filtering. This
latter has an influence in the robustness and fastness of
the identification for small SNR. Such problems can be
minimized by using numerical algebraic differentiators (see
[7], [22], [23]). Moreover, we can also directly address
the real-time identification of the parameters, where the
computational complexity is low as it shown is in the
algebra-based approach.
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