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ARGENTINA

Abstract– During the processing of synthetic aper-
ture radar (SAR) images, unknown-moving objects
cause phase modulations in their phase histories. De-
pending on the motion, such modulations cause unde-
sirable image distortions such as blurring and object-
displacement artifacts. This paper discusses the es-
timation of time-frequency representations of non-
stationary signals, by means of autoregressive moving-
average (ARMA) model with time-dependent coeffi-
cients. This estimate will determine the object’s mo-
tion law and consequently the possibility of reconstruct-
ing and plotting the true trajectory.

Keywords– Syntethic aperture radar, Time-varying
auto-regressive moving average models, Kalman filters,
Phase estimation.

1. Introduction

In this section we describe some basics of the SAR
principle. As shown in Figure 1, a pulsed airborne
radar moves in the indicated flight path, transmitting
pulses and receiving echoes reflected from the scene.
Suppose the cycle starts at point A where the radar
transmits a pulse, then others at x2, x3,. . . ,xn−1 and
so on until reaching point B in xn. What defines the
interval size between A and B is the first and last con-
tact of beam with the object (indicated in the figure
as range-A and range-B). During that period the ob-
ject is being iluminated by the radar lobe, receiving
xn pulses. This distance is what is called synthetic
aperture. Moreover, the returns of each pulse which
contain range information (fast-time), are stored by
columns in the SAR data matrix. The cells of each
column is called range-increments, where his size is
defined by the pulse-width. Thus, in cell C11 is stored
the farther return in distance and the nearest in cell
Cm1. The same applies to the transmitted pulse in x2,
but their returns are now stored in column 2 (cells C12

to Cm2).

Figure 1: SAR Geometry

This is repeated until the column n (cells C1n to
Cmn) is reached. Also, the typical assumption is that
the platform moves with a constant and known speed
and the escene objects is static, which ultimately im-
plies the existence of a Doppler effect. Row cells (slow-
time) store “versions” of the returns but shifted in
phase (phase history), as shown for the case of rowj .
Optimized algorithms focus the distributed energy of
the raw data for all scene locations simultaneously.
However, if marine or ground objects have an unknown
motion they will cause a unknown phase modulation in
their phase histories, precisely because of the unknown
relative motion between sensor and object (section 2.).
In turn, these modulations cause SAR image distor-
tions such as blurring and smearing (Sparr and Krane
2003).
In order to develop this work (Figure 2), we consider:
1) the time serie (TS), comprised of the sequenc-
ing radar returns, is modeled by a time-varying auto-
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regressive moving average (TV -ARMA) model, 2) the
TV −ARMA coefficients are updated by a Kalman fil-
ter (KF ), 3) using the ARMA coefficients updated at
each iteration we obtain the instantaneous estimated
power spectral density (PSD), 4) the maximum value
of PSD provides us with the instantaneous frequency
IF , 5) finally, the last objective is to analyze and to
compare the performance of a phase ARMA − KF
estimator, operating in a non-stationary simulated en-
vironment which has a moving object, using as frame-
work the WignerVille distribution WV D.

2. SAR simulated scenario whith a dynamic ob-
ject

Here we define the scenario that contains an object
with rotational movement around a fixed point as
shown in Figure 3, which considers the projection of
this movement over the line of sight (LOS).

Figure 2: ARMA − KF and WV D processes block
diagram

Let the freedom to choose the location of the refer-
ence system so that: 1) the radar platform is placed at
[0, 0, h], 2) the object has a initial coordinates [x0, y0, 0]
and a absolute position [x(n), y(n), 0)], determined by
R(0) plus the phasor r (whose initial phase is ϕ0),
3) The relative coordinates are the projections of r
on the x and y axis, i.e. with a oscillatory variation
proportional to sin(nωm) and cos(nωm) respectively.
The term ωm represent the object rotational frequency.
The magnitude of range R(n) measured from the radar
to the object is

|R(n)| =
√

(x(n)− vpln)2 + h2 + y(n)2 (1)

The Figure 4 shows the successive positions of the plat-
form. As we have stated, it is necessary to apply a
phase correction (applying a rotation to the appropri-
ate phasor) to each return received. The error and
therefore the correction phase, is directly proportional
to d2

j , the square of the j-th instantaneous position rel-
ative to the center of the aperture. But more impor-
tant here is that it is inversely proportional to |R(n)|2.
Namely, the correction is (Stimson 1998)

Figure 3: Scenario and coordinate system

ϕj ≈
2π

λ|R(n)|2
d2

j (2)

It is obvious that lack of knowledge of true coordinates
x(n), y(n) of the object, preventing an effectively phase
correction. Let’s see in the next section how this sce-
nario affects the signal model.

3. Physical signal model

As we will see in the section 4. this scenario allows
us to form a TS {x(n)} of the trajectory. Then,
each transmitted linear frequency modulated LFM
pulse is expressed by the complex exponential st(τ) =
g(τ)ej2π(ϕ0+f0τ+ατ2), where τ is the pulse round-trip
time, g(τ) is a square pulse of Tw[µsec] wide, α the
slope of the modulating frequency, ϕ0 an arbitrary ini-
tial phase, f0 the carrier frequency, so (ϕ0+f0τ +ατ2)
is the phase ϕ(τ) [rad]. The signal st(τ) is valid in the
interval [−Tw/2, Tw/2]. Therefore, the received echo
from an object at the distance R will be

st(τ) = g(τ)ej2π(ϕ0+f0(τ−2R/c)+α(τ−2R/c)2) (3)

In this work we are only interested in the resulting sig-
nal at the end of the reception chain, i.e. after pulse
compression processing. As the SAR platform moves
along a hypothetical circumference arc flight track, the
radar emits and receives pulses. Considering one ob-
ject of interest, the difference between pulses will be
determined by the attenuation of the signal from the
path loss and the antenna pattern as well as by the
change in distance to the object. Based on this, the
pulse compressed signal before SAR processing is

spc(n, τ) = Tw(1− |2R(n)/c− τ |
Tw

)ej2πf0(2R(n)/c−τ)
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Figure 4: Focused Array

[
sinc(2παTw(2R(n)/c− τ)(1− |2R(n)/c− τ |

Tw
)
]

(4)

function of n, and τ and valid in the interval
[2|R(n)|/c − Tw, 2|R(n)|/c + Tw]. Using the ex-
pression above, renamed as x(n) we generate a set
spc(n, τ) n = 0, . . . , N − 1, where each element is a
complex-value signal per pulse. N is the number of
pulses emitted during the aperture time. We will use
that set to test the proposed ARMA − KF methods
and reference WV D time-frequency representation.

4. Building a mathematical model for TS

Now we will develop a mathematical model of the re-
ceived SAR signal

x(n) = −
p∑

k=1

ak(n)x(n−k)+
q∑

k=0

bk(n)w(n−k)+n(n)

(5)
where x(n) is considered as one that describes the sys-
tem and the measurement process, with coefficients
{ak, bk} and w(n) the clutter noise input driving se-
quence, independent w.r.t. past values x(n − k).
The values of p and q are the order of autoregressive
ARMA model. Now, if we consider that the TS sam-
ples has varying spectral properties, it is also natural
to assume the coefficients to be time dependent. So,
it is more realistic: 1) to model the ak, bk with a de-
gree of randomness i.e. ak(n + 1) = ak(n) + va(n)
and bk(n+1) = bk(n)+ vb(n), where the zero-th order
random processes v(n) = {va(n), vb(n)} can be inter-
preted as the uncertainty of the prediction of the next
coefficient value and 2) accept the measurements as
being noisy. To denote this new condition, the x(n)
expression is modified by the adittion of the observa-
tion noise n(n), as independent of AWGN coefficient
noise v(n) and clutter w(n) processes.

5. TS expressed as state-space model (SSM)

As we saw, {x(n)} is an uni-variate TS represented as
an ARMA model with coefficient ak(n), bk(n). Now

Figure 5: PSD versus time-frequency

we pose our problem of spectral estimation in SSM
term. For this, let the ARMA coefficients represent
the state of the system

s(n + 1) = s(n) + v(n) (6)

where s(n) = [a1(n), . . . , ap(n), b0(n), . . . , bq(n)] is the
(m)-dimension (m=p+q+1), unobservable state vec-
tor and vT (n) = [v1(n), . . . , vp+q(n)] is the (m − 1)-
dimension noise vector, that as mentioned above, mod-
els the unknown statistics of the coefficients. So,
get the state vector s(n) is to get the TV ARMA
coefficients. On the other hand, if we define the
(m)-dimension vector of returns and noise process
as C(n) = {−x(n − 1), . . . ,−x(n − p), w(n), w(n −
1), . . . , w(n−q)}, we can write the measurement equa-
tion as

x(n) = C(n)s(n) + n(n) (7)

6. State estimation via the AKF

Comparing equations (6) and (7) with the conven-
tional SSM model equations, we can conclude that,
in the problem under study: 1) the transition ma-
trix Φ is the identity matrix I, 2) the measure-
ment matrix H is represented by C and 3) the es-
timate of state vector s(n) (or ARMA coefficients
{ak(n), bk(n)}), can be gotten from the observed data
{x(n)} using a KF (Harashima, Ferrari and Sankar
1996). To illustrate this “recast”, let (p, q) = 2,
C(n) = [−x(n−1),−x(n−2), w(n), w(n−1), w(n−2)]
and s(n) = [a1(n), a2(n), b0(n), b1(n), b2(n)]T , then we
can express x(n) in matrix form as

x(n) =

∣∣∣∣∣∣∣∣∣∣
−x(n− 1)
−x(n− 2)

w(n)
w(n− 1)
w(n− 2)

∣∣∣∣∣∣∣∣∣∣

T ∣∣∣∣∣∣∣∣∣∣
a1

a2

b0

b1

b2

∣∣∣∣∣∣∣∣∣∣
+ n(n) (8)
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Figure 6: WV D versus time normalized-frequency

Moreover, the state s(n) of the system and the gain
matrix K(n) can be estimated recursively, with the
proper interpretation of stochastic characteristics of
both, the input driving signal {v(n);σv

2} and mea-
surement noise {n(n);σn

2}. To apply the AKF , we
also assume that ak(0) and bk(0) are Gaussian ran-
dom variables.

7. Initializing the augmented KF

In this section we define the set of parameters re-
quired to initialize the AKF algorithms, considering
that the only information available is the noisy mea-
sure of range represented by the TS x(n) and covari-
ances of the noises R(n) and U(n), as we will see later.
Moreover, we will not repeat here the recursive set of
equations that make up the AKF , except those re-
lated to the initialization process. We only recall that
one way of expressing an estimated ŝ(n) of s(n) that
is as close to it as possible in a mean-squared sense is
ŝ(n) = Iŝ(n− 1)+K(n)[x(n)−CIŝ(n− 1)]. We know
that the recursive computation of the variable-gain
matrix K(n) involves three matrix equations (Auger,
Flandrin, Gonçalvès and Lemoine 2002)

K(n) = J(n|n− 1)C(n)T [C(n)J(n|n− 1)C(n)T +
+ R(n)]−1

J(n|n) = J(n|n− 1)−K(n)C(n)J(n|n− 1)
Jn+1|n = IJ(n|n)IT + U(n)

where J(n|n) = E[[s(n)−ŝ(n)][s(n)−ŝ(n)]T ] is just the
covariance matrix of estimation errors. Note that in
our time-varying case the matrices J(n|n) and K(n)
can not be computed a priori because of the depen-
dence of C(n) on the actual system measurements.
Moreover, as the inspection of the Kalman gain re-
veals, we must consider that if the measurement noise
is small, then K(n) will be large, i.e. a lot of credi-
bility will be given to the measurement. In contrast,

Figure 7: PSD of a signal received from a moving
object

Figure 8: ARMA−KF processes to radar return sig-
nal

if the measurement noise is large, then K(n) will be
small, i.e. very little credibility will be given to the
measurement, in both cases when computing the next
value of x(n).
Now, the key issue is to assume values for the variances
σn

2, σw
2 and σv

2. In the case of σn
2, it should be

assigned on the basis of our knowledge of the noise
introduced by measurement sensors.

8. Phase estimation

From the moment that we have the time-varying coef-
ficients of the ARMA model, is possible to obtain the
unknown phase from the PSD, expressed as a func-
tion of that coefficient ak, bk. The ridge-peak of this
function is the instantaneous frequency.

P̂x(ejω) =
|
∑q

k=0 b̂q(k)e−jkω|2

|1 +
∑p

k=0 âp(k)e−jkω|2
(9)
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9. Comparison between the ARMA − KF esti-
mator and the WV D

In this section, we compare the performance of the
ARMA − KF estimator against WV D. To do this
we consider the following design parameters. With re-
spect to the platform: 1) The antenna has a physical
inclination (look-angle) of 76[degrees] 2) we assume a
pulsed linear frequency modulation (LFM) transmit-
ted signal, of Tw = 10[µs] wide and slope of the modu-
lating frequency α = 40[MHz/s], 3) a pulse repetition
frequency PRF = 500[Hz], frequencying a duty cycle
or interval between pulses IP of 1% or ≈ 2.0[msec]
of maximum processing-time, 4) the transmiter has a
carrier frequency f0 = 1.275[GHz] (λ = 0.0235[m]),
and a intermediate frequency stage FI of 25[MHz],
where the radar video is sampled at a frequency fs =
100[MHz], with a sample interval ∆t = 1/fs = 10[ns]
and time of the sample n defined by tn = n∆t, 5)
the platform operates in stripmap mode, with a spa-
tial and azimuth resolution of 6[m] and 1[m] respec-
tively (depend on the size of the antenna), 6) besides
that exposed, the platform has a speed of 100[m/s]
and a height of 4000[m] results a ground-range value
of 1800[m] (see x0 in section 2.), 7) moreover, from
the supposed speed of the object and also from an ar-
bitrary value of d sin(θ) = 50[m], we then obtain a
simulated signal with frequency fm = 0.5[Hz], 8) fi-
nally, the number of samples N depends on the range-
cell resolution (RCR), which is proportional in turn
to the compressed pulse wide. If the compression ra-
tio is 20 then the RCR = 75[m] or 500[ns]. Since fs =
100[MHz], then an acceptable minimum is N = 64.
With respect to the ARMA and kalman filter: 1) we
use p = q = 2, 2) for the variances σn

2, σw
2 and σv

2

we consider a reception chain SNR ≥ 10[dB] and mea-
surement errors of 1%, then we can use σn

2 = 1000, 3)
in the case of σw

2, after an assessment of the way the
w(n), representing the clutter, is likely to vary (An-
derson and Moore 1979). Again, if the signal to clutter
ratio SCR ≥ 10[dB], with values of radar video sig-
nal on the order of [mV ], we consider then σw

2 = 1,
4) moreover, for σv

2, we consider a trial an error ap-
proach method, 5) finally, we need to assume a priori
initial values for each ak(n), bk(n) of these coefficients,
in that case, we assume complete ignorance of them,
so ak(0), bk(0). We test three case studies, all of them
related to the scenario of section 2..

CASE A– Scenary with a constant frequency sig-
nal. Is a signal with fm = 25[Hz], SNR = 15[dB],
with amplitude of ∓15[mV ]. This signal is processed
by the ARMA − KF algorithm proposed. Figure 5
shows a three-dimensional representation of the PSD
in [dB] versus time-frequency. The crest of the sur-
face manifests a maximum value of PSD for 25[Hz].
The WV D representation using a Matlab r© Time-
Frequency Toolbox (Auger, Flandrin, Gonçalvès and
Lemoine 2002) is shown in Figure 6. At a sampling

Figure 9: PSD of radar return signal

frequency fs = 100[MHz], the normalized frequency
of 0.25 represents the 25[Hz] searched by estimation.

CASE B– Scenary with a object moving at constant
speed. The example plots the PSD calculated using
equation (9), received from a object moving at the
speed v = 10[m/s] (36[km/h], as shown in Figure 7.
The rotating frequency is f0 = 6.5[Hz]. The object is
moving along a straight line, which gets closer to the
observer up to a distance d = 5000[m] and then moves
away.

CASE C– Scenary with a radar return signal.
The example uses 128 samples of the test radar return
signal with doppler frequency fm = 0.9578[Hz]. The
estimated instantaneous frequency calculated by the
ARMA − KF procedure is represented as the max-
imum of PSD as shown in Figure 8. The Figure
9 shows a PSD time-frequency representation of the
same signal.

10. Results, conclusions and future works

The study aims to estimate the phase caused by the
unknown dynamics of an object moving relatively
slowly with respect to the platform. To estimate this
phase we use an ARMA−KF model and as frame of
reference a non-parametric time-frequency representa-
tion. The ARMA−KF model is very good in resolu-
tion, but totally dependent on the model order, that is,
a higher order ARMA would show unnecessary peaks
and a lower order may miss the peaks in the clutter
spectrum. However, WV D has the problem of cross-
spectral components and needs some insight in under-
standing the distribution, as can be seen clearly in the
Figure 10, where we have applied the Hough transform
on the WV D image to produce a representation with
peaks, whose coordinates give estimates of the linear
frequency modulation parameters. This is in contrast
to the immediate interpretation of the PSD of the
proposed method, Figure 9. The time progression of
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radar signal return in complex form, in the presence
of additive measurement AWGN and AWGN -clutter,
was evaluated. This procedure utilizes the adaptive
feature of the KF which is carried out recursively for
each sample, and offers sufficient resolution in time-
frequency domain, in spite of the higher computa-
tional severity compared to other parametric or non
parametric methods. The first experimental results
show that the resolution of the introduced method is
equal or higher than other usual time-frequency tech-
niques. The reliability of the procedure was tested us-
ing Matlab r© programs on simulated data. Compared
with standard methods, the ARMA−KF -based esti-
mation responded most quickly to parameter changes.
The usefulness of our approach in the analysis of Radar
returns (SAR) was introduced by an example. Refer-
ring to this application, from a general point of view,
the use of Kalman filters for the estimation procedure
has some advantages compared to other approaches:
Kalman filters can be constructed for multivariate sys-
tems with stochastic variation of the parameters and
the properties of the resulting estimates can be de-
scribed theoretically. Particularly, this is not neces-
sary to search for a suitable set of base functions to
model the temporal evolution of coefficients or to im-
plement procedures for the detection of change points.
Furthermore, the Kalman algorithm is appropriate for
implementation on microcomputers due to its recur-
sive structure that allows on-line processing, even of
huge data sets.
The disadvantage of this procedure is the afore men-
tioned strong dependence on the order of ARMA
model and the establishment of the initial conditions
of the variances σn

2, σw
2 and σv

2. It also depends on
the initial covariance of the estimation error P and the
initial values of the coefficients ak(0), bk(0). On the
other hand, since the model of system represented by
equations (6) and (7) is conditionally Gaussian with
covariance J(n|n), the estimates can be of high vari-
ance, thereby a smoothing procedure for the estimates
should be involved. Therefore, as future work, to
maintain the adaptation speed a nonlinear recursive
lowpass filter âk and b̂k should be used for each com-
ponent ak and bk of the estimated coefficient vector
s(n).
On the other hand, as well as tasks to develop in the
future, we list: 1) compare the performace with an
AR model in place of the WV D, 2) implement the re-
construction of trajectory as suggested in section 8., 3)
improvement the solution of the KF Ricatti equation
trought the use of Cholesky factors (known as squared-
root filter), 4) use other KF to identify the initial
ARMA−KF values, 5) also in the KF , the use of an
alternative implementation of state vector, called in-
formation filter to improve the numerical stability, spe-
cially in cases of very large uncertainties of initial con-
dition estimations, 6) design other types of trajectory
dynamics such as the aforementioned rotational trans-

Figure 10: Hough transform to WV D

lation, 7) non-Gaussian clutter with varying SCR, 8)
other model for the unknown statistics of the coef-
ficients, 9) analysis and comparison of the computa-
tional complexity between ARMA − KF and WV D,
10) extraction of information from a time-frequency
image.
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