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ABSTRACT 
This paper deals with the modeling of one-dimensional 
continuous systems with in-span discrete external 
damping. The mathematical formulation for this system 
is similar to an internally and externally damped rotor 
driven through a dissipative coupling; however the 
umbra-Lagrangian density contributed by external 
damping is different. Using such formulation, the 
invariance of the umbra-Lagrangian density is obtained 
through an extension of Noether’s theorem.  The rotor 
shaft is modeled as a Rayleigh beam. The dynamic 
analysis of the rotor shaft is obtained and validated 
through simulation studies. Results show an interesting 
phenomenon of limiting behaviour of the rotor shaft 
with internal damping beyond certain threshold speeds, 
which are obtained theoretically and affirmed by 
simulation. The results show that regenerative energy in 
the rotor shaft due to internal damping is dissipated 
through the discrete damper as well as the dissipative 
coupling between drive and the rotor shaft. In such case, 
the excitation frequency is more, the shaft speed will 
not increase but the slip between drive and shaft will 
increase due to loading of drive. 
 
Keywords: Umbra-Lagrangian density, Noether’s 
theorem, Flexural vibration, In-span external damping 

 
1. INTRODUCTION 
The methods of Lagrange and Hamilton based on the 
variational principle on fields are employed to describe 
continuous systems. There are few direct methods, 
which approximate the continuous system by 
considering finite or discrete particles and then 
examining the changes in the equations describing the 
motion as the continuous limit is approached. The 
general relationship between one-parameter continuous 
symmetries and conserved quantities in field theory has 
been discussed by Boyer (1967). Cantrijn and Sarlet 
(1981) had introduced a direct method for associating 
conserved quantities with each dynamical symmetry 
group of a Lagrangian system. Some other useful results 
related with the symmetries aspects of higher 
Lagrangian and Hamiltonian formulism are discussed in 

papers of Katzin and Levine (1976) and Damianou and 
Sophocleous (2004). To extend the scope of 
Lagrangian-Hamiltonian mechanics, a new proposal of 
umbra-time was made by Mukherjee (1994). A brief 
and promising commentary of this kind of extension has 
been given by Brown (2007). The detailed theory and 
applications of this extended Lagrangian-Hamiltonian 
mechanics are presented in various references 
(Mukherjee et al. 2006, Mukherjee et al. 2007). 
Recently, Mukherjee et. al.(2009) has applied the 
extended Lagrangian- Hamiltonian mechanics for one 
dimensional continuous systems with gyroscopic 
coupling and non-conservative fields. 

 The discrete continuous modeling of rotor system 
was presented by Szoic (2000). In his paper, dynamical 
investigations of rotor shaft systems are performed by 
means of the discrete continuous mechanical models. In 
these systems, rotating cylindrical shaft is represented 
as continuous systems, whereas bearings are assumed as 
discrete elements. Krenk (2004) has shown the complex 
mode analysis of cables and beams problems involving 
concentrated viscous dampers. 

 The basic aim of this paper is mainly focused on 
extending the Lagrangian-Hamiltonian mechanics for 
discrete-continuous systems. In the extended 
Lagrangian-Hamiltonian mechanics, umbra-Lagrangian 
density has been used to describe the motion of the 
continuous system rather than the umbra-Lagrangian 
itself. The invariance of umbra-Lagrangian density is 
obtained through an extension of Noether’s theorem 
over manifolds. The case study considered in this paper 
shows an interesting phenomenon of limiting behaviour 
of the rotor shaft with internal damping beyond certain 
threshold speeds of instability, which are obtained 
theoretically as well as numerically. The effect of 
discrete external damping is examined, and entrainment 
of whirling speeds at natural undamped modes is 
observed.  
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2. METHODOLOGY 
2.1. Noether’s Theorem for Continuous Systems 
Constants of motion or conserved quantities can be 
found for continuous systems by applying Noether’s 
theorem. The Noether’s theorem (Noether, 1918) states 
that under certain conditions there exists a set of 
integrals of motion or dynamical invariants that 
characterize a field or a system of fields. In fact, 
Noether proved her theorem for fields, which is based 
on invariance of the Lagrangian with respect to a certain 
group of continuous transformations. Here, the 
symmetries of the Lagrangian density are applied rather 
than the Lagrangian itself. 

2.2 Extended Formulation of Noether’s Theorem for 
Umbra-Lagrangian Density 
Extended formulation of Noether’s theorem may be 
obtained by as the methodology provided in Ref. 
(Mukherjee et al., 2009). However, some basic concepts 
are being provided in reference (Mukherjee et al., 2006, 
2007, 2009) for ready reference of the readers. The 
extended Noether’s equation may be written as, 
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 Equation (1) is called an extended Noether’s field 
equation for the umbra-Lagrangian. 1Z  may be 
assumed as local density, 2Z  as current or flux density 
(often termed as Noether’s current density) and the last 
additional term is called the modulatory convection 
term, which is the contribution of nonconservative and 
gyroscopic actions, may be assumed as local rate of 
production.  

3. ANALYSIS OF ROTATING SHAFT WITH IN-
SPAN EXTERNAL DAMPING 

In this case study, a rotor shaft with internal and in-span 
discrete external damping driven by a constant speed 
source through a dissipative coupling is considered as 
shown in Fig.1.  The umbra-Lagrangian of the system is 
may be written adopting the procedure of Reference 
(Mukherjee et al., 2009). 

 

 

 

 

 

 

 

 

 

Figure 1: Continuous Shaft with Internal and In-
span Concentrated External Damping driven by a 
Constant Speed Source through Dissipative 
Coupling. 
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where cR is the dissipative coupling, aR  is the 
damping coefficient of in-span external damper, and Ω  
is the excitation frequency. In Eq. (4), the term 
contributed by external damping is very significant. For 
this system with in-span discrete external damping, the 
term, which needs special consideration, is 
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where nA are slowly varying functions of time. 

Substitution of Eq. (6) into Eq. (5) yields 
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with the assumption that nA  vary slowly with time. 

3.1 Extended Noether’s theorem for rotating shaft 

The modified Noether’s rate equation with in span 
concentrated damping may be expressed as  
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Considering independent variations in  nn AA δ+ , the 
variational equation may be written as ( dropping the 
factor 2

L ) 
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This is for the symmetry being valid for neighbouring 
paths, which needs the following conditions to be 
satisfied  
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The condition for entraining the nth mode is 
→nA finite limit and 0→kA , if nk ≠  for ∞→t , 

obtained as 
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The value of ( )tθ&  will be obtained from Eq. (11) and 
written as 
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3.2 Umbra-Hamiltonian density of the system 

Umbra-Hamiltonian density for this system may be 
written as 
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Considering end conditions of continuous shaft as pin-
pin, and substituting Eq. (6) in Eq. (14), one obtains the 
following two terms distinguished as {M} and {N}, 
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Equating term {M} to zero, one obtains 
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Considering independent variations in nn AA δ+ , the 
variational equation may be written similar to Eq. (9) 
after dropping the factor 2

L . Repeating the same steps 

from Eq. (10) to (11), one obtains the value of ( )tθ&  as 
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which makes the term {M} zero and also matches with 
Eq. (12). 

Equating term {N} to zero, one obtains 
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If the shaft’s speed is latched at 
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amplitudes go to zero except nA , thus; the amplitude of 
this shaft is obtained as  
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where
3

44

L
n

in
πμζ = . The next section presents the 

modeling of rotating shaft with in span concentrated 
damping with simulation results. 

4. Simulation of rotating shaft with in- span discrete 
external damping 

The physical system with in-span discrete external 
damping driven through dissipative coupling is shown 
in Fig.1. The boundary conditions of the rotor shaft are 
taken as pin-pin. The coupling in the system is 
absolutely flexible in transverse and bending but 
torsionally rigid. In this analysis, torsional vibration is 
not considered. The bond graph technique is being used 
as a modeling tool and bond graph model of the system 
is created using object-oriented reusable capsules with 
in-span discrete external damping. 
4.1 Simulation results 
The bond graph model (Mukherjee et al. 2006, Karnopp 
et al., 1990) of the rotor shaft with in span concentrated 
external damping is simulated on SYMBOLS-Shakti 
(Mukherjee and Samantaray, 2000), in order to 
visualize the complex modes of the system. The 
integrated bond graph model with object-oriented sub 
models (Mukherjee, Karmakar and Samantaray, 2006) 
of shaft and hub elements is shown in Fig. 2.  

 

 

 

 

 

 

Figure 2: Bond graph Model of Integrated System of 
Rotor Shaft with Internal and In-span Concentrated 
External Damping driven by a Constant Speed Source 
through Dissipative Coupling. 

 However, the external damping in sub models of 
shaft has been considered as discrete or finite. In this 
case, the effects of concentrated damper are closely 
linked to the complex character of modes. The shaft is 
rotated by a constant speed source. The simulation rig 
consists of a hollow rotating shaft with 10 reticules and 
two ends are well supported on a self-aligning bearing. 
The dimensional data are as follows: beamL =5 m, 

oR =0.02 m, iR =0.01 m. The material and bearing 
properties are as follows: E =104.5 e9, ρ =4420, 

cR =0.002, iμ =2.0 e-4, aR =0.020 (for Mode 1). The 
damping coefficient of dissipative coupling is taken 
as 002.0=cR . It has been assumed that in-span 
discrete damper permits motion to the rotor and at the 
same time leads to substantial energy dissipation. 

 Initially, simulation is done for the parameters 
given in Table-1 with discrete external damping, 

020.0=aR  and excitation frequency,Ω =5 Hz or 
31.41 rad/s. To initiate the simulation, an initial 
momentum of 0.001 Kg- m2 was given. This is done to 
reduce the simulation time. Fig. 3 shows that the 
trajectories of the rotating shaft reach the limiting orbit. 
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This is due to the loading of the source.  The another 
feature is that the angular speed of the shaft gets 
entrained at 22.392 rad/s, the first threshold speed of 
instability, est mod1θ

&  and matches closely with the 
calculated value of shaft spinning speed (entrained) 
( )tθ&  (Table-1), which is equal to 22.266 rad/s.  

 

 

 

 

 

 

 

 

Figure3: Limiting Orbit of Shaft with In-span 
Concentrated External Damping at First Two 
Undamped Natural Modes 

Table-1: Simulation Parameters 
Lbeam Length of beam 5 m 

Nelem Number of 
elements 

10 

E Modulus of 
elasticity 

104.5 e9 N/m2 

Ri           Internal 
Diameter 

0.01 m 

Ro External Diameter 0.02 m 

ρ Material density 4420 kg/m3 

Rc Dissipative 
coupling 

coefficient 

0.002 

Ω Excitation 
frequency 

5 Hz for first mode 

30 Hz for second 
mode 

μi Internal Damping 
Coefficient 

1.0 e-4 Ns/m 

μex Discrete External 
Damping 

Coefficient 

0.020 for first mode 

6.0 for second mode 

( )tθ&  Shaft Spinning 
Speed (entrained) 

Calculated 

22.392rad/s, 
95.405rad/s, For 
Mode 1,2, 
respectively 

Table-2: Calculation of Natural Frequency 
First mode 

natural 
frequency 

3.414 
Hz 

Second mode 
natural 

frequency 

13.66 
Hz 

 Now, in span concentrated external damping, aR  of 
the shaft is increased to 6.0 and excitation frequency,Ω  
to 30 Hz or 188.327 rad/sec, the next threshold speed of 
the shaft is obtained. Fig.3 shows the trajectories of the 
same rotating shaft and angular speed of the shaft gets 
entrained at 95.490 rad/sec, the second threshold speed 
of instability, end mod2θ

&  and matches very close to the 
calculated value of shaft spinning speed as given in 
Table-1. The interesting phenomenon observed from 
this simulation is that the one obtains the natural 
undamped modes in this case. The result may also be 
analyzed through FFT analyzer tool as shown in Fig.4, 
where first two natural frequencies for natural modes 
are superimposed, which matches exactly with the 
calculated natural modes as given in Table-2. 

 

 

 

 

 

 

 

Figure 4: Superimposed Frequency Responses at First 
Two Undamped Natural Modes. 

 The results may also be visualized through 
animation, where two natural modes are shown in Fig. 
5(a)- 5(b) through animated frames.  

 

 

 

 

 

 

 

Figure 5(a): First Natural Mode of Rotor Shaft with In 
span Concentrated External Damping   Ra=0.020, μi=1e-
4, Input Speed=31.41 rad/s, Actual Speed=22.392rad/s. 

 

 

 

 

 

 

Figure 5(b): Second Natural Mode of Rotor Shaft with 
In-span Concentrated External Damping   Ra=6.00, 
μi=1e-4, Input Speed=188.496 rad/s, Actual 
Speed=95.490rad/s. 
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The animation shows that regenerative energy 
in the shaft due to internal damping is dissipated 
through the discrete damper and the dissipative 
coupling between drive and the rotor shaft. If excitation 
frequency is more, then the shaft speed will not increase 
but the slip between drive and shaft will increase due to 
loading of drive. 

4. Conclusions 
In this paper, interesting case study of a rotor shaft with 
internal damping and in-span external damping driven 
through a dissipative coupling has been presented. The 
dynamic behaviour has been obtained through extended 
Noether’s theorem and umbra-Hamiltonian theoretically 
as well as numerically. The study has examined the 
various aspects of limiting dynamics of this rotor and 
the same results are validated through simulation. 
Further, the study examined that the regenerative energy 
in the shaft due to internal damping is dissipated 
through the in-span damper and the dissipative 
coupling. Limiting dynamics basically occurred due to 
the power imported by internal damping from the shaft 
spin, which is balanced by dissipation of power by in-
span external damper, dissipation in the coupling and a 
part of action of internal damping, acts as a external 
damping. The animation results of the system have 
revealed the entrainment of the whirl speed at different 
natural frequencies. 

Nomenclature: 

nA             = Amplitude of thn mode of the rotor 
EI             = Rigidity of the continuous rotor 
∗H             = Umbra-Hamiltonian of the system 

dI              = Rotary inertia of the rotor 

pI              = Inertia of the beam through principal axis 
L              =Lagrangian of the system 
∗L             = Umbra-Lagrangian of the system 

cR            = Damping coefficient of dissipative coupling 

aR           = In-span discrete damper 

V             = Infinitesimal generator of rotational SO (2) 
group 

tV             = Real time component of infinitesimal 
generator 
ηV            = Umbra time component of infinitesimal 

generator 
a              = Cross sectional area of the rotor 
n              = Mode number 
( )ηp         = Umbra-time momentum 
( )tp         = Real-time momentum  
( )tq          = Generalized displacement in real time 
( )ηq         = Generalized displacement in umbra-time 
( )tq&          = Generalized velocity in real time 
( )ηq&         = Generalized velocity in umbra-time 

s             = Angle or linear variables for rotational 
transformation or linear transformation. 

( )ix        = Linear displacements in real time or umbra-
time, where ni ...1=  

( )ix&        = Linear velocity in real time or umbra-time, 
where ni ...1=  
t              = Real-time in s. 
Ω            = Excitation frequency in rad/s. 

nΩ         = Natural frequency of the rotor shaft in rad/s. 
η            = Umbra-time in s. 
ω          = constant angular velocity  
( )θ       = Angular displacement in umbra-time or real 

time in rad. 
( )θ&       = Angular velocity of the shaft in umbra-time 

or real time in rad/s. 
L           = Umbra-Lagrangian density 
ρ          = Mass density of rotor shaft 

aμ          = External damping of the beam 

iμ           = Internal damping of the beam 
∗γ          = Damping ratio   

)(tui       = Real displacement coordinates of beam 
)(ηiu      = Umbra- displacement coordinates of beam 

H           = Umbra-Hamiltonian density 
ei HH ,   = Interior and exterior umbra-Hamiltonian 

density. 
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