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Abstract—This paper picks up on one of the ways reported in
the literature to represent hybrid models of engineering systems
by bond graphs with static causalities. The representation of a
switching device by means of a modulated transformer (MTF)
controlled by a Boolean variable in conjunction with a resistor
has been used so far to build a model for simulation. In this paper,
it is shown that it can also constitute an approach to bond graph
based quantitative fault detection and isolation in hybrid system
models. Advantages are that Analytical Redundancy Relations
(ARRs) do not need to be derived again after a switch state
has changed. ARRs obtained from the bond graph are valid
for all system modes. Furthermore, no adaption of the standard
sequential causality assignment procedure (SCAP) with respect
to fault detection and isolation (FDI) is needed.

It is shown that the approach proposed in this paper can pro-
duce the same ARRs given by Low et. al. for a network example
reproduced in Fig. 1. Moreover, its usefulness is illustrated in a
small case study by application to a switching circuit from the
realm of power electronic systems. The approach, however, is not
limited to FDI of such systems. Analytically checked simulation
results give confidence in the approach.

Keywords—Hybrid models, FDI, ARRs, bond graphs with
system operation mode independent causalities, power electronic
systems, averaged bond graph models.

I. INTRODUCTION

Depending on the application, it is justified and convient to
model fast state transitions as instantaneous discrete events
giving rise to hybrid system models encompassing time
continuous state transitions and discrete events. Bond graph
representations of such hybrid models have been considered
for a long time and various approaches have been reported in
the literature. Early proposals have been to represent switches
considered non-ideal by means of a modulated transformer
controlled by a Boolean variable in conjunction with a resistor
accounting for the small ON-resistance of the switch [1–
3]. Other approaches also aiming at an invariant causality
assignment independent from system modes have been the use
of sinks of fixed causality switching off degrees of freedom
[4], or the use of a Petri net representing system modes
and discrete changes between them along with a set of bond
graphs with standard elements modelling the time continuous
behaviour in each identified system mode [5]. Also, in order
to account for ideal switching in a bond graph with time-
invariant causalities, so-called switched power junctions (SPJs)
have been introduced more recently [6, 7].

Bond graph representations of hybrid models allowing
for variable causalities are based on (ideal) switches [8–
11] (switched bond graphs), or junctions controlled by a
local automaton [12, 13]. Bond graphs with such controlled
junctions are usually called hybrid bond graphs.

Moreover, early publications such as [14] have given rise to
an increasing interest in bond graph model based quantitative
fault diagnosis resulting in remarkable achievements during
recent years [15–21]. Due to the nature of bond graphs,
the focus has been mainly on fault detection and isolation
(FDI) in systems represented by time continuous models.
In [22], hybrid bond graphs are used for fault diagnosis in
systems represented by hybrid models. As switching on or
off controlled junctions entails at least a partial reassignment
of causalities in a bond graph and affects the generation of
Analytical Redundancy Relations (ARRs), a modification of
the causality assignment procedure with respect to FDI has
been recently proposed by Low and his co-workers [23–25].
They term the result a Diagnostic Hybrid Bond Graph.

In this paper, bond graph based FDI in hybrid models
does not start from controlled junctions that entail either a
dynamical reassignment of causality or a modification of the
SCAP. Instead, conceptual switches are represented by trans-
formers with Boolean modulus in conjunction with a resistor
and by applying the unchanged standard Sequential Causality
Assignment Procedure (SCAP) to the bond graph. As a result,
ARRs derived from the bond graph with invariant causalities
hold for all system modes. It is shown that derivation of
equations leads to the same ARRs given by Low et. al. for
an example [23].

Clearly, the representation of switching devices by a trans-
former with Boolean modulus and a resistor is not limited
to electronically implemented switches and may be used for
switching devices in other energy domains as well, e.g. for
hydraulic check valves. Furthermore, suitable formulation of
derived equations may enable the ON resistance of switches
to be set to zero turning them into ideal switches.

The paper is organised as follows. The following section
briefly revisits bond graph model based fault detection and
isolation. Subsequently, the derivation of ARRs from a bond
graph of a hybrid model is considered. The approach is
illustrated by application to a simple buck converter example.
Simulation results are verified by some analytical evaluation.
The conclusion summarises the advantages of the approach.

II. BOND GRAPH MODEL-BASED FAULT DETECTION AND
ISOLATION

Fault detection and isolation clearly needs fault indicators.
In a bond graph model based approach, the sum of efforts or
flows respectively at junctions can provide them. In a bond
graph model of a non-faulty system, evaluation of these sums
results in values called residuals that are equal or close to zero
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due to numerical inaccuracies. If nonlinearities in the model
permit, unknown variables in these equations can be replaced
by inputs and known variables. That is, the result is a constraint
relation between known variables usually termed Analytical
Redundancy Relations (ARRs). Output variables of a bond
graph model are often indicated by detector elements. In the
context of FDI, these sensed variables are considered known
variables. Accordingly, the causality of detectors in inverted.
Furthermore, in order to be independent of initial values of
energy stores, Samantaray et al. suggested to assign derivative
causality as preferred causality to energy stores [21] and have
termed the resulting bond graph diagnostic bond graph.

If values of the known variables in an ARR have been
obtained by measurements of a real process or from another
behavioural bond graph model accounting for possible faults
in the process, then the residual of the ARR is likely to be
different from zero over time due to noise in measurement,
to parameter uncertainties or due to the occurrence of a
fault. Noise in measurement can be suppressed by appropriate
filtering before measured values are used in a diagnostic
model. If the residual exceeds certain thresholds, then this
event indicates that a fault has occurred in one of the system’s
components. As more than one system component usually
contribute to an ARR, it is not clear in which component
the indicated fault has happened. The information of which
components are involved in an ARR is called the signature
of the residual. Residuals with different signature are called
structurally independent. Their number is equal to the number
of sensors added to a system [21]. However, the set of ARRs
is not unique. The information of which system component
contributes to which residual is usually expressed in a Fault
Signature Matrix (FSM) [26]. Its diagonal part directly in-
dicates single faults that can be isolated. For isolation of
simultaneous faults, parameter estimation by means of least
squares optimisation has been used [20]. In this paper, the
single fault hypothesis is adopted.

III. DERIVATION OF ARRS FROM A BOND GRAPH OF A
HYBRID MODEL

In this paper, switches in hybrid models are represented in a
bond graph by means of a transformer modulated by a Boolean
variable and a resistor with statically assigned conductance
causality as has been initially proposed by Ducreux, Dauphin-
Tanguy and Rombaut for bond graph modelling of power
electronic circuits [2]. The advantage of this approach is that
the hybrid model is represented by one single bond graph and
application of the SCAP results in causalities that hold for all
physically feasible combinations of switch states. From such
a bond graph of a hybrid model, ARRs can be derived in the
same way as from a bond graph of a time continuous model.

For illustration, the network example used by Low et. al.
in [23] is adopted. It is shown that the approach in this paper
leads to the same ARRs given in [23]. Fig. 1 displays the
circuit diagram and Fig. 2 an associated bond graph. As can
be seen from the bond graph in Fig. 2, detector causalities have
been inverted and derivative causality has been assigned to
energy stores as proposed by Samantaray et al. [20]. although
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Figure 1. Network with a switch (cf. [23])
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Figure 2. Bond graph of the network in Fig. 1

this is not necessary for the derivation of ARRs expressed in
terms of the derivatives of energy storage variables instead
of their integral. The auxiliary capacitor C : Ca in integral
causality with a small capacitance Ca has been added to
resolve the causal conflict at junction 02. In its constitutive
relation solved for its current, Ca is considered small so
that the current vanishes. In the formulation of equations, the
parameter of an auxiliary storage element used for resolving
a causality conflict at a junction is set to zero. That is, the
auxiliary storage elements will not lead to a set of stiff model
equations with regard to simulation performed for a numerical
evaluation of residuals.

For comparison, Fig. 3 reproduces the diagnostic hybrid
bond graph given by Low et al. in [23]. In that diagnostic
hybrid bond graph, junction 13 is a controlled junction ac-
counting for the connection and the disconnection of circuit
nodes by the pass transistor modelled as a switch. The resistor
R : Rp2 is an artificial resistor resolving the causal conflict
at junction 04 similar to the auxiliary capacitor C : Ca in the
bond graph of Fig. 2.

In [23], ARRs are derived from the junctions 02, 04, 15. In
general, ARRs are obtained from the balance equation of those
junctions to which a detector has been attached that represent a
real sensor. According to the choice made in [23], summation
of flows at junction 02 of the bond graph in Fig. 2 yields for
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Figure 3. Diagnostic hybrid bond graph of the network (cf. [23])
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the residual r1

r1 = f − C1u̇− isw − Cau̇ . (1)

As Ca is assumed very small, the term Cau̇ can be neglected
in (1). Due to the conductance causality of the ON resistance
R : Ron the constitutive relation of the switch takes the form

isw =
b2

Ron + b2R2
(u− e1) (2)

where b ∈ {0, 1} . Finally, the voltage u is determined from
the sum of efforts at the left 1-junction

u = Vi −R1f . (3)

As a result, the ARR for r1 reads

r1 = f − C1
d

dt
(Vi −R1f)

− b2

Ron + b2R2
(Vi −R1f − e1) . (4)

Likewise, summation of flows at junction 04 and of efforts at
junction 15 respectively and elimination of unknown variables
according causal paths in the bond graph gives the ARRs

r2 = isw − C2ė1 − C3ė2 (5)
r3 = e1 −R3C3ė2 − e2 . (6)

These results are identical to the ones reported in [23] if Ron

is neglected in the ON mode of the switch.
Clearly, the derivation of ARRs from bond graphs in which

elements modelled as switches are represented by a Boolean
controlled MFT in conjunction with a resistor in conductance
causality is not limited to electronic circuits with switching
elements. In [25], Low et. al. consider a hydraulic two tank
system in which an ON-OFF controller ensures that the fluid
level in the tank connected to the pump does not exceed a
certain level. This tank has got a drain to prevent an overflow
in case the controller fails (cf. Fig. 4). Fig. 5 displays a
bond graph with Boolean controlled MTFs of that system.
The residual r1 derived from the bond graph in Fig. 5 reads

r1 = b1Qp − C1ṗ1 − b2k1

√
b2|p1 − p2| −Q (7)

where k1 is a constant, b2 = 0 for p1 ≤ pD and b2 = 1 for
p1 > pD (overflow).
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Figure 5. Bond graph with Boolean controlled MTFs of the two tank system
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Figure 6. Schematic of the DC-DC buck converter circuit

IV. CASE STUDY

Beyond the result of the previous section, FDI in a DC-
DC buck converter circuit [16] is considered in a small case
study in order to show that bond graph modelling based on
the representation of switches by modulated transformers and
the use of the standard SCAP can well support FDI in hybrid
system models and produces correct result.

Fig. 6 shows the circuit schematic of the buck converter.
A bond graph of the buck converter is displayed in Fig. 7.
Again, the capacitor C : Ca has been attached to junction
02 to resolve the causal conflict at that junction caused by the
fixed conductance causality of the ON resistors of the switches.
Physically, it can be justified by the small capacitance of the
circuit node against ground.

Assume that the inductor current iL and the voltage drop
across the capacitor uC are measured. Accordingly, Fig. 8
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45



Se ��
E

1
1

AA
iQ

MTF : 1/m1

AA

R: RQ

�� 0
1

AAu

C : Ca

AA

1

��

iD

MTF : 1/m2

��

R: RD

�� 1
2

AA
iL

I : L

��

Df : iL

�� 0
2

��

R : R

��
uC

C : C

AA

De : uC

Figure 8. Diagnostic bond graph of the DC-DC buck converter circuit

TABLE I
FAULT SIGNATURE MATRIX OF THE BUCK CONVERTER WITH SENSORS

Df : iL AND De : uC

Component Parameter/ r1 r2 Db Ib

Output

Supply of signal m1 m1 1 0 1 0

Switch Q RQ m1 = 1 0 m1 = 1 0

Diode D RD m2 = 1 0 m2 = 1 0

Inductor L 1 0 1 0

Capacitor C 0 1 1 0

Resistor R 0 1 1 0

Sensor of iL iL 1 1 1 0

Sensor of uC uC 1 1 1 0

depicts the diagnostic bond graph. From the diagnostic bond
graph, the following two ARRs can be derived

12 : r1 = u− LdiL
dt
− uC (8)

02 : r2 = iL − Cu̇C −
1
R
uC (9)

where

u = km2
1E − kRQiL (10)

and

k :=
RD

m2
1RD +m2

2RQ
(11)

with m2 = 1−m1.
With these two residuals the structural fault signature matrix

in Table I can be set up. Clearly, a fault in the pass transistor
or in the diode can only be detected when these elements are
active. This is indicated in the first additional column with
the heading Db. As can be seen from the last column with
the heading Ib, no fault can be isolated given the two sensors.
However, isolability can be improved by adding more sensors.

TABLE II
PARAMETERS OF THE BUCK CONVERTER

Parameter Value Units

E 100 V
Ron 0.1 Ω
L 50 mH
C 50 µF
R 50 Ω
T 10−3 s
α 0.7 -
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Figure 9. Time evolution of the inductor current iL for the case of a non-
faulty operation

A. Non-Faulty Behaviour

Neglecting the capacitance Ca, the following two state
equations can be derived from the bond graph in Fig. 7.

diL
dt

=
1
L

[u− uc] (12a)

duC

dt
=

1
C

[
iL −

uC

R

]
(12b)

Given the parameters listed in Table II, and assuming that
RQ = RD = Ron, Fig. 9 shows the time evolution of the
current iL through the inductor and of its mean value iLa

for the case of a non-faulty operation of the buck converter.
In Table II, T denotes the duty cycle of the signal switching
the pass transistor Q1 on and off and α the duty ratio. The
transistor is on for the period αT , while it is off for the
remaining part (1− α)T of the period.

For RQ = RD = Ron, the dynamic equations of the average
inductor current iLa and the the average voltage uCa read

diLa

dt
=

1
L

[αE −RoniLa − uCa] (13a)

duCa

dt
=

1
C

[
iLa −

uCa

R

]
. (13b)

Fig. 10 shows a bond graph of the average model.

B. Fault Scenario 1

As one of the possible fault scenarios, consider the case that
the signal controlling the switch Q is not properly supplied for
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Figure 11. Faulty time evolution of the inductor current due to a temporarily
permanently closed switch

some period of time. Let the switch be permanently closed for
the time interval [0.01s, 0.02s] and assume that this is the only
fault. By consequence, the diode is permanently off during that
interval. Fig. 11 shows the faulty time history of the current
iL. As to be expected from the fault signature matrix, this
single fault is indicated by the time evolution of residual r1
(cf. Fig. 12). For the residual r1, an analytical expression can
be found and used for verification of the result obtained by
simulation. Let

k̃ =
R̃D

m̃2
1R̃D + m̃2

2R̃Q

(14)

with the tilde denoting possibly disturbed variables or param-
eters. Then, the expression for r1 reads

r1 = (k̃m̃2
1 − km2

1)E − (k̃ − k)RQiL . (15)

A permanent closure of the switch Q1 during the time interval
under consideration means m̃1 = 1, while in the non-faulty
system model, m1 switches values between 0 and 1. Thus,
for m̃1 = 1, m̃2 = 0 and m1 = 1,m2 = 0 the residual r1
becomes zero. For m̃1 = 1, m̃2 = 0 and m1 = 0,m2 = 1,
the expression for r1 reduces to E. That is, during the time
interval [0.01s, 0.02s], the value of r1 oscillates between zero
and E = 100V as displayed in Fig. 12.
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Figure 12. Residual r1 indicating the temporary permanent closure of the
switch
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Figure 13. Faulty time evolution of the inductor current in case 2

C. Fault Scenario 2

In a second fault scenario, the diode is considered to be
permanently conducting as of a time instant t3 = 0.03s. That
is, m̃1 = m1, m̃2 = 1. Fig. 13 shows the faulty time history
of the current ĩL along with its mean value for this case. For
t > t3, the state equations read

L
dĩL
dt

=
RDm

2
1

m2
1RD +RQ

E − RD

m2
1RD +RQ

RQĩL

−ũC (16a)

C
dũC

dt
= ĩL −

ũC

R
. (16b)

From these equations, the mean values ĩLa, ũCa for t → ∞
can be computed. For RQ = RD = Ron, these values are
ũCa = 35V and ĩLa = 0.7A in accordance with Figures 13
and 14. This fault occurring for t > t3 is indicated by the
time evolution of residual r1 in Fig. 15 as to be expected from
the FSM. Again, the simulation result for r1 can be checked
analytically. Let t > t3 and RQ = RD = Ron. In this case,
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Figure 14. Faulty time evolution of the voltage across the capacitor in case 2
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Figure 15. Residual r1 in case 2

(15) then reduces to

r1 = − m4
1

m2
1 + 1

E +
m2

1

m2
1 + 1

RQiL . (17)

As the ON resistance Ron is small, RQ is neglected in (17).
As a result, it can be seen that r1 oscillates between zero
(m1 = 0) and the value −E/2 = −50V in case m1 = 1.

V. CONCLUSION

Aiming at a bond graph based derivation of ARRs for
hybrid models, this paper picks up on a proposal known for a
long time to represent switches by a transformer modulated
by a Boolean variable and a resistor in fixed conductance
causality accounting for its ON resistance. This representation
has been used to come up with a model for the purpose of
simulation. The paper demonstrates that this representation can
well constitute an approach to bond graph based quantitative
FDI of hybrid models offering the following advantages.

• Computational causalities once assigned are independent
of system modes. There is no need for adjusting causal-
ities after a change from one system operation mode to

another.

This means that neither model equations nor ARRs need
to be derived again after a discrete change of a system
mode.

• There is no need for a special version of the SCAP as has
been proposed for bond graphs with controlled junctions
in [23].

• Existing bond graph software such as SYMBOLS [27]
could be used to generate a single set of ARRs. As these
ARRs include Boolean variables, there is not one single
FSM but a set. Detection and isolation of faults become
system mode dependent. (In [23], they are called Global
ARRs.)

Causal conflicts at junctions may require auxiliary storage el-
ements with a small parameter value to be attached. However,
in the derivation of equations from a diagnostic bond graph
with storage elements in preferred derivative causality, the
parameter of these auxiliary storage elements can be set to zero
so that the additional storage elements will not lead to a set of
stiff model equations with regard to simulation performed for
a numerical evaluation of residuals. If it is decided to keep
the small ON resistance of the switch model, i.e. switching
devices are not represented by ideal switches, then small time
constants may result.

It is shown that the approach in this paper can come up
with the same ARRs given in [23] for a network example.
Moreover, the approach has been applied to a switching
circuit. Simulation results obtained with Scilab [28] have
been analytically checked giving rise to confidence in this
approach.
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Publishing, June 7-9 1993, pp. 208–214, lyon, France.

[6] A.C. Umarikar, “Modelling of Switched Mode Power Convert-
ers: A Bond Graph Approach,” Ph.D. dissertation, Centre for

48



Electronics Design and Technology, Indian Institute of Science,
Bangalore, India, August 2006.

[7] A.C. Umarikar and L. Umanand, “Modelling of switched sys-
tems in bond graphs using the concept of switched power
junctions,” Journal of the Franklin Institute, vol. 342, pp. 131–
147, 2005.

[8] G.M. Asher, “The Robust Modelling of Variable Topology
Circuits Using Bond Graphs,” in International Conference on
Bond Graph Modeling, ICBGM’93, Proc. of the 1993 Western
Simulation Multiconference, J.J. Granda and F.E. Cellier, Eds.
SCS Publishing, January 17-20 1993, pp. 126–131, simulation
Series, volume 25, no. 2, ISBN: 1-56555-019-6.

[9] J. Buisson, H. Cormerais, and P-Y. Richard, “Analysis of
the bond graph model of hybrid physical systems with ideal
switches,” Proc. of the Institution of Mechanical Engineers Part
I: Systems and Control Engineering, vol. 216(1), pp. 47–63,
2002.

[10] K. Edström, “Switched Bond Graphs: Simulation and Analysis,”
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