
PASSIVE FAULT TOLERANT CONTROL: A BOND GRAPH APPROA CH 
 
 

Nacusse, Matías A.(a,b) and Junco, Sergio J.(a) 
 
 
(a) LAC, Laboratorio de Automatización y Control, Departamento de Control, Facultad de Ciencias Exactas, Ingeniería y 

Agrimensura, Universidad Nacional de Rosario, Ríobamba 245 Bis – S2000EKE Rosario – Argentina. 
(b) CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas.  

 
(a,b)nacusse@fceia.unr.edu.ar, (a)sjunco@fceia.unr.edu.ar 

 
 
 
 
ABSTRACT 
The Passive Fault Tolerant Control (PFTC) approach 
defines a unique, robust control law able to achieve the 
control objectives even in the presence of a fault. This 
work addresses the PFTC problem in the Bond Graph 
(BG) domain. The control law is obtained using an 
energy and power shaping method in this domain. At its 
first step, the method proposes a so called Target Bond 
Graph (TBG) that expresses the desired closed-loop 
behaviour, i.e., the control system specifications, in 
terms of a desired closed-loop storage function and a 
power dissipation function. The control law is obtained 
in a subsequent step via BG-prototyping. In order to 
make it fault-tolerant, this control law is further 
robustified by using a residual signal obtained from a 
modified version of the diagnostic bond graph (mDBG) 
which is created from the TBG. This results in a closed-
loop behavior under faults that it asymptotically 
equivalent to the faultless case. 

 
Keywords: Passive Fault Tolerant Control, Bond Graph, 
Energy and Power Shaping, Diagnostic Bond Graph. 

 
1. INTRODUCTION 

Fault tolerant control (FTC) can be classified in 
two main categories, Passive Fault Tolerant Control 
(PFTC) and Active Fault Tolerant Control (AFTC). The 
passive approach defines a unique control law to 
achieve the control objectives even in the presence of a 
fault. Generally speaking, the passive approach ensures 
stability and confers robustness under faults to the 
control system, but there exists a trade-off between 
performance and robustness (Isermann 2006). The 
active approach modifies the control law according to 
the faults occurred, so that in this approach the faults 
must be detected and isolated and a decision must be 
made in order to reconfigurate the control law. Both 
approaches are usually complemented in the praxis to 
improve the performance and stability of the fault 
tolerant system (Blanke, et al. 2006). Refer to (Zhang 
and Jiang 2008) for a bibliographical and historical 
review on FTC.  

There are many methods for model based FDI 
defined in the BG domain. Most of these method derive 
analytical redundant relations (ARR) from the BG 

model (Ould Bouamama et al. 2003) and other use the 
BG model for direct numerical evaluation of ARRs 
(Samantaray et al. 2006), (Borutzky 2009).  

This work addresses the problem of Passive Fault 
Tolerant Control (PFTC) in the BG domain. To obtain 
the fault tolerant control law, an energy and power 
shaping method in the BG domain is used (Junco 2004). 
This method first expresses the control system 
specifications in terms of desired closed-loop energy 
and power dissipation functions, capturing them in a so 
called Target Bond Graph (TBG) matching the desired 
closed-loop behaviour. The method proceeds further 
constructing the control inputs to the plant via Bond 
Graph prototyping in such a way that the coupling of 
the resulting controller-BG (a BG representing the 
control law) and the plant-BG is equivalent to the TBG. 

The classic approach to solve problems of system 
parameter dispersion and to simultaneously reject 
disturbances is adding integral action to the controller 
(Khalil 1996). The BG solution to this problem 
presented in (Junco 2004) has been generalized in a 
Port-Controlled Hamiltonian Theory context in 
(Donaire and Junco 2009). This previous result is 
shown in this paper to solve a PTFC problem, but 
yielding a closed-loop response different than the 
originally defined in the TBG. In this paper, a new 
control law based on a modified Diagnostic Bond 
Graph (mDBG) is proposed. It makes the closed-loop 
system behave like the original TBG, at least 
asymptotically.  

As presented in (Samantaray et al. 2006) the 
Diagnostic Bond Graphs (DBG) are originally used to 
generate residuals for fault detection and isolation (FDI) 
in Active Fault Tolerant Control (AFTC) problems. The 
standard version of the DBG uses the plant inputs and 
the plant measurements to generate a residual signal. 
This residual signal depends on the model parameters 
and the real plant parameters. Here, a modified version 
of the DBG is proposed: instead of feeding the plant 
nominal model with the measurements, the original 
TGB, i.e., the nominal control system, is fed with the 
actual reference signals and measured plant outputs. 
Thus, the residual signal obtained from the mDBG is a 
measure of the error between the desired and the actual 
dynamics of the control system. If the residual signal is 
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zero, then the control system behaves like the TBG and 
the control objectives are achieved. So, the control law 
aims at making the residual signal vanish in time.  

The methodology proposed here is developed 
through a case study and validated numerically in 
simulation using the software 20sim (Controllab 
Products B.V). 

The rest of the paper is organized as follows. 
Section 2 presents the system under study, its 
mathematical model and some background results 
necessary to introduce the contributions of the paper. 
Section 3 presents the methodology contributed by the 
paper illustrated through an example. Section 4 presents 
some simulation responses that prove the good dynamic 
response of the control system. Section 5 addresses 
some issues related to controller reconfiguration and, 
finally, in Section 6, conclusions and future work are 
addressed. 

 
2. BACKGROUNDS 
This section presents the system under study and some 
background on the energy and power shaping method in 
the BG domain.  
2.1. System under study  
The system under study, depicted in Figure 1a, consists 
of two tanks located one above the other, where the 
upper tank discharges into the lower tank.  

The tanks are fed with one input flow which is 
splitted between them through a distribution valve 
whose parameter γ ∈  �0,1� determinates how the input 
flow is distributed to the tanks, if γ = 1 then all the 
input flow in directed to the upper tank. 

 

 
Figure 1. Physical system and its BG model. Measured 
plant outputs encircled in red.  

 
The state equations can be read from the BG using 

the stored liquid volumes as state variables, as usual, or 
the liquid levels, as done here in (1): 
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Where 
� and 
� represents the liquid level of 

tank1 and tank2 respectively; �� and �� are the cross 
section areas of the tanks, related to the tanks hydraulic 

capacities by the relation �� = � 
�� (with i=1,2); ! is the 

constant density of the liquid, " is the gravitational 
acceleration and #� and #� represents the cross section 
of outlet hole from the tanks. 

Observing the BG model of Figure 1 it is easy to 
see that the system is structurally state controllable, 
because all states are input-reachable which means there 
exist a causal path between the source and every energy 
store in integral causality, and the energy storage 
elements can change causality when derivative causality 
is preferred (Sueur and Dauphing-Tanguy 1991) (this 
being a result valid for linear systems can be applied to 
a version of our BG linearized around an equilibrium 
point). Moreover, the tank level 
� can be achieved 
through two different causal paths. The shorter comes 
directly from the modulated source through the 
transformer (input-to-state relative degree 1). The other 
causal path comes from the modulated flow source over 
tank2 (input-to-state relative degree 2). So, the state 
variable 
� is input-reachable by two different paths; 
this structural redundancy can be used in case of faults 
in the distribution valve. Indeed, even for a severe fault 
like $ = 1, i.e., for a complete obstruction of the lower 
duct, which directly feeds tank1, the system is still 
structurally state controllable.  

Let 
� and 
� be the measures of the system 
making it observable. In steady state condition the 
system imposes the following constraint: 
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This steady state constraint allows controlling one 
tank level forcing the other level to a desired value. This 
dependency can be used in case of sensor faults. 

The faults considered in this work can be classified 
in three different groups: 

• Faults in the constitutive relationships of the 
BG components, for example an obstruction / 
opening of the discharges orifices. 

• Structural faults, for example an obstruction in 
the distribution valve ($ = 1 or $ = 0), 
Leakage in one or both tanks. 

• Sensor faults.  
 

2.2. Power and Energy shaping on bond graphs 
The power and energy shaping control technique 
defines the control problem as a stabilization one, 
imposing the desired closed-loop energy and power 
dissipation, and obtaining the control law through 
matching equations relating the control open-loop 
energy function (a kind of control Lyapunov function, 
see Sontag 1998) and the desired closed-loop functions. 

In the BG domain the desired stored energy and 
power dissipation are captured in the TBG. In order to 
obtain the control law, the controlled sources in the BG 
model of the plant are prototyped with the aim of 
obtaining a so called virtual BG that matches the TBG. 
For further details the reader must refer to (Junco 2004). 
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This method is exemplarily performed on the discussed 
two tank model with the following control objectives on 
tank1: 

 
• Level tracking. 
• Disturbance rejections. 
• Robustness regarding parametric uncertainties. 

 
The proposed TBG for the closed loop system is 

shown in Figure 2 with the desired stored energy and 
power dissipation expressed in terms of the tracking 
error state variable in (3) and (4). To simplify the 
notation in the equations the following constants have 

been introduced: )� = �!"����, )� = �����
*+

, where ,- 

represents a hydraulic resistance and �� a tank hydraulic 
capacity. 

 

 
Figure 2. Proposed TBG  

 

.�
� = �
� )�
/�

.� �
� = −)� 
/ �     �3� 


�/ = − 1
��


/      �4� 
 
In the equations above, the tracking error 
/ =


� − 
�
3/4 is the state variable of the (incremental) TBG, 


�
3/4 is the tank1 reference level, and 5 = 6�

�� . 

To enforce the desired closed-loop dynamics 
specified by the TGB, the virtual BG of Figure 3 is 
constructed. It shows how to proceed in order to obtain 
the control law. The left half of the figure is obtained 
prototyping the controlled power source MSf in such a 
way that access is gained to the chosen output, the level 
x1, and an overall equivalent behavior to the TBG is 
achieved (some cancellations can be seen following the 
causal paths, also note that there are some virtual 
elements with negative “gains”). 

 

 
Figure 3. Virtual BG. 

 

Using the standard causality reading procedure, the 
control law (5) is obtained directly from the virtual BG. 
This law can be thought of splitted into three 
components as in (6). The first and second term cancel 
the perturbation from tank2 and the nonlinearity of the 
outlet flow of tank1, respectively, and the third imposes 
the tracking error desired dynamics. 
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Assuming exact model knowledge and perfect 

measurements, this control law yields a closed-loop 
behavior equivalent to the TBG of Figure 2, i.e., the 
closed-loop dynamics satisfies (7). As no objectives are 
imposed on tank2 and its dynamics is hidden in closed-
loop, its stability must be analyzed after the controller 
has been designed, property that can be easily verified 
in this case. 
 


�/ = − 1
��


/      �7� 
 
Perturbed closed-loop dynamics. Because of 

parameter dispersion, faults, modeling errors, sensor 
limited precision, noise, etc., neither the model nor the 
measurements are exact. To deal with this it is 
convenient to think the control input as composed by 
two terms as in (8), where �3 is the “rated” part of  �. 
This means the control input part that performs the 
power and energy shaping under ideal plant and 
measurement conditions. In the same expression, ?@ is 
the unknown controller part due to modeling errors, 
parametric dispersion, faults, etc. The BG of Figure 4 
reflects this situation. 
 
� = �3 + ?@       �8� 
 

 
Figure 4. Perturbed TBG  

 
Under this situation the closed-loop dynamics no 

longer satisfies (7) but (9), where γr is the rated value of 
the distribution valve parameter: 
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It can again be verified that the hidden closed-loop 

dynamics of tank 2 is stable as it satisfies (10): 
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It can be seen in (9) that the level error of tank 1 is 

driven by ?@. A remedy must be found if this induces 
inadmissible behavior in closed-loop. The next 
subsection shows how to do this in the BG domain 
using existing results. The solution is shown to be good 
even under the presence of some faults. In the next 
section a new result is presented which recovers a 
closed-loop performance closer to that of the original 
TBG. 
 
2.3. Robustifying the control law adding integral 

action. 
Looking at the perturbed TBG of Figure 4 a solution 
comes immediately to mind: inject a state-dependent 
flow into the 0-junction that (asymptotically) cancels 
the flow injected by the disturbance source. This is 
attained adding the I-element as shown in Figure 5, 
which is exactly adding integral action to the control 
law, a classic approach to solve problems of system 
parameter dispersion and to simultaneously reject 
disturbances (Khalil 1996). This kind of BG solution 
first presented in (Junco 2004) has been theoretically 
generalized in the context of the Port-Controlled 
Hamiltonian Systems Theory in (Donaire and Junco, 
2009). 

 

 
Figure 5. Perturbed TBG with integral action 

 
The control law with integral action has to be 

calculated on the modified TGB given in Figure 6. 
Proceeding in the same way as when deriving equation 

(5) the control law � = & �
���' ��� + �� + �< + �H� is 

obtained, with �H = I J8
� − 
�
3/49. 

 

 
Figure 6. TBG with integral action 

 
The tracking error 
/  can be shown to satisfy (11), 

ie., a second order dynamics is obtained which differs 

from the first order dynamics error defined by the TBG 
of Figure 2. Note however that this second order 
dynamics can be made to arbitrarily close approximate a 

first order dynamics with the correct choice of 
1

��
  (i.e., 

RH) and I, at least theoretically, then this is 
mathematically possible but physically limited by the 
capacity of the actuators. 
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2.4. Diagnostic Bond Graph 
The Diagnostic Bond Graph was first presented by 
(Samantaray et al. 2006) for numerical evaluation of 
analytical redundant relationships (ARR). The ARRs 
are calculated to perform FDI in an AFTC frame. 

Basically, the DBG is obtained from a BG model 
of the plant injecting the plant measurements and inputs 
through modulated sources. The residual signal is 
obtained by measuring the power co-variables of the 
modulated sources, see Figure 7. 

 

 
Figure 7. Diagnostic Bond Graph. Plant measurements 
to be fed into the DBG encircled in red. 
 

Reading directly from the BG the residuals are: 
 
MNO1 = ��
�� + #��!"
� + #��!"
� − �1 − $��
MNO2 = ��
�� + #��!"
� − $�                                   �12� 
 

As can be noted in (12), the residuals depend on 
system parameters. If the model represents perfectly the 
controlled system, then the residual signals are zero. 
The derivative causality is an advantage in FDI, because 
no initial states are necessary to evaluate the residuals. 

In the sequel only residual 1 is considered, as it is 
the only one related to the TBG associated to the control 
problem the paper deals with. 

 
3. MAIN RESULT 
In this section, the residual signal obtained from a 
modified version of the DBG is used to obtain a control 
law which is robust to faults. 
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3.1. Modified Diagnostic Bond Graph (mDBG). 
The mDBG is defined injecting the tracking error level 
(as measured on the real control system) into the TBG 
through modulated sources, see Figure 8.  

 

 
Figure 8. Proposed mDBG. Measurements to be fed 
into the mDBG encircled in red.  

 
The mDBG yields the new error dynamics in (13), 

where MNO is the residual signal read from the mDBG, a 
measure of the difference between the actual and the 
ideally expected closed-loop dynamics. This signal is 
used to make the control law more reliable under faults. 
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As it can be seen in (13), the error dynamics is 
driven by the residual signal, when MNO = 0, 
/ 
responds as previously defined in the TBG of Figure 2. 

 
3.2. Obtaining the control law. 
The control objective is reached when there exists a 
control law � = �8
�, 
�, 
�

3/4 , MNO9 such that MNO tends 
to zero with growing time. 

The residual expression (14) obtained reading the 
mDBG clearly shows that choosing � as in (5) yields 
MNO = 0 in absence of faults and modeling errors. 

 
MNO = −#��!"
� + #��!"
� + 58
� − 
�

3/49 −
��
��3/4 + �1 − $��     �14� 
 

To compensate for faults and improve the control 
system robustness, the extra term u4 shown in (15) is 
added to the expression (5) for u. 
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Choosing �H = −I J MNO yields the residual 
dynamics (16): 
 
MNO� + IMNO = �1 − $Q� ?@�     �16� 
 

Thus, with constant δS, MNO goes asymptotically to 
zero with time constant 1/K. As already anticipated, 
this forces 
/ to approach asymptotically the desired 
error dynamics defined in the TBG of Figure 2. 

Representing �H in terms of 8
� − 
�
3/49 yields 

(17), expression showing that, in this case, the residual 
signal defined in the mDBG has a PI structure. Note 
however that this does not necessarily generalize, since 
the resulting structure depends on the TBG.  

�H = −I��8
� − 
�
3/49 − I5 J8
� − 
�

3/49             �17� 
 

4. SIMULATIONS RESULTS 
The parameters used in the simulations are: �� =
28 VW�, ! = 2 �3

XYZ,  " = 981 XY
P�  and #� = 0.71VW�  

(Johansson 2000), 5 = 1, I = 1, $ = 0.5, $3 = 0.45. 
The control law given in (15), (17) is used. 

The simulation scenario concerns abrupt faults in 
the system and the measurements are noise free. 

The dynamic response of the control system with 
different faults occurring at time \ = 75O is shown in 
Figures 9–13. As can be seen from these figures, 
� 
recovers its reference level 
�

3/4 = 30VW after the fault 
occurrence, and the residual signal, which is sensitive to 
the faults considered, tends to zero while x2 remains 
bounded. 

 

Figure 9. 75% obstruction in the outlet hole of tank2 
 

Figure 10. Fault in the distribution valve, $ = 1 
 

Figure 11. Fault in the level sensor of tank2, measured 
level equal to zero. 
 

Figure 12. Leakage in tank1. 
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Figure 13. Fault in the discharge flow from tank2 to 
tank1, only 50% enters into tank1. 
 

Figure 14 shows the dynamical response of the 
controlled system under multiple sequential faults. The 
simulation scenario is as follows, at time \ = 75O a 
75% obstruction in the outlet hole of tank2 happens, at 
time \ = 250O the distribution valve fails ($ = 1), at 
time \ = 400O the level sensor of tank2 measures 50% 
of its actual value, at time \ = 550O a leakage in tank1 
appears with outlet hole cross section 0.6 VW�, finally, 
at time \ = 700O only the 50% of the outlet flow of 
tank2 enters into tank1.  
 

Figure 14. Multiple sequential faults. 
 

As seen in the figures above, the control system is 
fault tolerant under different faults scenarios. However, 
this fault tolerance depends on the tank2 capacity, i.e., 
no overflow is modeled, in a real case tank2 could 
overflow. In such a case the controller should be 
reconfigured to manage the faults. 

Figure 15 shows the behavior under a simultaneous 
fault occurrence at time \ = 75O in the distribution 
valve and in tank2 outlet hole ($ = 1 and 75% 
obstruction, respectively). Some measurement noise 
(normal distribution and amplitude ] = 0.1 VW) has 
been considered. In this case the controller again rejects 
the faults forcing the tank1 level to follow its reference 
and the residual signal remains close to zero. 

 

 
Figure 15. Simultaneous faults, $ = 1 and 75% 
obstruction in the tank2 outlet hole. 

5. CONTROLLER RECONFIGURATION AND 
AFTC 

This section gives some clues on how to use the method 
proposed in this paper in the context of AFTC, i.e., 
when it becomes mandatory, or just convenient, to 
reconfigure the control law. This is performed on the 
same case study handled along this paper now 
considering a structural fault and a sensor fault. 

 
5.1.1. Fault in the distribution valve 
Consider again the structural fault $ = 1 in the 
distribution valve, i.e., the discharge into tank1 is 
blocked and all the flow is directed into tank2. This 
fault has already been simulated with satisfactory 
results using $ = $3 = 0.5  as rated parameter in the 
controller. However, if the fault were known it could be 
of interest to use the real parameter $ = 1 in the control 
law. This cannot be done using the former laws (15), 
(17), as the controller is not defined. This calls for 
controller reconfiguration. The same method presented 
before can be used to solve the problem, but in this case 
the virtual prototyping of the power control source 
should be made over tank2, the only way to causally 
access the dynamics of tank1. The procedure of 
obtaining a closed loop equivalent to the TBG is 
suggested by the virtual BG of Figure 16. 
 

 
Figure 16. Virtual BG matching the TBG in case of a 
structural fault in the distribution valve. 
 

The control law obtained reading the BG of figure 
16 is: 
 

� = −��
�� + �� + �<   �18� 
 

Equation (18) cancels the tank2 dynamics to 
achieve the TBG. Mutatis mutandis, here again an extra 
integral term can be added to the controller, as shown in 
the previous section, in order to improve the fault 
tolerance. 

This procedure can be repeated for all structural 
faults, obtaining a set of control laws which can be 
switched, with the help of an FDI algorithm, to improve 
the performance of the control system. 
 
5.1.2. Sensor faults and controller reconfiguration 
When a fault occurs in the level sensor of tank2, then 
the control system becomes unobservable. However, the 
control objectives can still be achieved just discarding 
the term in (5) that depends on 
� because �H 

x2

x1

res

5
10
15
20
25
30
35

10

20

30

0 50 100 150 200
time {s}

-40

-30

-20

-10

0

T
a

nk
1 

le
ve

l{
cm

}
T

an
k2

 le
ve

l{
cm

}
re

si
du

al

x2

T
an

k1
 le

ve
l{

cm
}

T
an

k2
 le

ve
l{

cm
}

re
si

d
ua

l

10

20

30

40

1000
2000
3000
4000
5000
6000

0 100 200 300 400 500 600 700 800 1000
time {s}

-140

-100

-60

-20

20

x1

res

T
an

k1
 le

ve
l{

cm
}

T
an

k2
 le

ve
l{

cm
}

re
si

du
al

5

10

15

20

25

30

100

200

300

400

0 50 100 150 200 250
time {s}

-140

-100

-60

-20

x2

x1

res

MSf

MSe
MSf

0

R

C

0

MSe 1

C

0

R

MSf

0

0

1 R

C

C

Q21

:

:

:

:

:

:

:

80



compensates the flows mass differences. But if the level 
sensor of tank1 fails, then the control must be 
reconfigured in order to regulate the level of Tank1, 
because 
� cannot be injected into the mDBG.  

Using the steady state relationship (2) it is possible 
to define a new TBG to handle faults in sensor level 
� 
as depicted in Figure 17.  

 

 
Figure 17. Proposed TBG to handle faults in sensor 
level x1. 

 


�/� = − 1
��


/�    �19� 
 
In the equation above, the tracking error 
/� =


� − 
�
3/4 is the state variable of the (incremental) TBG 

and 
�
3/4 is the tank1 reference level. 
�

3/4 is related to 


�
3/4 through the steady state relationship (2). The same 

method presented before can be used to solve the 
problem. Figure 18 shows the associated virtual BG and 
(20) is the control law obtained. 

 

 
Figure 18. Virtual BG matching the TBG in case of a 
fault in the sensor level x1. 
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Of course the control systems will follow the 

reference if and only if only sensor 
� fails.  
 
Summarizing, controller reconfiguration can be 

used to get a performance better than that obtained with 
(15) after a fault occurrence, or in case that the TBG 
must be modified. As AFTC is beyond the scope of this 
paper, to get an improved closed-loop behavior with 
(15) while staying in the context of PFTC, the use of a 
gain scheduling approach is recommended, performing 
controller fault accommodation varying the constant I 
in dependence on the faults. 

 

6. CONCLUSIONS 
This work addressed the PFTC approach in the BG 
domain. The obtained control law is calculated through 
a energy and power shaping method. An extra term was 
added to the control law to improve robustness to faults 
in different components of the control system. 
Simulations demonstrate the good response and the 
fault tolerance of the control system. 

Further work will be aimed at generalizing the 
method using the relations between BG and the Port-
Controlled Hamiltonian Systems theory. 
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