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Abstract�This paper deal with methods to get equations from

a Bond Graph (BG) Model. Mixed Techniques to get equations
from both Linear Graph (LG) and BG Models are employed. A
criterion that allows to identify the tree and the co-tree in a BG
model is reviewed. Also, the advantages of causal paths inherent
to BG are exploited. The equivalence between a LG model and its
respective BG model is also used. A procedure to get equations
from a given BG model is proposed. To show the functionality
of the proposed methods, examples with diodes are solved.

I. INTRODUCTION
Graphs are simple geometrical �gures consisting of nodes

and lines that connect some of these nodes; they are some-
times called �Linear Graphs� [1]. One of the most important
applications of Graph Theory is its use in the formulation and
solution of the electrical network problem by Kirchhoff [1].
Equations can be determined from a LG by �nding a normal
form based on an appropriate tree [1].
Bond graph is a highly structured modelling technique that

allows to analyze different kinds of physical systems in an
unique way determined by a basis of uni�ed description [2].
This technique allows the determination of the State Space
Equation (SSE) in several different ways by reviewing the
interactions of the dynamic elements and the causal paths they
determine [3], [4].
Both BG and LG treats with spatially discrete physical sys-
tems [5] even when only LG modelling preserves the spatial
visualization related to the model being analyzed. The spatial
constraints in a BG model are implicit in the location of the
0 and 1 junctions [5].
There exists several ways to get the SSE from a BG model [6],
some of them exploiting the concept of causality and causal
paths.
Mathematical manipulation of non linear semiconductor mod-
els could be dif�cult. Here, diodes are reviewed and modeled
with a non linear constitutive relation.
In this paper a procedure to obtain equations from a BG model

by exploiting the LG tree Theory is proposed. The proposed
procedure can be particularly useful in the analysis of some
systems involving algebraic loops.
The contents are ordered as follows:
Section II shows a reviewing of the Shockley diode model .
Section III presents some current techniques to derive equa-
tions from BG and LG models. Section IV shows the main
result of this work, First a criterion that allow to identify the
LG related tree in a BG model is discussed.Then, a procedure
that allow to derive the SSE from a BG model by employing
the LG related tree theory is presented. Finally three examples
are analyzed and discussed while they are solved with the
proposed approach. In section V, the conclusions and �nal
comments are written.
In the next Section a short review of the Shocley diode model
is presented.

II. THE DIODE MODEL
The diode can be considered as a non controlled switching

device [7]. Switched systems can be viewed from several
approaches and two main classi�cations can be made: The
variant topology approach and the invariant topology approach
[6].
Most texts deal with the idealized model of the diode, i.e. a
variant topology model whose representation changes between
a short circuit and an open circuit, depending on its on-off
state.
The Shockley model is a non linear invariant topology

model that is presented in several power electronics textbooks.
However, a procedure to derive equations from systems in-
volving this Shockley model is rarely presented and authors
start their analysis with the idealized on-off-switch approach.
In this paper the Shockley model is used.
The constitutive relation of the Shockley model as appears in
[8] is

ID = IS

�
e

VD
nVT � 1

�
where:
� ID = Current through the diode.
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� VD = Voltage in the diode in the anode referred to the
cathode.

� IS = Reverse saturation current with a value of 1 �
10�12A.

� n = Empirical constant known as emission coef�cient,
that depends on the construction of the element.

� VT = Thermal voltage given by

VT =
kT

q

Where q is the electron charge equal to 1:6022�10�19C;
T is the absolute temperature in kelvins and k is the
Boltzmann constant equal to 1:3806� 10� 23J=K.

For simplicity, some values will be �xed and it will be
assumed that

ID = IS
�
egVD � 1

�
(1)

considering a 27�C temperature and n = 2 that is a value that
can be assigned to silicon diodes. With these considerations
the g value is

g =
1

�vT
' 19:2308

The characteristic v � i curve for this constitutive relation is
shown in Figure 1.

Fig. 1. The caracteristic v � i curve resulting of the constitutive relation
(1).

The BG model that will be used in this paper is a resistive
non linear R element whose constitutive relation is that
presented in equation (1).This model appears in �gure 2.

R:D
Fig. 2. A resistive non linear diode model.

In the next section a reviewing of some of the current
techniques to get the equations from both BG and LG models
is performed.

III. CURRENT METHODS OF EQUATIONS DERIVATION.
There exist several techniques in order to derive equations

from both LG and BG models, and some of them are reviewed
in the following paragraphs.

A. SSE derivation from a BG models through junction struc-
ture matrix
There exists several approaches to develop the SSE from a

BG model [6], one of the most powerful is the related with
the junction structure matrix [3]. In Figure 3 The key vectors
and the junction structure relationships are shown.

Fig. 3. Key vectors and the junction structure.

In �gure 3, the key vectors are formed as follows:
(MSe;MSf ) is the sources �eld; (L;C) is the storage �eld;
(R) is the dissipative �eld; (De) is the �eld of detectors; �-
nally, (0; 1; TF;GY ) are the elements of the junction structure.
The vectors x and xd represent the states of the system at
integral and derivative causality, respectively. z denotes the
co-energy vector and zd the derivative co-energy vector. The
vectors u and y are the input and the output, respectively. Din
and Dout show the relationships between efforts and �ows in
the dissipative �eld. The constitutive relationships are given
by,

z = Fx (2)

Dout = LDin (3)

zd = Fdxd (4)

Also the relationships of the junction structure are speci�ed
by, h

�
x Din y

iT
= S

h
z Dout u

�
xd

iT
(5)

where the matrix of junction structure S is given by,

S =

24 S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34

35 (6)

zd = G1 � ST14z

By employing the junction structure matrix S and the
relationships between the different �elds it is possible to write
the model as a space-state equation of the form

�
x = Ax+Bu (7)
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y = Cx+Du (8)

with
A = E�1 (S11 + S12MS21)F (9)

B = E�1 (S13 + S12MS23) (10)

C = (S31 + S32MS21)F (11)

D = S33 + S32MS23 (12)

where
E = I + S14F

�1
d ST14F (13)

M = (I � LS22)�1 L (14)

The dynamic elements being placed in vectors x and xd are
selected depending on its causality assignment.
One disadvantage of this method arises in non linear systems
modelling, since this matrix representation is not always
possible to obtain.
In the next subsection, other approach employed to get the

SSE from a BG model is cited.

B. Other SSE derivation method from Bond Graph
According to [6] and [2], given a BG model, the SSE can

be achieved by proceeding in a systematic way, as follows:
1) Write the structure laws in the junctions by considering
causality.

2) Write the constitutive relationships of the elements by
considering causality.

3) Combine these different laws in order to put on explicitly
the derivatives of the state variables as function of the
state variables and the inputs.

The key concept in both methods is causality, because the
formulation of S matrix (in the �rst method) depends totally
on causal paths as well as the systematic (second) method
needs the causality assignment already performed. Once the
S matrix has been constructed, the procedure to derive the
SSE of the model is just a step-by-step algorithm. In the next
subsection a short review on causality and causal paths is done.

C. Causality and causal paths
One of the most powerful characteristics of bond graph is

that a lot of information can be retrieved without writing any
equations, just by analyzing the causality. Physical systems
are full of interacting variable pairs [2]. If two elements are
bonded, the effort causes one element to respond with �ow,
while the �ow causes the �rst element to respond with effort.
Thus, the cause-effect relationships for efforts and �ows are
represented in opposite directions.

A detailed description of causal paths can be found in [9]
from where the next has been extracted:
De�nition 1: A causal path in bond graph is an alternation

of bonds and basic elements, called "nodes" such that:
1) For the acausal graph (before establishing causality), the
sequence forms a single chain.

2) All of the nodes in the path have complete and correct
causality.

3) Two bonds in a causal path have in the same node
opposite causal orientations.

According to the variable being followed, there are two
kinds of causal paths. The causal path is simple if it can be
crossed by following always the same variable and the causal
path is mixed if it is necessary to perform a variable change
while the graphic is crossed. In addition, two elements P1 and
P2, belonging to the set fR;C; I; Se; Sf ; De; Dfg are causally
connected if the input variable of one is in�uenced by the
output variable of the other.
In the next section some of the techniques used to develop

equations from a LG model are mentioned.

D. SEE derived from a LG model
The tree theory developed originally by Kirchhoff [1] is very

useful in the formulation of equations in electrical networks.
In purely resistive linear networks, two general approaches
can lead to the formulation of a minimal set of equations:
general node analysis and general loop analysis [10]. If a given
network has dynamic elements, there exists procedures to
derive the SSE by using the basis of a normal tree. According
to [1] a normal tree can be de�ned as follows:

De�nition 2: A normal tree of a connected directed graph
representing a network is a tree that contains all the indepen-
dent voltage (effort) sources edges, the maximum number (all)
of capacitive edges, the minimum number (none) of inductive
edges, and none of the independent current (�ow) source
edges.

The SSE equation of any linear time-invariant system repre-
sented by a LG model can be derived by following a systematic
precedure [1]. In the case when a normal tree as described
in de�nition 2 cannot be constructed, the LG model includes
dynamical elements that cannot be expressed independently in
the resulting SSE.
In the next section a mixed approach that exploits the

LG tree theory is presented. This proposed approach works
directly on the BG model.

IV. DERIVING THE EQUATIONS FROM A BG MODEL BY
USING A LG TREE APPROACH

The equivalence between a LG model and a BG model is
reviewed in [12]. Authors establishes a relation between a BG
model an the tree of the related LG model by considering
causality and adyacent causal strokes. A slightly different
cualitative analysis can be performed. Consider the electrical
network shown in Figure 4.
In Figure 4 (a) an electric network is drawn. In Figure 4

(b) the corresponding tree (the only possible normal tree) of
the system is shown. In Figure 4 (c) the unique related Bond
Graph model with integral preferred causality (BGI) can be
seen. It is very important to notice the branches of the tree
and the orientation of the causal strokes in the corresponding
elements on the BG model. The following concepts allow to
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Fig. 4. Electrical network (a) and their LG (b) and BGI (c) representation.

formalize the criterion employed to identify a tree on a BG
model.
When a port-1 element is causally connected to a BG junction
structure two situations are possible: (i) The causal stroke
(effort) go from the junction structure toward the element or
outwards as in Figure 5 (a), or (ii) the causal stroke go from
the element toward the junction structure or inwards, as in
Figure 5 (b). In Figure 5, the X element is assumed to be a
port-1 element.

0

1

X 0

1

X

(a) (b)
Fig. 5. The two possible causal orientations of a port-1 element.

This direction on the casual strokes is important, because it
bring the conditions to identify the spanning tree of a system
in a BG model. This is summarized in the next criterion:

Criterion 1: In a BGI model, each port-1 element whose
causal stroke is inwards (junction adjacent) determine a branch
of the related spanning tree. The set of all these port-1
elements spans the related tree. In the other hand, each port-1
element whose causal stroke is outwards (element adjacent)
determine a chord of the related cotree.

This criterion allow to �nd out a one to one relation between
a BG model and its associated LG model.

In LG theory, Kirchhoff Current Law (KCL) is applied over
tree branches in order to get their currents as a sum of currents
of the cotree chords. This is completely equivalent to analyze
the causal paths related to each �tree branch� on the BG model
after Criterion 1 has been applied. With this consideration, a
direct procedure to derive the SSE from a BG model can be
written as follows:

Procedure 1:
1) Given an acausal BG model, assign causality as BGI.
2) Determine the tree branches and the cotree chords ac-
cording to criterion 1.

3) Set the effort sources and capacitive elements in the tree
as tree-main-effort (TME) variables. If resistive elements
belong to the tree, set them as tree-helper-effort (THE)
variables.

4) Set the �ow sources and inductive elements in the cotree
as key-�ow (KF) variables. If resistive elements belog
to the cotree, set them as nonkey-�ow (NF) variables

5) By using the element constitutive relation, write each
NF variable as a combination of all the TME variables
that hold a direct causal path with it.

6) By using the element constitutive relation, write the each
THE variable as a combination of all the �ow variables
that hold a direct causal path with it.

7) Write the state equations by determining each capacitor
�ow in the tree as a combination of the cotree �ows that
hold a direct causal path with it. And by determining
each inductive effort in the cotree as a combination of
the tree efforts that hold a direct causal path with it.
Finally, write the state equation by using (in the linear
case) the relations fC = C

�
eC and eI = I

�
fI

Remark 1: If in step 1, Integral causality cannot be assigned
in all elements, it implies that a normal tree cannot be
constructed. In step 5 and 6 if it is found that direct causal
paths are held between THE and NF elements, then algebraic
loops will arise in the case of linear systems or differential
algebraic equations must be constructed in the case of non
linear systems.
The preceding Procedure allows to derive the SSE from

a BG model. If only algebraic equations are needed (resis-
tive systems), the general node analisys can be performed.
General node analysis mixed with BG analysis brings a very
systematic procedure to derive equations. Once a normal tree is
established, it is always possible to �nd causal paths between
tree elements and cotree elements. The key of the procedure
is to determine the �ows in the tree elements in terms of
cotree variables by following the (unique) causal paths that are
formed, at the same time cotree elements can be determined
by their constitutive relationship and the (also unique) causal
paths to tree elements. The next example show how this
Procedure can be applied.

Example 1: Consider again the system in Figure 4.
In Figure 6 the BGI model of Figure 4 has been redrawn and
the bonds are now numbered, as well as the tree branches are
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Fig. 6. The BGI model of system in Figure 4.

now remarked as black bonds. According to Procedure 1, the
�rst step is already done. According to criterion 1, the second
step is also performed and the bonds corresponding to the tree
branches are darkened. In this terms, the bonds belonging to
the tree are 1, 4 and 9. the bonds of the cotree are 2, 6 and
8. According with step 3, TME variables are e1and e4whereas
e9.is the unique THE variable. Step 4 allow to identify f6 and
f8 as KF variables and f2 as NF variable.Step 5 of Procedure
1 ask to write any cotree R element �ow (NF variable) as
a combination of main efforts on the tree and the related
constitutive relationship. This is the case of R1. The �ow on
R1 can be written as,

f2 =
1

R1
e2

f2 =
1

R1
(e1 � e3)

f2 =
1

R1
(e1 � e4) (15)

Step 6 requires to write e9 as a combination of �ows in the
cotree. It can be seen that R2 holds direct causal paths with
i1 throughf9; 8g and with L through f9; 7; 6g, therefore it can
be written

e9 = R2f9

e9 = R2 (f7 + f8)

e9 = R2(f6 + f8) (16)

Step 7 requires to write the �ow in the capacitor as a
combination of cotree variables causally connected with it.
Reviewing the causal paths, it can be noticed that

f4 = f3 � f5
f4 = f2 � f6 (17)

Replacing (15) into (17) the result is,

f4 =
1

R2
(e1 � e4)� f6

f4 = � 1

R2
e4 � f6 +

1

R2
e1 (18)

Following step 7 I effort equation can also be derived as

e6 = e5 � e7 =
e6 = e4 � e9 (19)

Replacing (16) into (19) the result is

e6 = e4 �R2(f6 + f8)
e6 = e4 �R2f6 �R2f8 (20)

Finally, equations (18) and (20) can be modi�ed as
�
e4 = � 1

R2C
e4 �

1

C
f6 +

1

R2C
e1

�
f6 =

1

L
e4 �

R2
L
f6 �

R2
L
f8 (21)

Equation (21) is the SSE corresponding to model in Figure 4.

In the next example, a diode circuit is analyzed.
Example 2: A purely resistive system: The central tap full

wave recti�er with resistive load
Consider the electrical network shown in Figure 7.

V1

V1

D1

2D

RL

Fig. 7. A full wave recti�er with resistive load.

In Figure 8 the model with causality assigned is shown
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89

Fig. 8. Bond Graph model of the system in �gure 7 with causality assigned.

Notice in �gure 8 that bonds 1, 4 and 9 belong to the tree.
The R elements in the cotree are D1 and D2. Their �ows
depending on the tree efforts and the constitutive relation (1)
are as follows:

f2 = Is (e
ge2 � 1)

or
f2 = Is

�
eg(e1�e4) � 1

�
(22)
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and
f6 = Is (e

ge6 � 1)

or
f6 = Is

�
eg(�e9�e4) � 1

�
(23)

Writing one equation in this example can lead to the solution
of the entire model. This equation is

f4 = f2 + f6 (24)

Substituting equations (22) and (23) in equation (24) it results

f4 = Is

�
eg(e1�e4) + eg(�e9�e4) � 2

�
(25)

Also the effort in RL can be expressed as

e4 = RLf4 (26)

Substituting equation (26) in equation (25), the following
equation can be written

f4 = Is

�
eg(e1�RLf4) + eg(�e9�RLf4) � 2

�
(27)

Equation (27) is an implicit function of the �ow f4 in RL
that can be simulated in Matlab as follows

t=[0:1e-4:32e-3];
ei=[36*sin(377*t)];
e9=ei;
n=2;
vt=26e-3; %@T=27 celsius
is=1e-12;
g=1/(n*vt)
R=500;
sixe=size(ei);
sais=sixe(:,2);
�4=zeros(1,sais);
e2=zeros(1,sais);
e6=zeros(1,sais);
ye=zeros(1,sais);
for j=1:sais
funk=@(f4)((is*(exp(g*(ei(1,j)-(R*f4)))+exp(g*(-e7(1,j)-
(R*f4)))-2))-f4);
varr=fzero(funk,[-.0010 .1]);
�4(1,j)=double(varr);
ye(1,j)=R*�4(1,j);
end
plot(t,ei,t,ye)
xlabel('time, s');
ylabel('in and out Voltages, V');

And the graphic of the Figure 9 is obtained
The preceding example has shown how to apply the pro-

posed Procedure in purely resistive systems containing diodes
represented by the Shockley model (1).

Now a dynamic system is analized. Consider the electric
network shown in Figure 10.
The corresponding BGI is shown in Figure 11.

Fig. 9. The input and output voltages of the system in Figure 7.
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Fig. 10. A full wave recti�er with RC load.
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Fig. 11. BGI model of the system in Figure 10.
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The tree is conformed by 2 TME variables an 1 THE
varaible, (e1, e7 and e12, respectively). All elements in
the cotree are causally conected with elements in the
tree, D2 is causally connected with D1through the causal
path f10; 9; 11; 12g, and with V1 through the causal path
f10; 9; 11; 13; 1g, and effort e10 can be expressed as

e10 = �e1 + e12 (28)

Similarly, R is causally connected with C, D1 and V1, and

e16 = e7 (29)

In a similar way, the following cotree efforts can be expressed
in terms of the tree variables as:

e3 = �e12 � e7 (30)
e5 = e1 � e12 � e7 (31)

According to general node analysis, and the given proce-
dure, KCL must be applied twice, and in the BG model this
means that the �ow in the unknowns must be expressed in
terms of the �ows in the cotree. Starting with the �ow in D1,
it can be seen that this element is causally connected with D2,
RL, D3 and D4. This dependence can be written as

f12 = f3 + f5 � f10 (32)

due to the non linear nature of the system, the e12 tree variable
is very dif�cult to eliminate, so a differential algebraic equa-
tion must me constructed, and equation 32 shall be rewritten
as

�f12 + f3 + f5 � f10 = 0

by applying the diode constitutive relations, it can be seen that

Is [�ege12 + ege3 + ege5 � ege10 ] = 0 (33)

Substituting 28, 30 and 31 into 33, the �rst system equation
is obtained as:

Is

h
�ege12 + eg(�e12�e7) + eg(e1�e12�e7) � eg(�e1+e12)

i
= 0

(34)
Now, considering the �ow in C, this element is causally
connected with D4, RL and D3, and its �ow can be written
as

f7 = f5 + f3 � f16
or

f7 = Is (e
ge5 � 1) + Is (ege3 � 1)�

1

RL
e7 (35)

Substituting 29, 30 and 31 into 35, and isolating the derivative
of the state, the second system equation can be written as
�
e7 =

Is
C

�
eg(e1�e12�e7) + eg(�e12�e7) � 2

�
� 1

RLC
e7 (36)

equations 34 and 36 conform a differential algebraic system.
This system is simulated in Matlab with the next code lines:
clear
clc
masa=[1 0;...
0 0];%mass matrix to indicate DAE

options = odeset('Initialstep',1e-30,...
'MStateDependence','none','Mass',masa,...
'RelTol',1e-10,'AbsTol',[1e-12 1e-12]);
[T,Y] = ode23t(@full_RC,[0:0.1e-5:32e-3],...
[0 0],options);
ent=100*sin(377*T);
plot(T,ent,T,Y(:,1),'-',T,Y(:,2),'-.')
%plotting the input, the D1 voltage and the output

With the fucntion full_RC de�ned as
function dy = full_RC(t,y)
%Shockley model parameters
n=2; %silice 2, germanium 1
vt=26e-3; %@T=27 degrees celsius
is=1e-12;
g=1/(n*vt);
%component values
c=47e-6;%load capacitance
r=100;%load resistence
ei=100.*sin(377*t);%input voltage
dy = zeros(2,1);
dy(1)=((is/c)*(exp(g*(-y(2)-y(1)))+...
exp(g*(ei-y(2)-y(1)))-2))-((1/(r*c))*y(1));
dy(2)=-exp(g*y(2))+exp(g*(-y(2)-y(1)))+...
exp(g*(ei-y(2)-y(1)))-exp(g*(y(2)-ei));

Once these codes are implemented in Matlab, the plotting
in the following Figure is obtained:
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Fig. 12. Simulation results of the system in Figure 11.

V. CONCLUSIONS
An alternative approach to derive equations from a BG

model has been presented. Two important tools are employed:
The causality and causal paths involved in BG theory and the
tree formulation of SSE employed in LG theory.
The proposed approach allow to derive the SSE in a systematic
way by following a step by step procedure.
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Causal connections between tree elements and cotree elements
can be directly found with the suggested Procedure, allowing
the equation derivation of systems containing elements with
non linear constitutive relations, such as the well known
Shockley diode model. General node analysis allows to an-
alyze even purely resistive (algebraic) systems, and also dy-
namic systems with the proposed modi�cation in BG models.
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